
Original Article
Inhibition of platelet-derived growth factor pathway
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Objective: Increased central venous pressure in congestive
heart failure is responsible for renal dysfunction, which is
mediated by renal venous congestion. Pericyte detachment
from capillaries after renal congestion might trigger renal
fibrogenesis via pericyte-myofibroblast transition (PMT).
Platelet-derived growth factor receptors (PDGFRs), which are
PMT indicators, were upregulated in our recently established
renal congestion model. This study was designed to
determine whether inhibition of the PDGFR pathway could
suppress tubulointerstitial injury after renal congestion.

Methods: The inferior vena cava between the renal veins
was ligated in male Sprague-Dawley rats, inducing
congestion only in the left kidney. Imatinib mesylate or
vehicle were injected intraperitoneally daily from 1day
before the operation. Three days after the surgery, the effect
of imatinib was assessed by physiological, morphological and
molecular methods. The inhibition of PDGFRs against
transforming growth factor-b1 (TGFB1)-induced fibrosis was
also tested in human pericyte cell culture.

Results: Increased kidney weight and renal fibrosis were
observed in the congested kidneys. Upstream inferior vena
cava (IVC) pressure immediately increased to around
20mmHg after IVC ligation in both the imatinib and saline
groups. Although vasa recta dilatation and pericyte
detachment under renal congestion were maintained,
imatinib ameliorated the increased kidney weight and
suppressed renal fibrosis around the vasa recta. TGFB1-
induced elevation of fibrosis markers in human pericytes was
suppressed by PDGFR inhibitors at the transcriptional level.

Conclusion: The activation of the PDGFR pathway after
renal congestion was responsible for renal congestion-
induced fibrosis. This mechanism could be a candidate
therapeutic target for renoprotection against renal
congestion-induced tubulointerstitial injury.

Keywords: renal congestion, pericyte-myofibroblast
transition, imatinib, fibrosis
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field of view; GAPDH, glyceraldehyde-3-phosphate-
dehydrogenase; IVC, inferior vena cava; Kim1, kidney
injury molecule1; LV-SEM, low-vacuum scanning electron
microscopy; PDGFR, platelet-derived growth factor
receptor; PFA, paraformaldehyde; PMT, pericyte-
myofibroblast transition; qPCR, quantitative polymerase
chain reaction; RIHP, renal interstitial hydrostatic pressure;
RNA, ribonucleic acid; Rplp2, ribosomal protein lateral stalk
subunit P2; RVP, renal vein pressure; SEM, standard error
of the means; Spp1, secreted phosphoprotein1,
osteopontin; TAGLN, transgelin, SM22; TGFB, transforming
growth factor-b; TNC, Tenascin-C; TSA, tyramide signal
amplification; Vim, vimentin; VR, vasa recta
INTRODUCTION
T
he kidneys are greatly affected by hemodynamics
under heart failure in a phenomenon called cardi-
orenal syndrome [1,2]. Renal venous congestion

by abdominal venous stasis is deeply associated with car-
diorenal syndrome and relates to the progression of heart
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failure [3–5]. Renal interstitial hydrostatic pressure (RIHP) is
regulated by renal venous pressure (RVP) [6,7]. Several
animal studies have shown that acute RVP elevation
increases RIHP and decreases renal blood flow [8,9]. Liga-
tion of the inferior vena cava (IVC) above the renal veins
also raises RVP [10] and induces chronic renal dysfunction
[11,12], especially renal fibrosis with excess extracellular
matrix in the renal interstitium [13].

We have recently developed a novel rat renal venous
congestion model with RHIP elevation, tubular dilatation,
and interstitial fibrosis [14]. And the reduction of RIHP with
renal capsulotomy ameliorated this renal fibrosis. Especial-
ly in the outer medulla, transgelin (Tagln) and platelet-
derived growth factor receptors (PDGFRs) were upregu-
lated. Pericyte detachment was also observed around the
expanded vasa recta, which leads to high circumferential
(hoop or tangential) stress, in the congested kidneys.

Renal pericytes stabilize vascular networks through the
receptors of angiogenic growth factors, including PDGFRs
[15,16]. Pericytes also contribute to the renal myofibroblast
pool in renal fibrogenesis via pericyte-myofibroblast tran-
sition (PMT) [17–20], and their detachment from capillaries
after acute/chronic kidney injury may be critical in driving
chronic kidney disease progression [21]. Activation of the
PDGFR pathway is a trigger for PMT in progressive kidney
disease [22]. Thus, PMT blockage by PDGFR inhibitors
could be a novel therapeutic target against tubulointerstitial
fibrosis. Indeed, imatinib, a potent inhibitor of multiple
receptor tyrosine kinases, has been used as an inhibitor of
PDGFRs, resulting in renoprotective effects in several ani-
mal experiments [22–33].

