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Abstract

Despite the profound influence on coding capacity of sensory neurons, the measurements of noise corre-
lations have been inconsistent. This is, possibly, because nonstationarity, i.e., drifting baselines, engendered
the spurious long-term correlations even if no actual short-term correlation existed. Although attempts to
separate them have been made previously, they were ad hoc for specific cases or computationally too
demanding. Here we proposed an information-geometric method to unbiasedly estimate pure short-term
noise correlations irrespective of the background brain activities without demanding computational re-
sources. First, the benchmark simulations demonstrated that the proposed estimator is more accurate and
computationally efficient than the conventional correlograms and the residual correlations with Kalman filters
or moving averages of length three or more, while the best moving average of length two coincided with the
propose method regarding correlation estimates. Next, we analyzed the cat V1 neural responses to
demonstrate that the statistical test accompanying the proposed method combined with the existing
nonstationarity test enabled us to dissociate short-term and long-term noise correlations. When we excluded
the spurious noise correlations of purely long-term nature, only a small fraction of neuron pairs showed
significant short-term correlations, possibly reconciling the previous inconsistent observations on existence
of significant noise correlations. The decoding accuracy was slightly improved by the short-term correlations.
Although the long-term correlations deteriorated the generalizability, the generalizability was recovered by
the decoder with trend removal, suggesting that brains could overcome nonstationarity. Thus, the proposed
method enables us to elucidate the impacts of short-term and long-term noise correlations in a dissociated
manner.

Key words: decoding analysis; information geometry; noise correlations; population codes; primary visual cor-
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The proposed measure for spike-count noise correlations, based on the local temporal detrending,
enables us to decompose the correlated responses into long-timescale and short-timescale compo-
nents. The proposed method is essential to elucidate the population codes in the era of large-scale
electrophysiology as it works for large number of simultaneously recorded neurons while existing
methods do not. With the additional help of the machine learning that classifies stimuli from neural
activities, we demonstrate proper ways to assess the impacts on decoding of the presence of
short-term or long-term noise correlations, separately. The well-designed decoding analysis with
dissociated correlated activities will help to gain insight into the brain’s decoding strategies under

kchanging environments. j
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Introduction

The impacts and mechanisms of correlations in noises,
i.e., trial-to-trial variations in neural responses to the same
stimulus, have been issues in neuroscience (Cohen and
Kohn, 2011; Doiron et al., 2016). The information theoretic
studies showed that correlation in response noises can be
a major determinant for coding capacities of sensory
information by neurons (Abbott and Dayan, 1999; Som-
polinsky et al., 2001; Miura et al., 2012; Latham and
Roudi, 2013; Moreno-Bote et al., 2014). In some cases,
even in a simple homogeneous network with tiny noise
correlations, having more neurons does not help at all
(Zohary et al., 1994; but see also Abbott and Dayan, 1999;
Sompolinsky et al., 2001; Miura, 2012; Moreno-Bote
et al., 2014). Therefore, it is extremely important to esti-
mate noise correlations accurately in the era of large-
scale electrophysiology (Steinmetz et al., 2018).

Although significant noise correlations have been ob-
served in almost all recorded cortical areas, it has been
pointed out that nonstationarity such as drifts in signals
can engender artificial correlations even if no actual cor-
relation exists (Bair et al., 2001; Ecker et al., 2010; Renart
et al., 2010). Therefore, it is desired to dissociate the
observed noise correlations into short-term and long-term
components, where the latter is possibly caused by the
background trends or fluctuations of the baseline activity
(Fiser et al., 2004; Ikegaya et al., 2004; Sasaki et al., 2007;
Luczak et al., 2015; Okun et al., 2015). Although attempts
to separate them and estimate purely short-term noise
correlations under changing environments have been
made previously, they were ad hoc and applicable only to
specific cases (Bair et al., 2001; Mitchell et al., 2009;
Ecker et al., 2010; Renart et al., 2010). Even the latest
Bayesian method requires considerable numbers of si-
multaneously recorded neurons as well as exponential
computational costs to estimate instantaneous activities
(Ecker et al., 2014; Rosenbaum et al., 2017). Thus, the
estimation method, which requires only the recording of a
pair of neurons and works for arbitrary baseline drifts
nonparametricaly (Amari and Cardoso, 1997), is desired.

In addition to measuring the noise correlations, assess-
ing their impacts is also very important. The degree to
which sensory information is represented reliably by neu-
ral responses has been characterized by applying a de-
coding approach in a stochastic stimulus-response
framework (Dayan and Abbott, 2001; Averbeck et al.,

Received October 14, 2018; accepted February 5, 2019; First published
February 11, 2019.
The authors declare no competing financial interests.
Author contributions: T.T. and K.M. performed research; T.T. and K.M.
analyzed data; Y.M., H.l., and K.M. designed research; K.M. wrote the paper.
This work was supported by Japan Society for the Promotion of Science,
Grants-in-Aid for Scientific Research Grants 18K11485, 18K13251, 16K01966,
and 15H05878.
Correspondence
miura@kwansei.ac.jp.
https://doi.org/10.1523/ENEURO.0395-18.2019
Copyright © 2019 Takahashi et al.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

should be addressed to Keiji Miura at

January/February 2019, 6(1) e0395-18.2019

Methods/New Tools 2 of 16

2006; Sharpee, 2017). That is, the decoding success rates
can be used as a measure of accuracy of neural repre-
sentations. One can take different features of neural ac-
tivities as clues for decoding to see which feature carries
information. Therefore, it is ideal, within this framework, if
the dissociation of short-term and long-term correlations
gives us a novel way to assess their respective impacts on
information representations.

In this article, we propose an information-geometric
method to unbiasedly estimate pure short-term noise cor-
relations irrespective of the background brain activities.
One effective way to use the information geometry, that
generally finds orthogonal statistical parameters (Amari
and Nagaoka, 2001; Miura, 2011; Amari, 2016), is to
estimate only finite parameters of interest irrespectively of
the other infinite numbers of parameters (Miura et al.,
2006a,b, 2007; Miura and Uchida, 2008). Here, we used
this infinite-dimensional scheme (Amari and Kawanabe,
1997; Miura, 2013) to dissociate the parameter for short-
term correlation from the infinitely many parameters for
(all possible) long-term baseline drifts nonparametrically.
This allows us to estimate pure short-term correlations
whatever the baseline drift is without demanding consid-
erable numbers of simultaneously recorded neurons and
high computational costs. Then, the accompanying sta-
tistical test as well as the existing nonstationarity test
enabled us to dissociate short-term and long-term corre-
lations. First, as benchmark simulations, we demon-
strated that the proposed estimator is more accurate and
computationally efficient than the conventional correlo-
grams and the residual correlations with Kalman filters or
moving averages of length three or more, while the best
moving average of length two coincided with the propose
method regarding correlation estimates. Next, when we
excluded the spurious noise correlations of purely long-
term nature, only a small fraction of V1 neuron pairs
showed significant short-term noise correlations, possibly
reconciling the previous inconsistent observations on the
existence of significant noise correlations. Finally, with the
additional help of the machine learning that classifies
stimuli from neural activities, we assessed the impacts on
decoding of the presence of short-term or long-term noise
correlations, separately. The presence of pure short-term
correlations slightly improved the decoding accuracy,
while the pure long-term correlations deteriorated the
generalization ability. However, the decrease in decoding
accuracy by the long-term correlations was recoverable
by using the decoder with offset, suggesting that the brain
could overcome nonstationarity by detrending. Thus, our
method enables us to elucidate the impacts of short-term
and long-term correlations in a dissociated manner, ad-
vancing a modern, component-wise information theoretic
analysis (Schneidman et al., 2003; Latham and Nirenberg,
2005; Averbeck et al., 2006; Sharpee et al., 2006).

