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Abstract

The quantitative characterization of mutational landscapes is a task of outstanding importance in evolutionary and
medical biology: It is, for example, of central importance for our understanding of the phenotypic effect of mutations
related to disease and antibiotic drug resistance. Here we develop a novel inference scheme for mutational landscapes,
which is based on the statistical analysis of large alignments of homologs of the protein of interest. Our method is able to
capture epistatic couplings between residues, and therefore to assess the dependence of mutational effects on the
sequence context where they appear. Compared with recent large-scale mutagenesis data of the beta-lactamase TEM-
1, a protein providing resistance against beta-lactam antibiotics, our method leads to an increase of about 40% in
explicative power as compared with approaches neglecting epistasis. We find that the informative sequence context
extends to residues at native distances of about 20 A from the mutated site, reaching thus far beyond residues in direct

physical contact.
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Introduction

Protein mutational landscapes are genotype-to-phenotype
mappings quantifying how mutations affect the biological
functionality of a protein. They are closely related to fitness
landscapes describing the replicative capacity of an organism
as a function of its genotype (Wright 1932). Their compre-
hensive and accurate characterization is a task of outstanding
importance in evolutionary and medical biology: It has a key
role in our understanding of mutational pathways accessible
in the course of evolution (Kauffman and Levin 1987,
Weinreich et al. 2006; Poelwijk et al. 2007), it can lead to
the identification of genetic determinants of complex diseases
based on rare variants (Cirulli and Goldstein 2010), and it can
guide toward the understanding of the functional contribu-
tion of molecular alterations to oncogenesis (Reva et al. 2011).
In the context of antibiotic resistance, one of the most chal-
lenging problems in modern medicine, the understanding of
the association between genetic variation and phenotypic
effects can help to unveil patterns of adaptive mutations of
the pathogens to gain drug resistance, and thereby hopefully
guide toward the discovery of new therapeutic strategies
(Ferguson et al. 2013).

One key issue in the description of a mutational land-
scape is to understand how much the effect of a mutation

depends on the genetic background in which it appears
(Weinreich et al. 2006; Chou et al. 2011; Khan et al. 2011).
For instance, in the field of human genetic diseases, is the
presence of a mutation enough to predict a pathology or do
we have to know the whole genotype to make that asser-
tion? In a more formal way, this question is equivalent to
quantifying how epistasis, that is, the interaction between
mutations through fitness, is shaping the mutational land-
scape. At the protein level, a destabilizing mutation might
have a negligible phenotypic effect in a very stable protein,
but a large one in an unstable protein (Bloom et al. 2005;
Jacquier et al. 2013). If this destabilizing mutation increases,
for example, the enzymatic activity, it will be beneficial in a
stable protein, and deleterious in an unstable one (cf. Harms
and Thornton 2013). Hence, the mutation is expected to be
context dependent. Moreover, once a mutation has fixed,
further mutations will build upon the specificity of that focal
mutation, thereby creating a new genetic background with
its specific interactions and interdependencies (Pollock et al.
2012). There are ample proofs of the existence of epistasis
and condition-dependent effects (Breen et al. 2012; Harms
and Thornton 2013; Schenk et al. 2013; de Visser and
Krug 2014 Podgornaia and Laub 2015). Yet, it is not
totally clear whether such interactions have a dominant or
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a minor effect in determining a mutation’s phenotypic
impact.

Recent technological advances have made it possible to
simultaneously quantify the effects of thousands to hundreds
of thousands of mutants through either growth competition
(Deng et al. 2012; McLaughlin Jr et al. 2012; Melamed et al.
2013; Roscoe et al. 2013; Podgornaia and Laub 2015) or iso-
lated allele experiments (Jacquier et al. 2013; Firnberg et al.
2014; Romero et al. 2015). Experimental resolution can be
good enough to detect even the effects of synonymous mu-
tations (Firnberg et al. 2014). Despite the development of
such high-throughput methods, measured genotypes cover
only a tiny fraction of sequence space: The number of possible
mutants grows exponentially with the number of single mu-
tations, such that checking the viability of all possible geno-
types further than one or two mutations away from a
reference sequence becomes infeasible, even for short poly-
peptides. More precisely, the number of distinct single-residue
mutants for typical proteins is in the range of 10> — 10%. The
number of all double mutants reaches the range of 10° — 108,
Although this number is not yet experimentally accessible, it
is needed to accurately assess the importance of epistasis. It
has been argued that existing mutagenesis data are not suf-
ficient for accurate landscape regression (Otwinowski and
Plotkin 2014). Novel computational approaches exploring
alternative data—in our case distant homologs—are
thus urgently needed to gain a comprehensive picture of
mutational landscapes. In this context, the growing amount
of mutagenesis data offers the possibility to rigorously evalu-
ate the performance of in silico models of mutational
landscapes.