We, therefore, hypothesized that the activation of the
PDGFR pathway is responsible for renal fibrosis in renal
congestion. The renoprotective effect of imatinib against
renal injury was investigated in our rat renal congestion
model. The anti-fibrotic effect of the PDGFR inhibition in
pericytes was verified in vitro cell culture using imatinib and
crenolanib, a highly selective PDGFR inhibitor [34,35].

METHODS

Animals
All animal experiments were conducted in accordance with
theNational Institutes ofHealthGuide for theCare andUseof
Laboratory Animals, and were approved by the Tohoku
Medical and Pharmaceutical University Animal Experiment
Committee (registration number: A18019-a, A19039-cn,
A20005-cn, and A21008-cn). Male Sprague-Dawley rats
(6weeks old, 180–220g; Japan SLC, Shizuoka, Japan) were
housed in environmentally controlled rooms under a 12-h
light/dark cycle, and fed pellets (CE-2; CLEA Japan, Tokyo,
Japan) and water ad libitum. Animal experiments were
performed after at least 5 days of acclimatization, and were
designed to use all animals for the analysis except for those
thatdiedorhadanimalwelfare issuesduring theexperiments.

Inferior vena cava ligation and imatinib
administration
IVC ligation was performed according to our previous study
[14] with slight modification. Briefly, rats were anesthetized
with a mixture of medetomidine (0.15mg/kg body weight;
1936 www.jhypertension.com
Maruishi Pharmaceutical, Osaka, Japan), midazolam
(2.0mg/kg body weight; Astellas Pharma, Tokyo, Japan),
and butorphanol (2.5mg/kg body weight; Meiji Seika
Pharma, Tokyo, Japan). After midline abdominal incision,
the IVCbetween the renalveinswas ligatedona temperature-
controlled (388C) surgical table (Figure S1A, Supplemental
Digital Content, http://links.lww.com/HJH/B967). After
abdominal closure, penicillin (300 000U/kg body weight)
and buprenorphine (0.05mg/kg body weight) were admin-
istered intramuscularly. Three days after surgery, under an-
esthesia, blood and urinewere collected from the abdominal
aorta and urinary bladder, respectively, and the rats were
euthanized under anesthesia. The kidneys, heart, and liver
were removed,and immediatelyweighedandsectioned.The
tissues for histological analysis were fixedwith 10% formalin
(Mildform; Wako Pure Chemical Industries, Osaka, Japan)
and embedded in paraffin. Both kidneys were divided into
the cortex and outer medulla, and were kept in RNA Later
(Invitrogen, Carlsbad, California, USA) for RNA or snap-
frozen in liquid nitrogen for protein analyses. Biochemical
examinations were performed by Nagahama Life Science
Laboratory (Nagahama, Japan).

Rats were randomly selected and injected intraperitone-
ally with saline (saline group, n¼ 12; Fuso Pharmaceutical
Industries, Osaka, Japan) or imatinib mesylate (imatinib
group, n¼ 12, 20mg/kg, dissolved in saline; Tokyo Chemi-
cal Industry, Tokyo, Japan) from the day before the surgery
up to two days later (Figure S1A, Supplemental Digital
Content, http://links.lww.com/HJH/B967). The dose of
imatinib and sample size were determined based on previ-
ous reports [22–25] and our preliminary experiments.

Physiological analysis
IVC pressure was measured using the PowerLab system (AD
Instruments, Sydney, Australia), as described in our previous
report [14]. Briefly, rats were anesthetized with ketamine
(20mg/kg bodyweight, intraperitoneally; Toho Pharmaceu-
tical, Tokyo, Japan) and thiobutabarbital (50mg/kg body
weight, intramuscularly; Sigma-Aldrich, St. Louis, Missouri,
USA) on a temperature-controlled (378C) surgical table, and
respirationwasmaintainedby inserting aPE240catheter into
the trachea. Upstream (junction of the left renal vein and the
vena cava) and downstream (junction of the right renal vein
and the vena cava) IVC pressures during IVC ligation were
measured by PE 50 catheters inserted from the bilateral
femoral veins and recorded for a total of 60min (30min
before and 30min after IVC ligation) after at least 30min
for equilibration with the PowerLab system (Figure S1B,
Supplemental Digital Content, http://links.lww.com/HJH/
B967). Upstream IVC pressure on day 3 after IVC ligation
was measured by a PE 50 catheter inserted from the left
femoral vein and recorded for 30min after at least 30min for
equilibrationwith the PowerLab system (Figure S1C, Supple-
mental Digital Content, http://links.lww.com/HJH/B967).
Saline containing 2.0% bovine serum albumin (BSA) was
infused through the cervical vein catheter at 1.0ml/100g
body weight/h during the IVC pressure measurements.