Materials and Methods

All the simulations and data analyses in this article were
done by using R. Throughout the analyses in the article,
the firing rate for each trial was used as an activity feature.
The firing rate was computed as the spike count divided
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by the trial duration with a visual stimulus, which varied by
trials from 1.0 to 1.7 s. Thus, when we say correlation
coefficients or (trial-shifted) correlograms, we solely con-
sider spike count noise correlations.

Proposed estimator for short-term noise correlation
As a measure of short-term noise correlations, we pro-
posed and used the following estimator,
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where the covariances 3, are estimated as
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There in, x; and y, denote the neural responses in spike
counts within a few seconds in the t-th trial, while the local
mean activities were defined by
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The proposed measure in Equation 1 is comparable to the
conventional correlation coefficient. When we plotted in
the form of correlograms, we first shifted one of two time
series by 7 trials and then computed the proposed mea-
sure for them.

Code accessibility

The R code for computing the proposed correlation
coefficient and its p value, as defined below in Statistical
tests for short-term noise correlations, is freely available
online at https://github.com/toshi-0415/eNeuro. The code
is ready to run just by replacing the example data for
Figure 4 with users’ own data.

As there can be a minor style difference in coding the
proposed measure, we unified the rule and adopted the
one with the minimum errors throughout the article and
the downloadable code. That is, there are two possible
ways for pairing two neighboring trials, (1) starting at
the first trial as {3,4}, {5,6}, and (2) starting at the
second trial as {2,3}, {4,5}, {6,7}, . ... In the adopted
{1,2} style, we took the average of the two estimated
covariances, because we found it had smaller variances
(estimation errors). This style difference only negligibly
modifies the results and the overall conclusions never
change.

Assumption and derivation of proposed estimator
The proposed estimator in Equation 1 was derived for

estimating parameters in a semiparametric statistical

model. That is, the activities of two neurons were hypoth-
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esized to obey the following statistical model (Eq. 4) and
the proposed estimator estimates the Gaussian covari-
ance therein. Although the derivation and concise bench-
mark simulations were already shown elsewhere (Miura,
2013), the application to the real experimental data has
not been done yet.

In this article, we solely consider the spike count within
a trial, where the spiking activity of a neuron is integrated
over a couple of seconds and, thus, well approximated by
a Gaussian distribution. This leads us to consider a bivari-
ate normal distribution for activities of two neurons, g(x, y;
My My, %), Where w, and u, denote the means for two
neurons’ activities and X denotes the covariance matrix.
The activities x and y denote the spike counts of two
neurons for a trial. These analyses address the situation in
which the covariance matrix 3, is constant whereas the
signhals w can change over time. Especially, when the signals
w are distributed randomly, but two consecutive signals are the
same from continuity condition, the distribution of activities at
time 2t—1 and 2t (t = 1, 2,...) can be described as a mixed
model,

p({XZt—1! y2t—1 ’ X2t’ y2t};2! k("LX’ “‘y)) = fk(l-’“x’ IJ“y)

X q(X2t71’ y2t71 ;/“Lx1 Myi E)q(XZts th; Mg Myi E)d/‘LdeJ'y (4)

where k(u,, u,) denotes an unknown distribution of the
signals. The only assumption made here is that the con-
secutive signals have equal value, at least approximately
(see the practical discussion below, at the end of Opti-
mality of proposed estimator from statistical viewpoint).
That assumption is minimal and realistic as it is satisfied,
e.g., when the signal drift is continuous, and preferably,
sufficiently low. From another viewpoint, this definition of
noises as the activities which is not locally flat over time is
quite convenient for estimation.

Furthermore, Equation 4 is a semiparametric model
(Bickel et al., 1993; van der Vaart, 1998) because it has
both a vector X and a function k(u,, ,) as parameters. It is
generally not easy to estimate parameters in semipara-
metric models because a function space is fundamentally
infinite dimensional (Neyman and Scott, 1948). However,
it is known that, for some cases, only parameters of
interest can be estimated efficiently through differential
geometric methods on the manifolds of a family of prob-
ability distributions (Amari and Kawanabe, 1997; Amari
and Nagaoka, 2001; Miura et al., 2006a,b, 2007; Miura
and Uchida, 2008). For this model, it is possible to esti-
mate the three constant parameters X = {3,1,2:5(=
254),220} Whatever the signal drift k(u,, ) is.

After a lengthy calculation in Miura (2013), the estimator
was obtained as in Equation 2. As the proposed estimator
looks so simple, one might think that one can easily
construct an arbitrary local smoother similar to the pro-
posed estimator. However, because any arbitrarily in-
vented estimators have larger estimation errors (biases
and variances) in general, it is actually very difficult to
discover an optimal estimator from scratch. As far as we
know, other than information geometry, there is no sys-
tematic way to analytically derive an optimal estimator
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that works under arbitrary trends nonparametrically. For-
tunately, it is very easy to just prove the optimality of the
derived estimator, once it was derived. Therefore, we take
advantage of this fact for the educational purpose in what
follows. That is, we do not repeat the derivation but rather
only check the answer and demonstrate the performance
of the proposed estimator concisely in the following sec-
tion.

Optimality of proposed estimator from statistical
viewpoint

Here, we summarize and prove the optimality property
from the statistical viewpoint. Specifically, we show that
the proposed estimator has no bias (i.e., correct on aver-
age) and minimum variances (i.e., smallest errors) among
the estimators which work unbiasedly for arbitrary base-
line drifts.