Several computational methods for  predicting
mutational effects on protein function have been pro-
posed over the years. A first class relies on “structural” infor-
mation, more precisely on changes in the thermodynamic
stability (Capriotti et al. 2005 Cheng et al. 2006 Ng
and Henikoff 2006; Capra and Singh 2007; Lonquety et al.
2009; Dehouck et al. 2011), which have been argued to play
a key role in determining mutational effects (Bloom and
Glassman 2009; Wylie and Shakhnovich 2011; Serohijos and
Shakhnovich 2014; Echave et al. 2015). A second class
(Ng and Henikoff 2003; Adzhubei et al. 2010) relies on “evo-
lutionary” information extracted from independently evolv-
ing homologous proteins, showing variable amino acid
sequences but conserved structure and function. Evolution
provides a multitude of informative “experiments” on muta-
tional landscapes. Critically important residues tend to be
conserved, whereas unfavorable residues are observed less
frequently.

None of these methods is able to model the effects of
epistasis and sequence-context dependence of mutational
effects. To overcome this limitation, we take inspiration
from a recent development in structural biology. It has
been recognized that coevolutionary information contained
in large families of homologous proteins allows to extract
accurate structural information from sequences alone
(de Juan et al. 2013): Residues in contact in a protein’s fold,
even if distant along the primary sequence, tend to show

correlated patterns of amino acid occurrences. Inversely, cor-
related residues are not necessarily in contact, as correlations
are inflated by indirect effects. Two residues, both being in
contact to a third residue, will coevolve even if they are not in
direct contact. The Direct-Coupling Analysis (DCA) (Weigt
et al. 2009; Morcos et al. 2011) has been proposed to disen-
tangle such indirect effects from direct (ie, epistatic)
couplings, which in turn have been observed to accurately
predict residue-residue contacts. DCA and closely related
methods thereby guide tertiary (Hopf et al. 2012
Marks et al. 2012; Nugent and Jones 2012; Sutkowska et al.
2012) and quaternary (Schug et al. 2009; Dago et al. 2012;
Hopf et al. 2014; Ovchinnikov et al. 2014) protein structure
prediction; and shed light on specificity and crosstalk in bac-
terial signal transduction (Procaccini et al. 2011; Cheng et al.
2014).

In this study, we propose a variant of DCA which assigns
to each mutant sequence a statistical score, which in a next
step is used for predicting the phenotype of the mutant
sequence relative to the wild-type sequence. To evaluate
the approach, we take the Escherichia coli beta-lactamase
TEM-1, a model enzyme in biochemistry which provides re-
sistance to beta-lactam antibiotics. Its mutational
landscape has been quantitatively characterized measuring
the minimum inhibitory concentration (MIC) of the
antibiotic (Davison et al. 2000; Jacquier et al. 2013;
Firnberg et al. 2014). This abundance of mutagenesis data,
the rich homology information, and its well-defined
3D structure make it a well-suited system for
testing any computational model of protein mutational
landscapes.