Ex vivo micro-computed tomography scanning
For the renal vascular structure visualization, Microfil-per-
fusedkidneyswere imagedbymicro-computed tomography
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(mCT;CosmoScanGX II; Rigaku, Tokyo, Japan). Thekidneys
were perfused with ice-cold phosphate-buffered saline and
4% paraformaldehyde (PFA) under anesthesia. This was
followed by infusion with 10ml of the radiopaque contrast
agent Microfil MV-112 (5:4 ratio of MV-diluent: MV-com-
pound and 5% MV-curving agent [36]; Flow Tech, Carver,
Massachusetts,USA).After 2–3hofMicrofil solidification, the
kidneys were removed and incubated in 4% PFA at 48C
overnight. The kidneys were then scanned by mCT under
the following conditions: X-ray voltage, 90kV; current,
88mA; field of view (FOV), 25mm; voxel size, 50.0mm x
50.0mm � 50.0mm; and scan time, 4min (high resolution).

Cell culture
Human pericytes from the placenta (hPC-PL; Promo Cell
GmbH, Heidelberg, Germany) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Thermo Fisher Scientific,
Waltham, Massachusetts, USA)/20% fetal bovine serum
(FBS; Life Technologies, Carlsbad, California, USA) at
378C under 5% CO2. Cells were seeded at 5 � 105 cells/
well in 12-well plate (Thermo Fisher Scientific), serum-
starved in DMEM/1% FBS overnight, and then incubated
for 24 h in following conditions: vehicle, 1.0mg/ml trans-
forming growth factor-b1 (TGFB1; R&D Systems, Minne-
apolis, Minnesota, USA), 1.0mg/ml TGFB1 and 25mmol/l
imatinib, and 1.0mg/ml TGFB1 and 1.0mmol/l crenolanib
(Selleck, Houston, Texas, USA) in DMEM/20% FBS. The
concentration of the reagents was determined based on a
previous report [34].

Quantification of RNA expression levels
Total RNAwas extracted from the rat kidneys using ISOGEN
(NIPPON GENE, Tokyo, Japan), and from the cultured cells
using a silica-based spin column (FastGene RNA Basic Kit;
Nippon Genetics, Tokyo, Japan). cDNA was synthesized
from the total RNA using random hexamer (Invitrogen) and
SuperScript III First-Strand reverse transcriptase (Invitro-
gen). The target cDNAs were amplified in duplicate with
specific primers (Table S1, Supplemental Digital Content,
http://links.lww.com/HJH/B967) using THUNDERBIRD
SYBR qPCR Mix (Toyobo, Osaka, Japan) and CFX Connect
(Bio-Rad, Hercules, California, USA). The relative mRNA
expression levels were normalized to the values of ribo-
somal protein lateral stalk subunit P2 (Rplp2) in rat kidneys,
or actin beta (ACTB) and glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) in human cells.

Imatinib-binding genes were selected according to the
previous report [37]. Themicroarray data set (GEO accession
number: GSE114031) that we compared the right control
kidney and the left congested kidney in our previous study
[14]was also used to check themRNAexpression levels of the
imatinib-binding genes.

Western blotting
Kidneys were homogenized in lysis buffer (9803; Cell
Signaling Technology, Danvers, MA) containing
1.0mmol/l phenylmethylsulfonyl fluoride (Thermo Fisher
Scientific) and protease inhibitor cocktail (Roche, Basel,
Switzerland). Twenty microgram of proteins mixed with
Laemmli sample buffer (Bio-Rad) and 2.5% mercaptoetha-
nol were separated by 4–20% Mini-PROTEAN TGX Gels
Journal of Hypertension
(Bio-Rad) and transferred onto trans-blot turbo transfer
pack membranes (Bio-Rad). After incubation with a block-
ing reagent (PVDF Blocking Reagent for Can Get Signal;
Toyobo), the membranes were incubated with antigen-
specific antibodies (Table S2, Supplemental Digital Con-
tent, http://links.lww.com/HJH/B967) overnight at 48C.
Immunoreactive signals were visualized using a horserad-
ish peroxidase-conjugated secondary antibody (1:5000;
Santa-Cruz Biotechnology, Dallas, Texas, USA), an en-
hanced chemiluminescence system (Thermo Fisher Scien-
tific), and Amersham Imager 600 (GE Healthcare,
Buckinghamshire, UK). The relative expression level of
each protein was normalized to GAPDH.

Histological analysis
Four-micrometer-thick sections were deparaffinized with
xylene and hydrated in gradient ethanol and distilled water.
The sections were stained with hematoxylin-eosin and
Elastica-Masson for routine histological analysis in the
Technical Service Division of Tohoku Medical and Phar-
maceutical University. The Picrosirius Red staining (Poly-
sciences, Warrington, Pennsylvania, USA) was performed
according to the manufacturer’s instruction.