The unbiased nature of the proposed estimators is clear
from the fact that the estimators in Equation 2 are nor-
malized by dividing not by 2(= M) but by 1(= M-1).
Normalization of this type is widely known to guarantee
the unbiased estimation for the covariances of Gaussian
distributions. In fact, with X, = (x,y,) and p = (u, u,), the
expectation of 3., can be calculated as an integral over
the probability distribution in Equation 4 as

E[im]: = f(fiw(xzt—wxzt)qo(zzq |3, WaXz |2, w)

X dXp 1dXok(w)dp = fzmk(ﬂ«)d}‘« =3p. ()

This means that the estimator is unbiased or the estimator
works (at least) “on average.” The variance of the estimate
can be similarly computed as

Var[im]: = f(f(im(xzt—wxzt) - 2P

X qXor 1|2, m)gXal 2, WX 1dXpdk(wdp = 34135, +
210201 - 6)

Surprisingly, 3 has the minimum variance (= estimation
error) among all the estimators. To prove this, assume that
0(Xn_1, X5) is an arbitrary estimator of X,,, that is,

E(0(Xp—1, Xa))): =

fé(th—wth)P(th—szt;Esk(l’«xv )Xo 1dXy = PIP

Note that we assumed that the expectation is equal to the
statistical parameter of interest because any estimator
should work at least “on average.” By using the Cauchy—
Schwartz inequality in functional space (Ifllg| = f-g) with
f=6(X) — 3, and g = dlog p(X) [ d%;,, we get

VVarffiVVarlg] = VVar6]\V/(51,3,, + 3:,5,)7" ()
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where X = (X1, X5;). This shows that any estimator 6 of
2, at least have the minimum variance in the right-hand
side:

Var[é] = 3120 T 2232 ©)

Actually, the proposed estimator 3., attains this mini-
mum variance as shown in Equation 6. Thus, for any
estimator 6,

Var[f] = Var[3,,] . (10)

Similar relations hold for X, and 3,,.

We have demonstrated that the proposed estimator is
optimal as far as the assumption on the statistical model
hold. Practically, due to the violation of the assumption
that the consecutive two signals (means) are exactly the
same, the biases can arise. However, it can be shown
from a simple calculus that the biases are generally small.
In fact, if the consecutive signals are

Elxy 1] = » — € and (1)
Elxy] = pn + €,

differing of order of ¢, then, the biases are of the second
order of e

X1 — Xof

E[iﬁ] = E[ D)

] =0? +2€. (12)

Thus, even if one assumes that the biases accumulate
over the time points whose size is of order 1/ ¢, the total
bias is still negligible, being of order €x1/e = €. This
suggests that even if the signal drifts slowly O(e) as in
Equation 11, keeping the difference between the first and
the last activities finite O(1) after a long time sequence
O(1/ e), the total bias is negligibly small O(e). In fact,
Figure 5D demonstrates that the proposed statistical test
detects no spurious short-term correlations even if signals
drift in the real V1 data.

Simulation of activities of two neurons with drifting
baselines

The simulations of bivariate Gaussian noises added to
the baselines generated by the ARIMA models for activi-
ties of two neurons in Figure 1A were performed with
mvrnorm() and arima.sim() functions in R.

Conventional cross-correlograms

The conventional cross-correlograms were computed
with cor() function in R for the manually trialshifted data.
As the function returns NA (i.e., not available) when either
of two neurons show no spike across all 40 ftrials, we
excluded those pairs from the analyses in the article. Note
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Figure 1. Comparison of conventional cross-correlogram and proposed method. A, Artificial activities of two neurons, simulated as sums of
baselines and trial-to-trial noises. The thick gray smooth curves denote time-dependent baselines w generated by the ARIMA(0,2,1) model, on
which the bivariate Gaussian noises were added to generate the neural activities. The added noises have significant spatial or interneuronal
correlations but no temporal correlation because intertrial intervals are assumed to be fairly long (=3 s). B, The estimated cross-correlations for
the simulated activities in A by the proposed method (red) and the conventional correlogram (black). Only the proposed method works and shows
a proper peak at the origin. C, Schematic illustrations of how the proposed method works for the cases with pure long-term or short-term
correlations. The cross-correlation computed within each local window, where the baselines are instantaneously constant, are averaged across
sliding windows to capture only short-term correlations whatever the baseline drift is.
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that the proposed method also returns NA for those pairs.
We computed time-shifted noise correlations or cross-
correlation functions separately for different stimuli, be-
cause recent works indicated the stimulus dependency of
noise correlations (Kohn and Smith, 2005; Maruyama and
Ito, 2013; Ruff and Cohen, 2016).

Kalman filter method

The smoothing by the Kalman filter to obtain the base-
line trend of the simulated neural activities was computed
with dimFilter() function in dim package for R (Petris
et al., 2009). The noise correlations in residuals was ob-
tained by the maximum likelihood method for data fitting
with dImMLE() function in the same package. The statis-
tical model for the baseline trend w,; we assumed to
decode with Kalman filter was

e = Fp, + m(Gaussian noise)
X = GPp, + &(Gaussian noise) (13)

where X? denotes i-th neuron’s activity and F and G are to
be estimated by data fitting.

The computational time was measured by proc.time()
function in R on iMac with 3.3 GHz Intel Core i5 and
32-GB memory.

Statistical tests for short-term noise correlations

We detected neuron pairs that have significant short-
term noise correlations by using the statistical test ac-
companying our estimator. As is usual with statistical
tests, we computed p values under the null hypothesis of
no correlation.

One possible way, which we did not adopt, was to
assume the asymptotic normality for the distribution of
the proposed estimator, whose mean and variance can be
computed from Equations 5, 6 (or from simulations). How-
ever, for the current case, each neuron has only finite 40
trials per stimulus, and thus, the normality assumption
holds only approximately. Therefore, for example, the
control p value distribution for the one-time-shifted data
are not as flat as in Figure 5D, although it is approximately
flat. Although this method saves the computational time, it
seems to lack the accuracy in p values.

To pursue the full accuracy, we resorted to the compu-
tational method with the white Gaussian Monte Carlo
simulations for reference activities of neuron pairs. Here,
the test was based on the idea that even if there is no
short-term correlation, its estimate from finite 40 trials
takes a non-zero value (error), which varies according to
some statistical distribution. First, we obtained the shape
of the distribution as accurate as possible by repeating
the Monte Carlo simulations a million times. Next, the p
value for a given estimate is defined as its percentile in
this numerically obtained distribution. That is, the p value
is defined so that the p value distribution is completely flat
for white Gaussian noises. To be precise, the p value
varies by realization of the activities of two neurons, but,
with many realizations, one obtains the uniform distribu-
tion for the p values. Note that the uniform p value distri-
bution is a hallmark of a good statistical test. Finally, if an
estimate is too high or too low within the numerically-
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obtained distribution (typically top 2.5% for both sides,
corresponding to positive and negative correlations), it is
detected as significant or violating the null hypothesis.

When we computed the control p value distribution
for “one-time-shifted” data in Figure 5D, we actually
shifted two-trials. This is because our proposed esti-
mator treats the time series by pairs of time points as in
Equations 2, 4. This is also why we shifted 2, 4, 6, . . .,
trials in Figures 1, 2.

The R codes for computing the proposed short-term
correlation and the accompanying statistical test was
handwritten.

As the level of significance,0.01/ (16NN — 1)/2),
where N denotes the number of neurons in the session
and 16 is for 16 stimuli, was entirely used in the article
(specifically in Fig. 6). That is, we employed Bonferroni’s
multiple comparison technique, because we wanted to
keep the number of neuron pairs moderately. Note that if
we remove a neuron, we lose many pairs in the same
session.