We will show that coevolutionary models for mutational
landscapes do not only provide quantitative predictions of
mutational effects but, more importantly, they are able to
capture the context dependence of these effects. In this
way, the new approach manages to clearly outperform
state-of-the-art approaches such as SIFT (Ng and Henikoff
2003) and PolyPhen-2 (Adzhubei et al. 2010), which are
based on independent-site models (even if, like in the
case of PolyPhen-2, additional structural information is in-
tegrated into the prediction of mutational effects), which
themselves outperform predictors based on structural sta-
bility. The approach is broadly applicable, as illustrated in a
small set of completely different systems: An RNA recog-
nition motif (Melamed et al. 2013), the glucosidase enzyme
(Romero et al. 2015), and a PDZ domain (McLaughlin Jr
et al. 2012). In the last system, positions most sensitive to
mutation had been shown previously to fall into clusters of
coevolving residues termed sectors (Halabi et al. 2009):
Appling statistical inference we are able to get a more
“quantitative” prediction of the impact of single point
mutations in the domain. These findings illustrate
the potential of coevolutionary landscape models in
biomedical applications, through the in silico prediction
of mutational effects related to not only antibiotic drug
resistance but also the role of mutations in rare diseases
and cancer.
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Fic. 1. Pipeline of the mutational-landscape prediction: The homologous Pfam family containing the protein of interest (the Beta-lactamase2 family
PF13354 in the case of TEM-1) is used to construct a global statistical model using the DCA. This model allows to score mutations by differences in the
inferred genotype-to-phenotype mapping between the mutant and the wild-type amino acid sequence. This score, which is expected to incorporate
(co-)evolutionary constraints acting across the entire family, is used as a predictor of the phenotypic effects of single (or few) amino acid substitutions in

the protein of interest.

Results

Evolutionary Modeling of Diverged Beta-Lactamase
Sequences to Predict Mutational Effects of Single-
Residue Mutations in TEM-1

The pipeline of our approach is illustrated in figure 1.

In technical terms, a mutational landscape is given as a
genotype-to-phenotype mapping. To each possible amino
acid sequence (ay, ..., a;) consisting of L amino acids or
gaps (L denotes the alignment width), a quantitative pheno-
type ¢(ay, ..., a) is assigned. The phenotypic effect of a mu-
tation substituting the wild-type amino acid a; at position i
with amino acid b is measured by the difference score

A¢p(a; — b) = ¢(ay, ..., ai_1, b, diyq, ..., ay)

ai—1, Gj, Ai1, -, A1) Q)

—d(a, ...,

between the mutant and the wild-type sequence. This func-
tion ¢ has, however, 20* parameters, an astronomic number
being far beyond any possibility of inference from data.
Simplified parameterizations of ¢ reducing the number of
parameters are needed. In general, a simple model can be
inferred more robustly from limited data, but it risks to
miss important effects. Even if these might be captured in
more complex models, these latter risk to suffer from under-
sampling and thus overfitting effects. One of our aims is to
find a good compromise between these two limitations.
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The simplest nontrivial parameterization assumes posi-
tion-specific but independent contributions of each residue,

L
dinp(ar, ..., a) = Z oi(a;) . (2)

The contribution ¢;(a;) measuring the contribution of amino
acid g; in position i can be easily estimated from a multiple-
sequence alignment (MSA) of homologous proteins using the
framework of profile models (also called position-
specific weight matrices) (cf. Materials and Methods for
details). Possibly existing epistatic effects are neglected.
Within this modeling scheme, the score for a single
amino acid substitution simplifies from equation (1) to
Adpp(ai — b) = ¢i(b) — ¢;(a;). It becomes immediately
evident that the independent-residue model is unable to cap-
ture the context dependence of mutations, the substitution
a; — bis predicted to have identical effects if introduced into
different sequence backgrounds. The score of a double mu-
tation is simply given by the sum of the A¢-values of the two
single-residue mutations.

The relation between statistically derived scores A¢ and
the experimental MIC values may be nonlinear. The discrete
nature of the latter introduces saturation effects, in particular
for strongly deleterious mutations with MIC values below the
lowest measured antibiotic concentration. To address these
issues, we have designed a robust mapping of A¢p(a; — b)
to predicted MIC values [t p(ai — b) (cf. Materials and
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Methods) and compared them with the experimental MIC
values [Le,,(a; — b) by linear correlation. A direct measure-
ment of Spearman rank correlations between ¢p and fiey,
leads to numerically very similar, but slightly less robust
results.

The MIC predictions using the independent-residue model
show a Pearson correlation of R = 0.63 with the experimental
MIC measurements of single-residue substitutions in TEM-1.
About R? >~ 39% of the variability of the experimental re-
sults is thus explainable by an independent-site model built
on the sequence variability between homologous sequences.
Very similar correlations (R* = 0.37) are found when com-
paring experimental results and the probabilities of being
tolerated as predicted by SIFT, which, like most state-of-
the-art methods, is based on conservation profiles in
sequence alignments. Higher accuracy is found for
PolyPhen-2 (R? = 0.48): Its improved performance results
from the integration of a profile-based score with structural
features and amino acid properties.