For immunohistochemistry, after deparaffinization, the
antigens were retrieved in an autoclave for 5min at 1218C
in 10mmol/l citrate buffer (pH6.0) or 1.0mmol/l ethylene-
diaminetetraacetic acid buffer (pH 9.0). Then, the antigens
were reacted with antigen-specific antibodies (Table S2,
Supplemental Digital Content, http://links.lww.com/HJH/
B967) overnight at 48C. On the next day, the sections were
incubated with biotinylated secondary antibodies (Abcam,
Cambridge, UK), and the reaction was visualized by strepta-
vidin-conjugated horseradish peroxidase (SouthernBiotech,
Birmingham, Alabama, USA) and 3,30-diaminobenzidine
(DAB; Dojindo, Kumamoto, Japan), or fluorophores (Alexa
488 or Alexa 555; Molecular probes, Carlsbad, California,
USA). The nuclei were counterstained with hematoxylin or
Hoechst 33342 (Molecular Probes). The slides were digitized
by a microscope (BZ-X 710; KEYENCE, Tokyo, Japan) or
confocal microscopy (Leica TCS SP8; Leica Microsystems,
Wetzlar, Germany).

For double-labeling immunofluorescence using primary
antibodies with the same host species, the tyramide signal
amplification (TSA)-based multiplex immunofluorescence
method was used [38]. The sections were deparaffinized,
retrieved antigens, and incubated with the first rabbit pri-
mary antibody (1:500, anti-NG2, AB5320; Millipore, Teme-
cula, California, USA), biotinylated secondary antibody,
and streptavidin-conjugated horseradish peroxidase as de-
scribed above. Then, according to the manufacturer’s pro-
tocol, covalent deposition of fluorophores around the
recognition point of the primary antibody was developed
with the catalytic activity of horseradish peroxidase and
iFluore 488 Styramide reagent (45020; AAT Bioquest, Sun-
nyvale, California, USA). After the primary and secondary
antibodies were stripped from the sections by microwave
for 10min in 10mmol/l citrate buffer, the sections were
reacted with the subsequent rabbit primary antibody
(1:4000, anti-CD11B, ab133357; Abcam or 1:200, anti-
CD206, 24595S; Cell Signaling) and fluorophore-conjugated
secondary antibody (1:1000, A21430; Life Technologies),
www.jhypertension.com 1937
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counterstained with Hoechst 33342, and mounted with
ProLong Gold Antifade mounting medium (Molecular
Probes).

To measure collagen positive area around the vasa recta,
theareaof thePicrosiriusRedstainingwascalculateddigitally
using Hybrid Cell Count BZ-H3C application (Figure S2,
Supplemental Digital Content; KEYENCE, http://links.lww.
com/HJH/B967) following the previous report [39].

Low-vacuum scanning electron microscopy
The ultra-structure of the vasa recta was observed by low-
vacuum scanning electron microscopy (LV-SEM, Miniscope
TM4000; Hitachi High-Technologies, Tokyo, Japan), as
previously described [14]. Briefly, 4-mm-thick sections
stained with Pt-blue solution (TI-blue small kit; Nisshin
EM, Tokyo, Japan) were captured at an acceleration voltage
of 15 kV and 30 Pa. Four fields of the vasa recta were
randomly selected from each slide, and the diameter of
the vasa recta was manually measured by ImageJ software.

Statistical analysis
Data collection, interpretation, and statistical analysis were
conducted by separate researchers, who were blinded to
the procedures. Continuous values are presented as the
means � standard error of the means (SEM). Statistical
comparisons were conducted using Mann�Whitney U test
for two-group comparisons, and Kruskal�Wallis test fol-
lowed by Steel�Dwass test for multiple comparisons.
P values <0.05 were considered significant.

RESULTS

Changes in morphology and biochemical
parameters
No anatomical vein abnormalities were observed, and no
rats died during the experimental period. Consistent with
the previous report [14], the upstream IVC pressure imme-
diately increased to around 20mmHg (saline: 18.8� 0.5;
and imatinib: 18.3� 0.8mmHg) after IVC ligation, and kept
high at around 10mmHg (saline: 10.3� 1.0; and imatinib:
10.1� 0.7mmHg) on the day 3 after IVC ligation in both the
imatinib and saline groups (Fig. 1a and b). Imatinib had no
effect on IVC pressure elevation in either the acute or sub-
acute phase after IVC ligation. The weight of the left
congested kidney was significantly elevated compared to
that of the right control kidney (Fig. 1c). Imatinib signifi-
cantly attenuated the elevated weight of the congested
kidney. In contrast to kidney weight, liver and heart weight
were not affected by imatinib (Fig. 1d and e).