Statistical tests for nonstationarity

We selected neurons with and without nonstationarity
by using the serial correlation test for randomness of
fluctuations (CASE64 in Kanji, 2006). To remove the effect
of stimulus presentation from the time series of neural
activities, we averaged local 16 trials within a single block
where 16 different stimuli are presented pseudo-
randomly. In this way, the length of the time series was
reduced from original 640 to 40 trials, to which we applied
the test. The R code for the test was handwritten. The
validity of the test was confirmed by the observation that
the test returns uniformly distributed p values for the
Gaussian white noises or the completely random time
series in which a random number is generated according
to the normal distribution at every time. Note that the
resulting p value varies by (random) time series and, here,
we confirmed that the distribution got flat with many
realizations.

As the level of significance, 0.01 was entirely used in the
article (specifically in Figs. 5, 6). We did not employ the
multiple comparison techniques, as we wanted to cate-
gorize suspicious neurons into the nonstationary neuron
pool, conservatively.

Classification analysis and principal component
analysis

For the classifications of 16 visual stimuli based on the
firing rates of neurons, we solely used Ida() function in R
in this article, although the result did not change signifi-
cantly when we used the support vector machine. The
classification was done session by session to use the
simultaneity of the recorded data. For the statistical sig-
nificance, the means of classification success rates for all
sessions were compared between different conditions by
the paired t test. Only the sessions with more than five
neurons remaining after the selections by short-term or
long-term correlations were included in the classification
analyses for reliability.

For the principal component analysis, we used
prcomp() command in R. As a preprocessing, we first
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Figure 2. Comparison of conventional Kalman filter method and proposed method. A, The simulated activities of two neurons (red
and blue) for 100 trials with the common sinusoidal baseline trend. The thick gray line denotes the model trend used for the data
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continued

generation. The activities of two neurons at each time are generated as the sum of the baseline trend and the bivariate Gaussian
noises with unit variances and 0.3 correlation coefficient. When we simulated more than two neurons simultaneously, the additional
neurons shared the trend but did not have noise correlation (data not shown). Thus, among N simulated neurons, only neurons 1 and
2 have non-zero correlation coefficient, which is to be estimated. B, The residual activities after the removal of the estimated trend
by the Kalman filter from the activities in A. C, The noise correlations in the residuals averaged across 100 realizations of the simulated
data. The horizontal dotted gray line for the true correlation coefficient (=0.3) indicates that the conventional Kalman filter method
does not work when the number of simultaneously simulated neurons are small. The error bars representing the SD demonstrate the
large trial-to-trial variability in the results. D, Noise correlations estimated by the proposed method from the same data. The horizontal
dotted gray line for the true correlation coefficient (=0.3) indicates that the proposed method always works. The error bars
representing the SD demonstrate the small variability in the results. E, The computational time for the conventional Kalman filter

method. F, The computational time for the proposed method.

averaged the neural responses to each stimulus, in order
not to include the trial-to-trial variability in the visualization
by principal components. That is, we essentially visual-
ized the tuning curves. In addition, here we did not stan-
dardize the activity of each neuron or tuning curve,
because we did not want to enlarge small noises within
bad neurons who do not respond to any stimuli at all. That
is, not to listen to purely noisy neurons too much, we did
not enlarge the tuning curves even if their amplitudes are
small. In Figure 6B, the same neuron pool as in Figure 6C,
right, i.e., the neurons with pure long-term correlations,
was used (189 neurons from 23 sessions).

V1 neuronal spikes

The experimental details for the cat V1 anesthetized
recordings we reanalyzed have been previously described
(Maruyama and Ito, 2013, 2017). Briefly, 566 neurons
were recorded in 48 sessions with 640 trials (40 repeats of
16 visual stimuli) from five adult male cats. Two types of
electrode arrays were adopted for the recordings: a four-
tetrode array and an array of eight single microelectrodes,
both of which were fabricated in the laboratory.

The eyes were focused on the tangential screen at a
distance of 57 cm using the tapetal reflection technique
and an appropriate set of gas-permeable contact lenses.
The pupils were dilated using phyenylephrine hydrochlo-
ride (Neosynesin eye solution). All animal procedures
were performed in accordance with the Kyoto Sangyo
University animal care committee’s regulations.

Once stable recordings were obtained, the receptive
field properties (location) of the multi-unit activity re-
corded by each electrode were mapped, using a mouse-
controlled moving light bar presented on a 21-inch color
monitor (1024 X 768 resolution, vertical refresh rate of 80
Hz) at a distance of 57 cm from the eyes. Because the
receptive fields of the units recorded by the high-density
electrode arrays had significant overlap, the units were
stimulated by moving the light bars on a dark background
crossing over the region covering all of the receptive
fields. The stimuli consist of the light bars of 16 orienta-
tions equally spaced (i.e., with an angular separation of
22.5°) that move along the direction of the normal. We ran
40 trial blocks in which each of the 16 stimuli were pre-
sented in a pseudo-random order with an intertrial interval
of 3 s. The bars traveled an angular distance of 3-5° over
a period of 1.0-1.7 s (speed 3°/s).
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Multi-unit activities recorded by each electrode were
sorted to recover the activities of individual single units
using custom spike sorting software (Gray et al., 1995).

Results

For the purpose of measuring the spike-count noise
correlations in different timescales and assessing their
respective impacts on neural representations, we used
the novel information geometric estimators of pure short-
term correlations, which can be dissociated from long-
term correlations in a nonparametric manner, that is,
whatever the baseline drifts are. Before we applied this
proposed method to the neural responses in V1, we
checked whether and how it worked for the simulated
time series as a benchmark.

Proposed estimator works irrespective of baseline
drifts

First, we randomly generated the artificial time series
which mimics the activities of two neurons, whose base-
lines drift across many trials. Note that nonstationarity,
often observed experimentally in an unreproducible man-
ner, was indispensable for the simulation, as we wanted
to see whether the proposed method can overcome it.
In the numerical simulation in Figure 1A, the activities of
two neurons were created by adding the bivariate Gauss-
ian noises to the smoothly drifting trends, which, in turn,
were independently generated for the two neurons by
ARIMA(0,2,1) model whose moving average coefficient
was 0.6 (Harvey, 1993). Here, a significant short-term
noise correlation (p = 0.3) was induced only between
simultaneous noises for two neurons, mimicking typical
neuroscience experiments where significant trial intervals
of seconds order wash out intertrial temporal correlations
in spike counts. An example realization of the simulation
in Figure 1A, that mimics one recording session, shows
hallmark drifting baselines, which is definitely unrepro-
ducible and hard to estimate with limited sample number
or from this “single snapshot” data. Note that here we
exclusively consider trials as a unit for time axes, instead
of fine scale windows such as 1-ms bins.