However, all these predictions are based on the
assumption that epistasis between mutations and context
dependence can be neglected. The simplest model to
challenge this assumption takes into account “pairwise epi-
static interactions” between different residue positions in
the MSA,

L
Poca(@r, ... a) = Zi:1 i(ai) ., +Z1 <i<j=L ;(ai. a))
3)

(cf. Materials and Methods). The terms ¢;(a;, a;)
parameterize the epistatic couplings between amino acids
a; and g; in aligned positions i and j; if they would be set to
zero the model would reduce to the independent-site
model ¢;p. This model has been recently introduced
within the DCA of residue coevolution with the aim to
infer contacts between residues from sequence information
alone, and to enable the prediction of tertiary and quaternary
protein structures (cf. the references in the “Introduction” of
this article).

Estimating parameters from aligned sequences is a com-
putationally hard task, but over the last years a number of
accurate and computationally efficient approximate algo-
rithms have been developed (Weigt et al. 2009; Morcos
et al. 2011; Ekeberg et al. 2013; Baldassi et al. 2014). Here,
we extend the mean-field scheme of Morcos et al. (2011)
(cf. Materials and Methods). For TEM-1, standard DCA accu-
rately predicts tertiary contacts (cf. supplementary fig. S1,
Supplementary Material online): More than 60 nontrivial res-
idue—residue contacts (minimum separation of five residues
along the sequence) are predicted without error, and more
than 200 at a precision of 80%.

Having estimated ¢pc4 from the MSA, we can follow the
same strategy as in the independent-residue case. First, a mu-
tational score is introduced as the difference of the ¢-values of
the mutated and the wild-type sequences (cf. eq. 1). The
inclusion of epistatic couplings leads to an “explicit context
dependence” of the statistical score of a mutation a; — b in

position i on all other residues in the wild-type sequences,

Appealai — b | ay, ..., ai—1, Gitq, ..01)

= ¢i(b) — ¢;(a) + Z [¢j(b. @) — ¢j(ai.a)]. (4

=

In a second step, this difference score is mapped to predicted
MIC values fipca(a; — b) and compared with the experi-
mental values ji,,(a; — b) by linear correlation.

Resulting predictions outperform the independent-residue
modeling. DCA-predicted MIC values show a correlation of
R =0.74 with the experimental MIC measurements of single-
residue substitutions in TEM-1, that is, about R? >~ 55% of
the variability of the experimental results is explained by the
DCA-inferred mutational landscape, see figure 3, as compared
with the 39% reported before for the independent-residue
model (IND) model. We find that DCA even outperforms
the integrative modeling of PolyPhen-2 combining sequence
profiles with structural and other prior biological knowledge,
demonstrating the power of DCA in capturing epistatic ef-
fects in the TEM-1 mutational landscape.

Applying the same procedure to the data of Firnberg et al.
(2014), which are highly correlated with the data from
Jacquier et al. (2013) (R=0.94), but slightly more precise
than that, the correlation is slightly  higher
(R = 0.76, R> = 0.58). Excluding from the analysis those
data which display large discrepancies between the two ex-
periments (such discrepancies could be either due to exper-
imental errors or due to antibiotic-specific effects)
correlations between our computational score and both
data sets rise above R?> = 0.65 (cf. supplementary fig. S2,
Supplementary Material online).

We conclude that sequence variability in the Pfam se-
quence alignments of distant homologs is highly informative
about the local mutational landscape of TEM-1, despite the
low typical sequence identity of only about 20% between the
homologs and TEM-1. Moreover, accounting for context de-
pendence has a crucial impact on the accuracy of an evolu-
tion-based approach, and that global inference methods such
as DCA can efficiently capture such dependencies.