Although the morphology of the pericytes around vasa
recta was hardly visible by double-labeling immunofluores-
cence staining of pericyte marker (NG2) and vascular endo-
thelial marker (PECAM1) (Figure S3, Supplemental Digital
Content, http://links.lww.com/HJH/B967), vasa recta ex-
pansion and pericyte detachment, triggers in our congestion
model [14], were detected on mCT and LV-SEM images
and were not different between imatinib- and saline-treated
congested kidneys (Fig. 2a and b). The injury stimulated
phosphorylation/activation of PDGFRB around the vasa
recta in the congested kidney was suppressed by imatinib
(Fig. 2c and d).
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Among renal function parameters, creatinine level was
not different between the two groups, but blood urea
nitrogen level was significantly reduced in the imatinib
group compared to that in the saline group (Table S3,
Supplemental Digital Content, http://links.lww.com/HJH/
B967). Hepatic and cardiac dysfunctionwas not observed in
both data of the biochemical analysis and histological
analysis (Figure S4, Supplemental Digital Content, http://
links.lww.com/HJH/B967).

Effect of imatinib on mRNA expression
To clarify the mechanism by which imatinib reduced the
weight of the congested kidney, we assessed the mRNA
levels of genes associated with kidney injury and the
PDGFR signaling pathway: Fibronectin (Fn1), a-smooth
muscle actin (Acta2), Tenascin-C (Tnc), and collagens
(Col1a1 and Col3a1) as fibrosis markers; Kidney injury
molecule 1 (Kim1) and Osteopontin (Spp1) as kidney injury
markers; Pdgfra, Pdgfrb, and Tagln as PMT markers; and
Vimentin (Vim) as a marker of mesenchymal cells (Fig. 3).
The mRNA expression levels of Acta2, Fn1, Kim1, Pdgfrb,
Spp1, Tagln, Vim, and collagens were elevated in the cortex
of the left congested kidneys. Imatinib significantly attenu-
ated the elevation of collagens. In the outer medulla, as well
as in the cortex, markers of fibrosis, kidney injury, and PMT
were elevated in the congested kidneys. Imatinib signifi-
cantly reduced the elevation of Tnc and Vim, and collagens.
ThemRNA expression of Cyclin D1 (Ccnd1), a proliferation
marker, was reduced in the congested kidneys, and ima-
tinib did not affect the reduction.

Since imatinib is not a specific PDGFR inhibitor [37,40],
we further assessed the mRNA expression of imatinib-
binding protein kinases (Table S4, Supplemental Digital
Content, http://links.lww.com/HJH/B967). Microarray data
from our previous study on the creation of this renal
congestion model [14] showed that the mRNA expression
of some tyrosine kinases (Plk4 in the cortex, and Frk, Fyn,
Mapk8, Mapk10, and Kit in the outer medulla) with lower
binding affinity to imatinib than PDGFRB [37] was upregu-
lated by the renal congestion (Table S4, Supplemental
Digital Content, http://links.lww.com/HJH/B967). Howev-
er, these upregulations were not replicated and imatinib did
not affect the expressions by qPCR (Figure S5, Supplemen-
tal Digital Content, http://links.lww.com/HJH/B967).

Effect of imatinib on protein expression
To further investigate the protective effect of imatinib
against renal congestion, we assessed the protein expres-
sion bywestern blotting (Fig. 4 and Figure S6, Supplemental
Digital Content, http://links.lww.com/HJH/B967). Imatinib
significantly reduced the expression of ACTA2, FN1, and
KIM1 in the outer medulla of the left congested kidneys
(Fig. 4). Imatinib did not affect the expression of PDGFRs in
the outer medulla. In contrast to the outer medulla, imatinib
did not reduce the expression of those proteins in the
cortex (Figure S6, Supplemental Digital Content, http://
links.lww.com/HJH/B967).

Histological changes around the vasa recta
From the above results, it was presumed that imatinib did
not influence vasa recta dilatation and pericyte detachment,
Volume 40 � Number 10 � October 2022
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Fig. 1 Effect of imatinib on inferior vena cava (IVC) pressure and organ weight. (a) Upstream (junction of the left renal vein and the vena cava) and downstream (junction
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Platelet-derived growth factor receptor pathway and renal congestion
which are a trigger of kidney injury in renal congestion, but
would suppress renal fibrosis and injury in the outer me-
dulla rather than in the cortex. Therefore, we focused on the
lesions around the vasa recta in histological analysis.

Histological analysis revealed hyperplasia of the extra-
cellular matrix and renal tubular injury in the congested
kidneys (Fig. 5 and Figure S7, Supplemental Digital Con-
tent, http://links.lww.com/HJH/B967). Elastica-Masson
staining showed the increased fibrotic area around the vasa
recta in the congested kidneys (Fig. 5a). Immunostainings
of PMTmarkers and collagens revealed that renal congestion
increased the positive area of these proteins in the interstitial
space around the vasa recta. TNC, a major component of the
fibrogenic niche [41], was also expressed around this area.
Administration of imatinib decreased these morphological
changes. Picrosirius Red staining showed an increase in
collagen fibers in the congested kidney, and imatinib
Journal of Hypertension
significantly suppressed the collagen-positive area
(Fig. 5b). In contrast to the outer medulla, the extent of
imatinib-induced changes in the staining intensity in the
cortex was faint, similarly to the results of the qPCR and
western blot. These results imply that the inhibition of the
PDGFR pathway by imatinib could be beneficial against
tubulointerstitial injury in our renal congestion model.