Figure 1B shows the cross-correlation functions for the
realization of simulated activities for two neurons in Figure
1A computed by both the conventional correlogram and
the proposed method (Egs. 1, 2). Here, the correlation
coefficient p was estimated for each time-shifted data,
where the activities of one neuron was time-shifted while
those for the other neuron was kept. Because of the wrong
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assumption of the constant baselines, the conventional cor-
relation coefficients caused a broad cross-correlation func-
tion attributable to the temporal correlations in the baselines.
That is, the correlation coefficient is positive because when
the activity of neuron 1 is higher (lower) than its average at a
late (early) trial, that of neuron 2 is also higher (lower). Adding
a time shift does not affect this situation as there is a global
trend in Figure 1A. Note that broad cross-correlation func-
tions have been observed for the experimental data (Bair
et al., 2001). On the other hands, the proposed method gave
a satisfiable result, correctly causing 0 for the time shifted
data and the short-term correlation p (=0.3) for the simulta-
neous data as demonstrated by a clear peak in Figure 1B.
Note that the estimated correlation coefficient p( = 0.3) is
not only useful for statistical tests but also interpretable as a
simultaneous covariation of Gaussian noises because our
method is statistical model-based.

The reason for the flexible estimation by the proposed
method is that it estimates the covariance for two neurons
within each local window, where the background activity
is assumed to be almost constant, and, then, averages
the local estimates across sliding windows as in Figure
1C. Note that our method is based on the assumption that
the short-term correlation (or the covariance parameter of
Gaussian noises) is constant over time. Consequently, the
proposed method enables estimation of the short-term
correlations existing in the simultaneous activities inde-
pendently of the drifting baselines. Figure 1C shows how
this method works for the cases with pure long-term (Fig.
1C, top) or short-term (Fig. 1C, bottom) correlations. In the
case of pure long-term correlations in Figure 1C, top, the
estimate of the correlation in the short window is zero (on
average), as there is no real short-term correlation and the
baseline drift is negligible in this short timescale. Note that
an implicit assumption in the proposed method is that
within a short window, the baseline drift is absent or
negligible, although the violation of this assumption, if
small enough, actually does not matter (Materials and
Methods). In the case of pure short-term correlations in
Figure 1C, bottom, the estimate of the correlation in the
short window is non-zero (on average), as there is a real
short-term correlation although the baseline drift is ab-
sent. In this way, the proposed “local” estimates, that can
be unaffected by the slow, long-term trends, work fairly
well even if the baseline activities drift arbitrarily over time.

Proposed estimator requires less neurons and
computational powers than conventional Kalman
filters

The key idea for the proposed estimator of noise cor-
relations resides in the local detrending. However, there
are other types of detrending methods such as Kalman
filters. The latest studies also computed the correlations
in residuals after the neural activities were smoothed and
detrended by the Kalman filter-like methods (Ecker et al.,
2014; Rosenbaum et al., 2017). Therefore, we performed
another benchmark simulation to compare the conven-
tional Kalman filter method with the proposed method.
Specifically, we checked whether the two methods work
in the presence of sinusoidal baseline drifts in simulations.
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Figure 2A shows the activities of two neurons, simulated
as the time series of length 100 with the common sinusoidal
baseline trend. The activities of two neurons at each time are
generated as the sum of the baseline trend and the bivariate
Gaussian noises with unit variances and 0.3 correlation co-
efficient. When we simulated more than two neurons simul-
taneously, the additional neurons shared the trend but did
not have noise correlations. Thus, among N simulated neu-
rons, only neurons 1 and 2 have a non-zero correlation
coefficient, which is to be estimated.

Figure 2B shows the residual activities after the removal
of the estimated trend by the Kalman filter from the ac-
tivities in Figure 2A. The dark horizontal line indicates the
estimated trend, which has been already removed from
the activities.

Figure 2C shows the noise correlations in the residuals
averaged across 100 realizations of the simulated data.
The horizontal dotted gray line for the true correlation
coefficient (=0.3) indicates that the conventional Kalman
filter method does not work when the number of simulta-
neously simulated neurons are small. Naturally, recording
from more neurons helps to estimate the current baseline
trend, which is essentially the average activities of neu-
rons in this easiest situation. If one does not know base-
line trends accurately, the estimation of noise correlations
fails as well. In more realistic situations, in which neurons
do not necessarily share baseline trends, more neurons
would be required to estimate the noise correlation by the
Kalman filter-like methods.

Figure 2D shows the noise correlations estimated by
the proposed method from the same data. The horizontal
dotted gray line for the true correlation coefficient (=0.3)
indicates that the proposed method always works. Note
the proposed methods only requires the activities of the
two relevant neurons as evident in Equations 1, 2.

Furthermore, the Figure 2E shows that the Kalman filter
can be fairly expensive in computational time with as
small as 15 neurons. Given the number of simultaneously
recorded neurons is increasing rapidly, the computational
costs can easily constitute a limiting factor. Thus, the
proposed method is advantageous not only in the estima-
tion accuracy, but also in the computational cost as dem-
onstrated in Figure 2F.

The results obtained here are fairly general. Although
the sinusoidal trend with seven cycles was entirely used in
this article, qualitatively the same results were obtained
for a wide range of numbers of cycles (4-10; data not
shown). Imagine that the sinusoidal waves with different
periods can exhaust the different possible timescales. In
fact, it has been numerically demonstrated that the pro-
posed method worked also for linear as well as stepwise
trends in the previous work (Miura, 2013), although all
these numerical simulations just confirmed the mathemat-
ical statement that the proposed method is robust against
arbitrary drifts. Although the proposed method might look
too easy at first glance, any other ad hoc estimators of
covariances cannot achieve the unbiasedness (i.e., cor-
rectness) under arbitrary drifts. Moreover, although the
latest best Bayesian methods can be regarded as variants
of Kalman filter methods and some of them might improve
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Figure 3. Comparison of conventional moving average method and proposed method. As in Figure 2, the simulated neural activities
had the sinusoidal trend with five waves (A) or four waves in 100 trials (B). For the moving average method, the neural activities were
first smoothed by the moving average with various window sizes and then the correlation coefficients were computed for the
residuals. The mean = SD of the estimated noise correlations across 100 realizations of the simulated data plotted. The
horizontal dotted gray lines for the true correlation coefficient (=0.3) indicate that the biases are prominent for longer window

sizes and for rapidly changing trends.

the estimation accuracy slightly, we believe that the prob-
lem in computational costs is unavoidable in any case.

Proposed estimator has less errors than
conventional moving averages

As some of the previous works (Cohen and New-
some, 2008; Mitchell et al.,, 2009) simply used the
moving average for detrending, we next compared the
conventional moving average method with the pro-
posed method (Fig. 3).