Assessing the Context Dependence of Mutational
Effects

To quantify more precisely the range of context dependence,
we apply DCA to reduced MSA. These MSAs contain the
residue position carrying the mutation of interest, and all
residues, which are, in a representative TEM-1 crystal struc-
ture (PDB: 1TM40; Minasov et al. 2002), within a distance d,;,qx
(we use the minimal distance between heavy atoms as the
interresidue distance). When using a very small d, o, < 1.2A,
the mutated residue is considered on its own, when d,,,,, is
chosen to be larger than the maximum distance 46.9 A exist-
ing within the PDB structure, we are back to the full DCA
modeling of the previous section. Intermediate d,,,, interpo-
late between the two extreme cases. Doing so, we run DCA
on subalignments of residues, which are not necessarily
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Fic. 2. Context dependence of mutational effects: (A) Procedure of including all residues within a maximal native distance d,,, into the prediction of
the mutational effects of the residue of interest (labeled i in the figure). This leads to residue-specific subalignments, which consist of columns, which are
not necessarily consecutive, but connected in 3D. The results are given in (B). The main figure shows the correlation R> between MIC data and our
predictions, as a function of the cutoff distance d,,,,.. The inset shows the average fraction of residues included into the reduced MSAs, again in

dependence of d,;,q-
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Fic. 3. R® between experimental fitness and predicted fitness for the
following features: Independent-residue model (IND), DCA, SIFT (SIFT),
Polyphen-2 (Poly), PoPMuSIiC (PoP), I-Mutant2.0(sequence+structure)
(Imut+), MUpro (MUpro), I-Mutant2.0 (Imut), molecular simulations
(SIM), relative solvent accessibility (RSA), and Blosum62 substitution
matrix (BLO).

consecutive in the primary sequence but connected in the
native fold (cf. the illustration of the procedure in fig. 2A).
Figure 2B shows the resulting correlations between MIC data
and statistical predictions, in function of the cutoff distance
d,nax- We observe a rapid increase in predictive power when a
structural neighborhood is taken into account, but the in-
crease in correlation extends well beyond the directly con-
tacting residues (dax = 6A). The maximum correlation
(R? ~2 0.57) is reached around dymqy = 20 A, followed by a
shallow decrease when including also more distant residues.
This small decrease results probably from overfitting effects,
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as the number of model parameters grows quadratically in
sequence length. The inset of figure 2B shows the average
fraction of residues included into the sub-MSA. At 20A it is
slightly higher than 50%, that is, the informative context of a
mutation is given by more than half of the total number of
residues in the protein.

It is interesting to observe that the IND model makes more
predictions with very large deviations from the experimental
data than the DCA model: There is an increased number of
mutations, which are either predicted to be strongly delete-
rious even if they are close to neutral, or vice versa. Many of
these strong errors are at least partially corrected by the DCA
landscape model (cf. supplementary tables S1-S3,
Supplementary Material online). By the definition of the in-
dependent model in terms of frequency counts in individual
MSA sequences (cf. Materials and Methods), a mutation with
a low predicted IND score leads from a more frequent to a
rare amino acid in the concerned MSA column. However, in
the mutagenesis experiments some of these mutations are
found to be admissible in the specific sequence context of
TEM-1, that is, they are actually found to be close to neutral,
examples being G52A, E61V, T112M, N152Y, A183V, T186P,
D207V, D250Y (all target amino acids are present in few tens
of sequences in the MSA out of the about 2,500 functional
homologous sequences). For all of these cases, DCA is able to
correct at least partially the statistical prediction. On the con-
trary, the independent-site model predicts that any mutation
between two amino acids of similar frequency in the corre-
sponding MSA column is close to neutral. Looking to the
experimental MIC, substitutions D177N, A235D, 1243N, and
G248E all predicted to be close to neutral have strongly del-
eterious effects (MIC < 25). DCA corrects the mispredictions
by at least two, on average by three MIC classes.
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There is a small set of nine mutations badly predicted by
DCA. In none of these cases, the independent modeling sig-
nificantly ameliorates predictions. Interestingly, six of these
nine mutations fall into the highly gapped part of the MSA:
DCA displays a significant loss of predictive power in the
highly gapped positions of the MSA, and correlation between
predicted and experimental MIC increases above R? = 0.75
when disregarding mutations in this region (see supplemen-
tary fig. S3, Supplementary Material online).

Structural-Stability Predictions Show Lower
Correlations to MIC Changes than Sequence-Based
Modeling

It has been proposed before that the role of most residues is
to make the protein properly fold, and that mutations on
these sites mainly alter protein stability and not its activity
(Wylie and Shakhnovich 2011): Hence, an accurate estimation
of the change in protein stability AAG = AG™" — AG"
should be able to account for a large fraction of mutational
effects.