Effect of imatinib on transforming growth
factor-b1 pathway and macrophage markers
Recent studies revealed the cross-talk between the PDGFR
pathway and TGFB pathway [22,42], and the existence of
macrophage-like NG2 positive cells after renal injury [43].
The protein expression of TGFB1 and macrophage
markers (CD11B, CD68, and CD206) was increased in
the outer medulla after renal congestion (Fig. 6a). The
phosphorylation of SMAD2/3 was also stimulated by renal
www.jhypertension.com 1939
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Matsuki et al.
congestion (Fig. 6a). Imatinib blocked the activation of the
TGFB pathway and the upregulation of the macrophage
markers. In double-labeling immunofluorescence staining,
NG2 colocalized with PDGFRB around the vasa recta,
1940 www.jhypertension.com
while cells expressing macrophage markers colocalized
with neither PDGFRB nor NG2 (Fig. 6b and Figure S8,
Supplemental Digital Content, http://links.lww.com/HJH/
B967).
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Fig. 3 mRNA expression in the cortex and outer medulla. The mRNA expression level of Fn1, Acta2 (a-SMA), Tnc, Col1a1, Col3a1, Kim1, Spp1, Pdgfra, Pdgfrb, Tagln, Vim,
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in the saline group by Steel�Dwass test. R: right kidney; L: left kidney.
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Suppressive effect of platelet-derived growth
factor receptor inhibitors against pericyte-
myofibroblast transition damage in vitro
To verify the effect of the PDGFR pathway inhibition
against fibrogenesis via PMT, we performed in vitro exper-
iment by using a human pericyte cell line, hPL-PC. As
reported in mouse primary cultured pericytes [22], TGFB1
stimulated myofibroblast differentiation in human pericytes
(Fig. 7). The expression of FN1, COL1A1, and COL4A1 was
significantly elevated by TGFB1 at the transcriptional level.
Both imatinib and crenolanib significantly suppressed these
mRNA elevations.

DISCUSSION

The present study showed that the PDGFR pathway was
enhanced in renal congestion and that inhibition of the
PDGFR pathway by imatinib, a clinically available agent,
was effective against fibrosis, even after pericyte detach-
ment. Renal congestion is an issue of cardiorenal syndrome
in heart failure. Better understandings of the pathophysio-
logical mechanisms involved in renal congestion are need-
ed to develop a new therapeutic strategy. Our results
indicated that the activation of the PDGFR pathway after
1942 www.jhypertension.com
pericyte detachment was responsible for renal congestion-
induced fibrosis.

In our previous study, renal congestion induced pericyte
detachment which could result in extracellular matrix ex-
pansion and fibrogenesis, and the reduction of RIHP by
decapsulation attenuated these injurious phenomena in-
cluding PDGFRs and Tagln suppression [14]. Because renal
capsulotomies are not acceptable in humans, other ways
to suppress PDGFR and/or Tagln are needed. We thus
assessed the effect of imatinib, inhibition of PDGFRs,
against fibrosis under renal congestion. Imatinib is a potent
inhibitor of multiple receptor tyrosine kinases, such as
c-Abl, c-Kit, and PDGFRs, and is expected to be approved
for the treatment of tumors and nonmalignant proliferative
disorders [40]. Twenty mg/kg imatinib suppressed the
phosphorylation/activation of PDGFRB and ameliorated
renal interstitial fibrosis without hepatic, cardiac, or renal
dysfunction in the present study. Imatinib at 50mg/kg was
too toxic to the kidney as concerned [44], and 5mg/kg
imatinib was not effective against congestion-derived fibro-
sis in our preliminary experiment.

Imatinib is not a specific inhibitor of PDGFRs, although
imatinib has been used as an inhibitor of PDGFRs in animal
models and is effective against kidney injury [22–26]. It has
Volume 40 � Number 10 � October 2022
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an inhibitory activity by binding to several protein kinases
[37,40]. Fabian et al. [37] have identified that imatinib
interacted with 16 of the 119 human protein kinases includ-
ing PDGFRB, ABL, and KIT. Since the expression of
1944 www.jhypertension.com
PDGFRB was upregulated from the transcriptional level
in the congested kidney of our renal congestion model,
we further confirmed the mRNA expression of the imatinib-
binding protein kinases. Their expression was not altered
Volume 40 � Number 10 � October 2022
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by renal congestion in qPCR analysis. Thus, the activation of
the PDGFR pathway seems to be the major target of
imatinib in the present renal congestion model. However,
since we have not checked the post-transcriptional activa-
tion of these protein kinases, their contribution to renal
damage after renal congestion cannot be excluded.