In the comparison, as in Figure 2, the simulated
neural activities had the sinusoidal trend with five
waves (Fig. 3A) or four waves in 100 trials (Fig. 3B). For
the moving average method, the neural activities were
first smoothed by the moving average with various
window sizes, and then the correlation coefficients
were computed for the residuals. The horizontal dotted
gray lines for the true correlation coefficient (=0.3)
indicate that the biases are prominent for longer win-
dow sizes and for rapidly changing trends.

Although the moving average method is uniquely de-
fined for odd window sizes, some variants can be con-
sidered when the window size is two (and even lengths in
general). When the window size is two, however, one can
carefully define the moving average method so that it
coincides with the proposed method regarding the corre-
lation coefficients. To be precise, the moving average
method actually fails and underestimates both the vari-
ances (244, 25,) and the covariance (24,) by half, although
the correlation coefficient as their ratio is intact as p =
3.1,/ 2412,,. For example, when the true variances for the
activities of two neurons are both 1 and the true covari-
ance is 0.2, the moving average method on average es-
timates them as 0.5, 0.5, and 0.1 while the correlation
coefficient estimated as their ratio coincides with that of
the proposed estimator, which is always near 0.2.
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Some previous works used longer window lengths for
detrending (previous and future 20 trials for Cohen and
Newsome, 2008; and Gaussian kernels with o = 5 trials
for Mitchell et al., 2009). Although it is not clear whether
the actual drift is as drastic as in Figure 3, our message in
this article is that, in fact, one can safely shorten the
window length to the minimum size, i.e., two.

Examples of noise correlations in V1 neuron pairs

Here, we applied the proposed method for estimating
pure short-term noise correlations to the pairs of the
neural activities in the primary visual cortex. Figure 4
shows the interneuronal noise correlations of two exam-
ple pairs of neurons estimated by the proposed method
as well as the conventional cross-correlogram. We com-
puted time-shifted noise correlations or cross-correlation
functions. Note that we solely computed noise correla-
tions for a fixed stimulus in this article, because recent
works indicated the stimulus dependency of noise corre-
lations (Kohn and Smith, 2005; Maruyama and lto, 2013;
Ruff and Cohen, 2016). For the putatively nonstationary
neuron pairs in Figure 4A, the time series for the activities
of both neurons showed significant drifts. The conven-
tional correlogram showed the spurious correlations
across wide shifts of trials, while the proposed method
indicated no short-term correlation successfully. Note
that similar broad cross-correlation functions have been
observed previously (Bair et al., 2001). For the putatively
stationary neuron pairs in Figure 4B, the time series for the
both neurons did not show significant drifts but the simul-
taneous activities tended to synchronize. Both the con-
ventional correlogram and the proposed method correctly
detected the short-term noise correlation at the origin.
Thus, the proposed method succeeded to clarify the fine
structure of noises in real V1 data by detecting purely
short-term correlations.
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Figure 4. Examples of noise correlations for two V1 neuron pairs. A, For the nonstationary case where the time series for the both
neurons show significant drifts (left), the broad cross-correlation was estimated by the conventional cross-correlogram (o = 0.00012
at the origin) but no short-term correlation by the proposed method (p = 0.92 at the origin). B, For the stationary case where the time
series for the both neurons do not show significant drifts but the simultaneous activities tend to synchronize, the narrow cross-
correlation at the origin was estimated by both the conventional correlogram (p < 10°) and the proposed method (p < 10°).

Both long-term and short-term correlations are
widely observed in V1

Next, we investigate the noise correlations for the entire
population of pairs of simultaneously recorded neurons.
Figure 5A,B plots the short-term noise correlations esti-
mated by the proposed method against the conventional
correlation coefficient for all the pairs within the stationary
or nonstationary neurons. The stationary or nonstationary
neurons were selected by the statistical serial correlation
test for nonstationarity. In Figure 5A, for the stationary
neuron pool, the correlations are highly reproducible, lo-
cated along the diagonal line. Meanwhile, in Figure 5B, for
the nonstationary neuron pool, they are not reproducible,
scattered apart from the diagonal line, with smaller absolute
values for the proposed method. The result suggests that
the proposed method successfully removes long-term com-
ponents of noise correlations essentially by detrending. Note
that some of the smallest noise correlations reported in the
previous works were obtained for the detrended time series
(Bair et al., 2001; Ecker et al., 2010; Renart et al., 2010),
consistent with our observation. Thus, the nonstationarity or
a baseline drift may engender spurious correlations even if
no actual short-term correlation exists.

Figure 5C shows the p value histogram for the statisti-
cal significance of the proposed short-term noise corre-
lations for V1 data. The non-uniformity of the distribution
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indicates that the significant short-term correlations for
some pairs are not obtained by chance. Furthermore, all
types of pairs, irrespective of stationary and nonstationary
neurons, show significant short-term correlations. As a
control to check the validity of our statistical test, Figure
5D shows the p value histogram for the same test ob-
tained for the one-time-shifted V1 data that cannot have
short-term correlations. The resulting uniform distribution
demonstrates that, desirably, the statistical test detects
no spurious short-term correlation even if the signals drift
in the V1 data. Remember, in contrast, the conventional
correlogram in Figure 1B resulted in the non-zero corre-
lations even for time-shifted data.

In total, significant fractions of noise correlations seem
to be explainable by the long-term components while
there are some pairs with significant short-term correla-
tions as well. We next pursue whether each component is
either helpful or harmful for the sensory information rep-
resentation in the brain.

Impacts of short-term and long-term noise
correlations are dissociable

Finally, we assessed the impacts on decoding of the
presence of short-term or long-term correlations, sepa-
rately. Our estimator enables us to elucidate the impacts
of short-term and long-term correlations in a dissociated
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Figure 5. Population summary of noise correlations for all recorded V1 neurons. A, The proposed short-term noise correlations plotted
against the conventional correlation coefficients for all the simultaneously recorded pairs of stationary V1 neurons (n = 12,931 pairs).
The stationary or nonstationary neurons were selected by the statistical serial correlation test for nonstationarity. The numbers along
the axes denote the mean = SEM. B, Same plot for all the simultaneously recorded pairs of nonstationary V1 neurons (n = 18891
pairs). Note that the correlations are highly reproducible located along the diagonal for the stationary neuron pool but not reproducible
for the nonstationary neuron pool, suggesting that the proposed method successfully removes long-term noise correlations by
detrending. C, The distribution of the p values for the statistical significance of the proposed short-term noise correlations for V1 data.
s-s denotes the pair of two stationary neurons. s-n denotes the pair of stationary and nonstationary neurons. n-n denotes the pair of
two nonstationary neurons. The non-uniformity of the distribution indicates that the significant short-term correlations for some pairs
are not obtained by chance. D, The control distribution of the p values for the same test obtained for the one-time-shifted V1 data
that cannot have short-term correlations. The uniform distribution demonstrates that, desirably, the statistical test detects no spurious
short-term correlation even if the signals drift in the V1 data. Note that, in contrast, the conventional correlogram in Figure 1B resulted

in the non-zero correlations even for time-shifted data.

manner, as we will see. Here, we performed the linear
discriminant analysis of stimuli based on the neural re-
sponses and used the classification success rates as a
measure of the accuracy of neural coding. That is, the
higher the classification success rate is, the more accu-
rate the neural coding should be.