Many bioinformatic programs have been developed for
estimating protein stability change upon mutation: Among
them MUpro (Cheng et al. 2006) and I|-Mutant2.0
(Capriotti et al. 2005), which take the sole sequence as
input, PoPMuSIiC  (Dehouck et al. 2011) and
I-Mutant2.0(sequence+structure) (Capriotti et al. 2005),
which consider both sequence and structure. As these
methods show incoherent predictions in between each
other (cf. supplementary fig. S4, Supplementary Material
online), we complement them by extensive force-field mo-
lecular simulations at all-atom resolution to estimate pro-
tein stability changes AAG induced by single point
mutations (cf. Materials and Methods for details). A score
can be assigned to any substitution of amino acid a; in po-
sition i by amino acid b,

Apgu(ai — b) = —AAG(a; — b), (5)

and then mapped to predicted MIC values fi,,(a; — b)
using the before-mentioned scheme. Pearson correlations
between predicted and experimental MIC are calculated:
We find that, although those methods which consider
not only sequence but also structural information
(R? = 0.13 for PoPMuSIiC and R? = 0.14 |-Mutant2.0 (se-
quence+structure)) largely outperform those who do not
(R*~0.02 for MUpro and I-Mutant), one gets only a
modest further improvement letting the mutated polypep-
tide relax through molecular simulations (R?> = 0.17 for mo-
lecular simulations, see fig. 3).

It is well known that residues buried in the protein core are
important determinants of protein stability. Mutation affect-
ing these sites tends to be highly destabilizing (Ponder and
Richards 1987; Bustamante et al. 2000; Franzosa and Xia 2009;
Abriata et al. 2015). Therefore, we test also to what extent
solvent accessibility explains the experimental mutation
effects. Upon defining

Adpsa(ai — b) = (6)

where ¢; is the relative solvent accessible surface area (RSA) of
residue g; in position i. We use Michel Sanner’s Molecular
Surface algorithm (Sanner et al. 1996) applied to the PDB
structure TM40 to estimate surface accessible surface areas
(SAS), normalized by the maximum accessibilities given in
Tien et al. (2013). We find that R? = 0.20 of the variability
of the experimental fitness is explainable through RSA.
In general, we find that different accessibility estimates pro-
vide very similar results, including the absolute SAS (cf. sup-
plementary material, Supplementary Material online). Indeed,
a simple binary classifier roughly distinguishing buried from
exposed residues is almost as informative as RSA and SAS
values (supplementary fig. S5 Supplementary Material
online). Note that the score A¢gs, does not depend on
the target amino acid b, but only on the wild-type structure.
Note also that this R” value, while been greater than those
achieved through molecular simulations, is substantially
smaller than all statistical sequence scores derived from
homologs.

The failure of stability-based predictions of mutational ef-
fects may result from strong-effect mutations in or close to
the active site, whose phenotypic effect is unrelated to protein
stability. To assess this effect, we have repeated our analysis
including only 111 mutations falling into the extended active
site (cf. the supplementary fig. S6, Supplementary Material
online, for details). The R? values for both statistical models
(IND and DCA) go up strongly (Ri, = 0.52, Rj., = 0.67),
whereas the structure-based predictors show little or no gain
at all. This demonstrates that evolutionary information accu-
rately predicts the effects of mutation falling into the active
site, and structural information does not.

Being grounded on complementary sources of informa-
tion, predictions by evolution- and structure-based
methods are not strongly correlated, as shown in supplemen-
tary figure S4, Supplementary Material online. A linear com-
bination of DCA with structural predictors, however, yields
only little increase in correlation: The explained variance of
experimental data gets to 0.60 — 0.61 when performing a
bivariate linear regression between DCA scores and ei-
ther solvent accessibility or Polyphen-2 predictions, as dis-
played in supplementary figure S7, Supplementary Material
online.