The consequences of abdominal venous congestion are
very difficult to evaluate in humans because the concomi-
tant reduction of renal blood flow by the low output or
underlying chronic kidney diseases often occur. To dissect
the direct effect of renal venous congestion, several animal
experiments were performed. Cops et al. [45,46] recently
reported a new rat renal congestion model with incomplete
ligating thoracic IVC. In their model, kidney weight gain
and renal fibrosis were not observed. This might be due to
the high mortality rate of their model, as renal fibrosis can
be observed only in the rats that died. In contrast, these
kidney injuries were detected in our model because rats
with severe renal congestion survived owing to compensa-
tion with the contralateral kidney. Furthermore, our model
has the advantage that this right contralateral kidney can be
the control kidney. We have shown no difference in renal
function and injury between sham-operated and the right
contralateral kidney in our paper on the creation of this
model [14]. This would contribute to animal welfare and
concise analysis of the congested kidney. It is well known
that the contralateral right kidney in the unilateral ureteral
obstruction (UUO) model is not normal by several factors
affected by the damaged left kidney, including hemody-
namic changes and neuro/hormonal transmitters [47]. This
contralateral right kidney in the UUO model can only be
used as a control when comparing therapeutic intervention
to the obstructed kidney. Therefore, the contralateral right
kidney in our renal congestion model may also need to be
further validated as a control kidney.

Kidney weight gain, vasa recta expansion, and
pericyte detachment in renal congestion
In the present study, the left congested kidney significantly
gained weight. Inhibition of the PDGFR pathway by
Journal of Hypertension
imatinib significantly suppressed weight gain in the con-
gested kidney. Although cell proliferation could be activat-
ed by the PDGFR pathway [48], the expression of Ccnd1
mRNA, a cell proliferation marker and downstream of the
PDGFR pathway, did not increase in the congested kidneys.
Thus, this kidney weight gain was due to fibrosis and
extracellular matrix expansion, but not cell proliferation.
Moreover, this congestion model was different from an
ischemia model with total occlusion of the renal vein, as
seen in renal venous embolism, which shows severe ne-
crotic damage (Figure S9, Supplemental Digital Content,
http://links.lww.com/HJH/B967).

Vasa recta capillary expansion and pericyte detachment
were observed by renal venous congestion in this study.
Elevation of RIHP was observed by the increased renal
perfusion pressure, but did not alter vasa recta diameter
[49]. Since increased in RIHP enhanced renal oxidative
stress [50], RIHP could contribute to the enhancement of
the PDGFR pathway and progression of renal fibrosis by
renal congestion. Indeed, TGF-b1 and NF-kB pathway
were enhanced in congestive kidney, both of which pro-
motes fibrosis with interaction with oxidative stress [14].
Furthermore, we cannot deny the possibility that renal
medullary hypoxia by renal congestion may contribute to
fibrogenesis in the renal medulla, which we have previous-
ly reported in Dahl salt-sensitive (Dahl S) rats, a model of
cardiorenal failure [51].

In Dahl S rats, renal medullary blood flow is reduced [51].
Renal medullary fibrosis is observed following reduced
medullary blood flow, increased Na reabsorption, and high
blood pressure. Chiba et al. [52] has shown the close
relationship between renal fibrosis and renal congestion
in Dahl S rats. Therefore, the PDGFR pathway activation by
renal congestion could be also responsible for renal injury
in Dahl S rats. In contrast to Dahl S rats, spontaneously
hypertensive rats, a genetic hypertension model, raise the
blood pressure around 5–6weeks of age, but cardiac failure
and renal damages were observed at older ages [53]. This
may be related to venous hypertension and renal conges-
tion. Future studies are required to determine the roles
www.jhypertension.com 1945
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fibrosis around the vasa recta.

Matsuki et al.
of the PDGFR pathway in renal damage in models
of hypertension.
Pathophysiological role of the platelet-derived
growth factor receptor pathway in renal
congestion-induced fibrosis
Pericytes and the PDGFR pathway normally contribute to
microvessel stability and have regeneration potential
[16,20,54]. Recent studies have shown that renal pericytes
are major targets of kidney injurious signals, resulting in
maladaptive responses and PMT with upregulation of
PDGFR [20,22,43,55]. Chen et al. [22] reported that imatinib
was effective against renal fibrosis in obstructive or post-
ischemic kidney injury animal models with increase in
platelet-derived growth factors in injured tubules and en-
dothelium, and PDGFRa/b in interstitial pericytes and
myofibroblasts. In the present study, imatinib suppressed
renal medullary fibrosis without affecting the IVC pressure
1946 www.jhypertension.com
elevation, vasa recta expansion, and pericyte detachment.
This indicates that imatinib could inhibit PMT despite
maintaining renal congestion. Kittikulsuth et al. [43] dem-
onstrated that renal NG2-positive cells had an M2 macro-
phage-like ability and participated in the recovery process
after acute renal injury. NG2 colocalized with PDGFRB in
both control and congested kidneys, but not colocalized
with macrophage markers (CD11B, CD68, and CD206) in
the present study. This means that the differentiation of
pericytes into immune potential is limited in renal conges-
tion, and the detached pericytes start fibrogenesis via PMT.
Furthermore, a positive feedback loop between the PDGFR
and TGFB pathway was reported in glomerular mesangial
cells [42]. The expression of TGFB1 was elevated in the rat
congested kidney, and imatinib treatment blocked the
activation of the TGFB pathway in the present study.
And in vitro experiment in human pericytes showed that
TGFB1-induced PMT was suppressed by both imatinib and
a highly selective PDGFR inhibitor. Thus, the cross-talk of
Volume 40 � Number 10 � October 2022
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the PDGFR and TGFB pathway in the pericyte could have a
crucial role in renal fibrosis after renal congestion.