To elucidate the impact of short-term correlations, we
compared the classification success rates in the absence
and presence of pure short-term correlations in Figure 6A.
For that purpose, we first selected the neurons who
have no long-term correlation. That is, we selected the
neurons whose baselines did not drift significantly by
using the serial correlation statistical test for random-
ness of fluctuations (Materials and Methods). For those
selected neurons, that cannot have long-term correla-
tions, we compared the classification success rates be-
fore and after trial shuffling, which was supposed to
remove short-term correlations. We computed the classi-
fication success rate session by session, as we wanted to
include only simultaneously recorded pairs. We found that
the impact of pure short-term correlations was small but
significantly positive in Figure 6A.
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Next, as the origin of long-term correlations, we visual-
ized the baseline drifts in Figure 68. For the neurons with
significant baseline drifts (to be precise, the same neuron
pool as used in Fig. 6C, right), we performed the principal
component analysis for the average responses to 16 vi-
sual stimuli (i.e., tuning curves). The activities of the 189
neurons with baseline drifts were concatenated and trans-
formed (“rotated”) to the same numbers of 189 principal
components, from which we chose the first two as the
(most informative) axes for visualization. Figure 6B plots
the average responses (tuning curves) for 1st-20th trials
(turquoise blue) and 21st-40th trials (green) separately
and demonstrates the baseline drifts over trials shifted the
entire activities of neurons. However, it is still unclear,
from the simple visualization, whether this drift is, taking
form of long-term correlations, significant in decoding.

To elucidate the impact of long-term correlations on
decoding, we compared the classification success rates
in the absence and presence of pure long-term correla-
tions in Figure 6C. Specifically, we compared the cross-
validated classification success rates for four types of
learning: (1) when trained by former trials and tested by
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Figure 6. Impacts of short-term and long-term components of correlated activities of V1 neurons. A, The classification success rates
in the absence and presence of pure short-term correlations (mean = SEM). In the presence of pure short-term correlations, the
decoding accuracy was slightly improved (p = 0.0044, paired t test, 15 sessions with 134 neurons). Note that the chance level is
1/16( = 6.25%), as 16 stimuli were decoded. B, The baseline drifts, which cause long-term correlations, were visualized by the
principal component analysis for the average responses to 16 visual stimuli (tuning curves) of the neurons with significant baseline
drifts (to be precise, the same neuron pool as in C, right). The average responses for 1st-20th trials (turquoise blue) and 21th-40th
trials (green) demonstrate that the entire activities of neurons shift over trials. C, Decoding accuracy in the absence and presence of
pure long-term correlations. The cross-validated classification success rates for four types of learning were compared: (1) when
trained by former trials and tested by former trials, (2) when trained by former trials and tested by latter trials, (3) when trained by
former trials and tested by latter trials after the respective global means were subtracted for detrending (i.e., centering and equating
the means of former and latter trials in B), (4) when trained by even-numbered trials and tested by odd-numbered trials. Note that the
conventional sampling of odd-numbered 20 trials (1st, 3rd, 5th, , 39th) included both former and latter trials as a part and, thus, can
be inhomogeneous under baseline drifts. No significant difference was observed among four types of learning in the absence of pure
long-term correlations, that is, when both short-term and long-term correlations were absent (left, not significant for all pairs, paired
t test, 11 sessions with 77 neurons). The significant decrease at the green bar in the presence of pure long-term correlations
demonstrates that the long-term correlations do harm for generalization (right, *p < 0.05, paired t test, 23 sessions with 189 neurons).
The recovery of the classification success by the detrending or the conventional inhomogeneous sampling (trained by even-numbered
and tested by odd-numbered trials) suggests that the brain can decode stimulus information under changing environments by using

a sophisticated decoder (++xp < 0.001, paired t test).

former trials, (2) when trained by former trials and tested
by latter trials, (3) when trained by former trials and tested
by latter trials after the respective global means were
subtracted for detrending (i.e., centering and equating the
means of former and latter trials in Fig. 6B), (4) when
trained by even-numbered trials and tested by odd-
numbered trials. Note that the conventional sampling of
odd-numbered 20 trials (1st, 3rd, 5th, . . ., 39th) included
both former and latter trials as a part and, thus, can be
inhomogeneous under baseline drifts. For that purpose,
we first selected the neurons who have no short-term
correlation. That is, we selected the neurons whose short-
term correlation is not significant by using the statistical
test accompanying our estimator (Materials and Meth-
ods). Note that although the test applies to a pair, we
eventually selected the neurons who have no short-term
correlation in any pair in the session. For those selected
neurons, that cannot have short-term correlations, we
compared the classification success rates for the neurons
with and without long-term correlations (i.e., statistically
significant baseline drifts) as in Figure 6C. As a control, no
significant difference was observed among four types of
learning in the absence of pure long-term correlations,
that is, when both short-term and long-term correlations
were absent (left, not significant for all pairs, paired t test,
11 sessions with 77 neurons). On the other hand, the
significant decrease at the green bar in the presence of
pure long-term correlations demonstrates that the long-
term correlations do harm for generalization (right, *p <
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0.05, paired t test, 23 sessions with 189 neurons). The
recovery of the classification success by the detrending or
the conventional inhomogeneous sampling (trained by
even-numbered and tested by odd-numbered trials) sug-
gests that the decrease in decoding accuracy is due to
the baseline drift (+#xp < 0.001, paired t test). Note that
the last two types of leaning may mimic brains’ possible
decoding strategies under changing environments, sug-
gesting that the brain could overcome nonstationarity by
detrending.

Here, we solely compared the classification success
rates obtained for the same neuron pool with different
types of learning. This is because we believe that it is
dangerous to compare different pools even if the numbers
of neurons are equated, as the sensitivity to stimuli varies
by neurons, leading to considerable sampling biases. For
example, if we compare the two green bars in Figure 6C,
the classification success rate per neuron trained by for-
mer and tested by latter is higher in the presence of
long-term correlations (data not shown), suggesting that
the overall high classification success in the presence of
the long-term correlations can be explained by the sam-
pling biases, i.e., simply because the neuron pool with
long-term correlations have more smart neurons.

Taken together, the proposed method enables us to
elucidate the impacts of short-term and long-term noise
correlations in a dissociated manner. The well-designed
decoding analysis with dissociated correlated activities
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may help to gain insight into the brains’ decoding strate-
gies under changing environments.