DCA Landscape Modeling Spots Stabilizing Mutations
and Captures Protein-Specific Substitution Scores

The TEM-1 beta-lactamase has been the subject of intense
studies with regard to protein structure, function, and evolu-
tion, and a number of structurally stabilizing substitutions
have been identified (Raquet et al. 1995; Wang et al. 2002;
Kather et al. 2008; Deng et al. 2012): P62S, V80l, G92D, R120G,
E147G, H153R, M182T (strongly stabilizing), L201P, 1208M,
A184V, A224V, 1247V, T265M, R275L/Q, and N276D (posi-
tions are indicated using standard Ambler numbering
Ambler et al. 1991). Some of them were found to influence
the resistance phenotype (Salverda et al. 2010). Notably, the
five highest DCA scores A, out of all considered mutants
belong to this set: M182T, H153R, E147G, L201P, and G92D
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(with a large gap separating the likelihood of the strongly
stabilizing M182T from the scores of the other four, cf.
fig. 4). More quantitatively, we found that the Gibbs Free
Energy change relative to wild-type AAG of a different,
small set of mutations (most of which not affecting
Amoxicillin resistance) characterized by four independent
studies (Raquet et al. 1995; Wang et al. 2002; Kather et al.
2008; Deng et al. 2012) is highly correlated with DCA scores
(Rpca =0.81) but less correlated when using independent
model (Rjnp = 0.62).

We further investigate whether the statistical analysis of
homologous sequences is able to capture “protein-specific
amino acid substitution effects,” that is, if the effect of a
specific amino acid substitution (averaged over all sequence
positions where this mutation appears) is better described by
our statistical model than it would be by Blosum matrices,
which are estimated from many distinct aligned protein se-
quences. To this aim, a matrix of average substitution scores is
built from the set of experimental MIC values (cf. fig. 5). We
also construct an analogous matrix for the DCA-predicted
MIC values of the same set of mutations, and quantify cor-
relations between predicted and experimental average effects
computing a Pearson correlation weighting each term with
the square root of the number of measured mutations falling
in the related class. We find a very large correlation
(R? = 0.72) between average experimental and predicted
substitution matrices. This value has to be compared with
the substantially lower correlation found when comparing
the mutational effects in TEM-1 with the Blosum62 matrix
(R? = 0.34), which provides amino acid substitution scores
averaged over many proteins. All other inference methods
show substitution scores with correlations to MIC, which
are comparable to or lower than the correlations between
MIC and Blosumé62.
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Discussion

The central aim of this article is the accurate computational
inference of protein mutational landscapes to predict the
phenotypic effect of mutations. This is exemplified in the
case of the TEM-1 protein of Escherichia coli, a beta-lactamase
providing antibiotic drug resistance against beta-lactams,
such as penicillin, amoxicillin or ampicillin.

To reach this aim, we have extracted information about a
protein and its potential mutants, which is hidden in the
sequence variability of “diverged but functional” homologs
of this protein. The central ingredient of our analysis is a
careful modeling of residue coevolution by DCA, that is, the
modeling includes pairwise epistasis between residues. This
approach, initially developed in the context of structural bi-
ology to predict residue-residue contacts from sequences,
has been used to define a score for each mutation, which
was found to explain 55%, respectively, 58% of the phenotypic
variability in the two corresponding experimental TEM-1 data
sets (Jacquier et al. 2013; Firnberg et al. 2014). This value is
substantially higher than what can be obtained by a more
standard modeling approach based on sequence profiles
(39% of variability explained), which does not include epista-
sis, or on changes in structural stability. Furthermore, our
coevolutionary approach clearly outperforms state-of-the-
art approaches such as SIFT and PolyPhen-2, which are
based on nonepistatic models.

However, epistatic effects are not equally important for
all residues, which may explain that some authors disagree
on the contribution of the sequence context to mutational
effect (Pollock et al. 2012; Ashenberg et al. 2013; Zou and
Zhang 2015). The relevant context determining the effect of
a mutation of a residue is not only given by its direct physical
neighbors, but extends to a distance of about 20 A. The
informative context thus includes, on average, roughly half
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of all residues in the aligned TEM-1 sequence. This result
agrees with the finding that interactions from second shell
and beyond might be important for protein function
(Drawz et al. 2009). Having a look to the physicochemical
properties of the wild-type and the mutant amino acids, we
observe, for example, that mutations substituting a hydro-
phobic residue with a hydrophilic one are almost equally
well described by the DCA and by the independent model
(RAca — Rivp =2 5%), due to the structurally highly disrup-
tive effect of a hydrophilic residue in a buried site, and thus
the absence of hydrophilic residues in the corresponding
column of the sequence alignment. On the contrary, the
more moderate effect of replacing a small by a large amino
acid depends strongly whether the context is able to accom-
modate this change or not, and thus the independent