Efficacy of imatinib in other kidney diseases
Imatinib is already commonly administered to patients with
several tumors [56]. Various reports in animal experimental
models of renal disorders have shown the therapeutic
benefit of imatinib, including for mesangial proliferative
glomerulonephritis [27], chronic allograft nephropathy [28],
diabetic nephropathy [29], lupus nephritis [30,31], unilateral
ureteral obstruction nephropathy [22,23,32], cryoglobulin-
associated-membranoproliferative glomerulonephritis [33],
and anti-glomerular basement nephritis [26]. Furthermore,
Elmholdt et al. [57] reported the efficacy of imatinib against
nephrogenic systemic fibrosis in humans. In these studies,
the beneficial effects of imatinib are shown to be the results
of its inhibitory action on the PDGFR pathway, which leads
to suppression of glomerular cell proliferation or accumu-
lation of extracellular matrix. Imatinib also reduced the
number of macrophages in the nephrotoxic serum of rats
with nephritis [26], suggesting the renoprotective and
immunomodulatory properties of imatinib. The present
study suggested that imatinib was effective against renal
interstitial fibrosis induced by renal venous congestion.
Administration of a specific inhibitor of the PDGFR pathway
could be a promising strategy for limiting the progression of
kidney diseases to end-stage renal failure.

Limitations
A few points need to be underlined as limitations of the
present study. First, the present rat model artificially indu-
ces volume-overloaded venous congestion in the left kid-
ney, as seen in the patients with congestive heart failure,
by complete ligation between renal veins. Thus, this model
will provide a better understanding of the pathophysiologi-
cal mechanisms of renal venous congestion, but cannot be
expanded to deterioration of renal function associated with
progression of heart failure. Second, the IVC pressures on
day 3 before tissue sampling were around 10mmHg, which
is comparable to 12.2mmHg in Dahl S rats, a renal conges-
tion model with heart failure [52]. However, the IVC pres-
sure increased to around 20mmHg at the acute phase,
which may affect renal damage. We have also observed
pericyte detachment in Dahl S rats (Figure S10, Supplemen-
tal Digital Content, http://links.lww.com/HJH/B967), indi-
cating that renal damage observed in our model was also
seen in the non-artificial heart failure model. Third, chronic
elevation of renal venous pressure by venous ligation in-
duced collateral formation, resulting in a decrease in renal
venous pressure and attenuation of renal venous congestion
[58]. Indeed, the collateral circulationwas observed on day 7
after the ligation in our renal congestion model [14]. Fourth,
IVCcompleteorpartial ligationof theupstream left renal vein
is a commonly utilized model of venous thrombosis [59,60].
Although SD rats used in this study did not have a thrombus
phenotype during the experiment, a preliminary examina-
tion of our renal congestionmodel using C57BL6, FVB, CBA,
and DBA mice showed a high mortality rate within one day
with thrombus formation. The genetic background of the
experimental animals also affects the disease development
and progression in several renal disease models [61–63].
Journal of Hypertension
Taken together with these points, the experimental design
needs to be carefully determined by the species, strain, and
IVC pressure maintenance necessities. Finally, the important
pathophysiological roles of the pericyte have been demon-
strated in the kidney of several animal models [17–22] in-
cluding our present report, and in the brain and retina of
human diseases [64–66]. To the best of our knowledge,
however, ultrastructural or immunohistochemical photomi-
crographs of the pericyte loss/detachment in the living hu-
man kidney and its pathophysiological roles have never
been evaluated.

In conclusion, as schematically summarized in Fig. 8,
vasa recta expansion in the congested kidneys led to
pericyte detachment, inducing PDGFR upregulation and
PMT. Imatinib was effective against renal injury by sup-
pression of the PDGFR activation. Therefore, the activation
of the PDGFR pathway would be responsible for renal
fibrosis in renal congestion. This mechanism could be a
candidate therapeutic target for renoprotection against
cardiorenal syndrome.
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