Discussion

In this article, we proposed an information-geometric
method to unbiasedly estimate pure short-term noise cor-
relations irrespective of arbitrarily drifting baselines. The
simulation demonstrated the robustness of the proposed
estimator against the slow, long-term drift. The accompa-
nying statistical test as well as the existing nonstationarity
test enabled us to dissociate short-term and long-term
correlations. When we exclude the spurious noise corre-
lations of purely long-term nature, only a small fraction of
V1 neuron pairs showed significant short-term correla-
tions, possibly reconciling the previous inconsistent ob-
servations on existence of significant noise correlations.
Finally, with the additional help of the machine learning
that classifies stimuli from neural activities, we assessed
the impacts on decoding of the presence of short-term or
long-term correlations, separately. The presence of pure
short-term correlations slightly improved the decoding
accuracy, while the pure long-term correlations deterio-
rated the generalization ability. However, the decrease in
decoding accuracy by the long-term correlations was
recoverable by using the decoder with offset, suggesting
that the brain could overcome nonstationarity by detrend-
ing. Thus, our method enables us to elucidate the func-
tions of short-term and long-term correlations in a
dissociated manner and the well-designed decoding anal-
ysis with dissociated correlated activities may help to gain
insight into the brain’s decoding strategies under chang-
ing environments.

Our observation that only a small fraction of neuron
pairs has short-term noise correlations after detrending
may, at first glance, inconsistent with previous works,
which reported significant noise correlations. However,
the previous works which detrended the time series be-
fore calculating noise correlations reported small short-
term noise correlations (Bair et al., 2001; Ecker et al.,
2010; Renart et al.,, 2010). In this sense, our result is
consistent with the previous results. The previous model-
ing studies implied that even if short-term noise correla-
tions are small, it can have a big impact in a large network
(Zohary et al., 1994; Sompolinsky et al., 2001; Miura,
2012). As far as our V1 dataset, the impact of short-term
noise correlations was small but significantly positive.

The classification analysis in this article demonstrated
that the presence of baseline drifts decreased the gener-
alizability of the classifier. However, the further analysis
showed that the classification success rate can be recov-
ered by detrending data or including more inhomoge-
neous training data. Note that the generalizability should
depend on the training data set: the more different con-
ditions are learned, the higher the classification success
rate becomes. In other words, if the future (test) condi-
tions are completely different from the past (learned) con-
ditions, the baseline drifts do harm. Thus, we essentially
showed two possible decoding strategies that can over-
come nonstationarity. It is interesting to know how the
brain decodes visual stimuli from small responses under
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big spontaneous fluctuations? Can the downstream neu-
rons separate stimuli in the high dimensional space or,
alternatively, cancel out the baseline drifts suitably?
These questions remained and leave future work, possi-
bly, with well-designed decoding analyses.

In this article, we solely treated spike count correlations
as a measure of synchrony. We did not use spike-timing
cross-correlograms with milli-second bins (Toyama et al.,
1981a,b; Ito et al., 2010) as we took advantage of our
proposed method, which is limited to spike count corre-
lations. The limitation comes from the assumption of no
temporal auto-correlation in the time series. The assump-
tion is necessary to dissociate short-term and long-term
cross-correlations successfully. If we consider millisec-
ond bins, temporal auto-correlations exist, which violates
the assumption. Here, we rather focused on spike count
correlations to use our proposed method in depth to the
extent to elucidate the componentwise functions of short-
term and long-term correlations. Thus, we did not say
anything on temporal coding in this article, although pre-
vious papers suggested the relationship that the spike
count correlations increase with coupling strengths (Cos-
sell et al., 2015; Bharmauria et al., 2016).

There are considerable merits for our proposed estima-
tor of short-term correlations. It guarantees the smallest
estimation error among all the estimators which “works”
for arbitrary baseline drifts. It utilizes differential geometry
essentially and otherwise it is generally impossible to
cope with infinitely many cases programmatically even
with the fastest computers. As a practical advantage, it
enables us to perform a statistical test from a single trial or
a snapshot of time series with baseline drifts, which is
usually unreproducible. The estimating equation given in
an analytically closed form as well as the accompanying
statistical test, are quite simple and implementable within
a few lines of programming codes, easier than shuffling-
based methods which have longer lines and computa-
tional time. The underlying statistical model allows us not
only to test statistical significance but also to interpret the
correlation coefficients quantitatively, which is unrealiz-
able for other ad hoc or shuffling-based methods.

Meanwhile, to fully exploit the temporal order and con-
tinuity of trials without assuming specific statistical mod-
els for trends nonparametrically, we had to consider a
simplified additive Gaussian noise model. However, some
previous works used more realistic models such as mixed
Poisson distributions and, for example, estimated the
contributions of additive as well as multiplicative noises to
explore the underlying biological processes (Goris et al.,
2014; Arandia-Romero et al., 2016). Thus, it is desired to
pursue temporal structures with more realistic statistical
models in the future work.

It is important to check whether the spike count data to
be analyzed satisfy the model assumptions of the pro-
posed method. For example, the normality assumption is
satisfied by high firing neurons in general due to the
central limit theorem. However, strictly speaking, when
we checked whether the spike count data used in the
article obey the normal distribution by using the Shapiro—
Wilk test, only 70.0% of the neuron-stimulus pairs that are
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stationary (i.e., without drifts) and modest-firing (i.e., more
than 5 Hz) satisfied the normality assumption. One pos-
sible solution might be to apply the proposed method only
to the high firing neurons as low firing neurons tend to
violate the normality assumption. If the data do not satisfy
the assumption of the normal noises, the proposed noise
correlation is no more an optimal parameter estimate of
the statistical model. It is also important to check whether
the assumption of the constant covariances is satisfied, at
least for some time range. For example, strongly nonsta-
tionary neurons, whose firing rates grow twofold over an
hour, might violate the assumption. We leave the detailed
examination of the model assumptions with statistical
model selection procedures for the future works. How-
ever, if the violation is weak, the proposed measure could
still be used as a rough measure. For example, even if the
data were actually non-Gaussian spike counts with mul-
tiplicative drifts (Goris et al., 2014), the sign of the pro-
posed measure, excitatory or inhibitory, could still be
meaningful.

Another assumption for the proposed estimator was
that the baseline activities for the consecutive two trials
are (almost) the same. This assumption in our analysis
was the clue to separate short timescales and long time-
scales. Strictly speaking, however, as we computed noise
correlations separately for different stimuli, the intervals
between the trials for the same stimulus are variable. Note
that stimuli were presented in a pseudo-random order. In
fact, for the worst case, the effective trial interval can be
as large as 90 s (3 s X 15 stimulus X 2). Although it is
generally hard to characterize the effects of drifts on these
medium timescales, no difference was observed between
randomized and repeated orders of stimulus presenta-
tions (Kohn and Smith, 2005). Thus, we assumed that the
drifts on these medium timescales were ignorable. Prac-
tically, if the assumption of the constant baseline is doubt-
ful for a trial pair due to the long interval between them,
one could remove the pair from the calculation of the
proposed estimator. That is, one could exclude unreliable
trial pairs from the summation in Equation 2. This type of
exception handling could also work for avoiding the
change point where the baselines jump suddenly. Devel-
oping a more flexible algorithm for the proposed method
can be a future work.
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