model performs much worse than the DCA model
(Rhca — Rivp = 26%). Concentrating on mutations from
amino acids of given physicochemical characteristics (hy-
drophobicity, charge, volume) toward a target amino acid
of either different (e.g,, hydrophobic to hydrophilic) or con-
served characteristics (e.g, hydrophobic to hydrophobic) we
find that the DCA predictions are stable, with R> values
between 49% and 64%, whereas the ones of the IND
model vary much more strongly (25-55%). In none of the
considered cases, the independent model was able to out-
perform the coevolutionary one.

Our findings demonstrate that the “local mutational land-
scape” dictating the mutational effects in TEM-1 is closely
related to the (co-)evolutionary pressures acting globally
across the entire homologous protein family. This result is
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quite remarkable: Despite a low typical sequence identity of
about 20% between homologous beta-lactamases and TEM-
1, their sequence statistics provides quantitative information
about the effect of single-residue substitutions in TEM-1. We
are thus able to infer landscapes and predict quantitatively
mutational effects even in cases, where mutagenesis data are
not sufficiently numerous (cf. Otwinowski and Plotkin 2014).
This complements recent findings, that patterns of polymor-
phism and covariation in patient derived (and thus highly
similar) HIV sequences are informative about their replicative
capacities (Shekhar et al. 2013; Mann et al. 2014), thanks to
high mutation rates in the HIV virus. Furthermore, coevolu-
tionary patterns in protein families were recently found to be
closely related to protein energetics and folding landscapes
(Lui and Tiana 2013; Morcos et al. 2014).

We expect that the modeling approach through DCA can
be improved along several lines. First, prediction accuracy
depends critically on the quality and size of the training
MSA. As we have shown, the prediction for gapped (and
typically less well-aligned) positions is substantially worse
than the one for ungapped (thus better alignable) ones (R*
values ranging from 30% to 78% from the most to the least
gapped positions). We therefore excluded gapped sequences
from the training alignment, but this procedure reduces the
sequence number and thus the statistics for the ungapped
positions.

Second, the current DCA approach is purely statistical and
based on evolutionary information. It does not take into ac-
count any complementary knowledge about the protein
under study. We have, however, observed that the integration
of structural knowledge helps to increase the prediction ac-
curacy. Fitting the model only for residues within about 20 A
from the mutated residue, the R” value raises slightly by about
2%. The effect of integrating the DCA-score and the solvent-
accessible surface area is even larger, leading to a gain in R” of
more than 6%. A very similar increase (7%) is obtained when
combining DCA with PolyPhen-2, the latter being built upon
a profile model and structural information. These increases
are based on a simple linear regression scheme with 3-fold
crossvalidation: It will be interesting to explore more sophis-
ticated approaches, for example, integrating prior structural
knowledge through a Bayesian inference scheme directly into
the statistical-inference procedure.

Even if the integration of complementary information may
substantially improve our prediction accuracy, the most im-
portant contribution is, however, coming from the careful
inclusion of epistatic effects into our modeling approach to
mutational landscapes, as shown by a partial-correlation anal-
ysis in supplementary figure S8, Supplementary Material
online.

From a computational point of view, the approach is
widely applicable beyond the specific case of TEM-1 and an-
tibiotic drug resistance. To check this practically, we have
analyzed further systems in the supplementary material,
Supplementary  Material online: A PDZ domain
(MclLaughlin Jr et al. 2012), an RNA recognition motif
(Melamed et al. 2013), and the glucosidase enzyme
(Romero et al. 2015) (cf. supplementary text S1 and figs.
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S9-511, Supplementary Material online). DCA predictions
systematically outperform independent-site models neglect-
ing epistasis and all other tested methods. Only PolyPhen-2
reaches, in two cases out of four, comparable performance.
Despite this encouraging finding, correlations between exper-
iment and computation are numerically smaller than those
observed for TEM-1. We expect this reduction to result from
discrepancies between the measured phenotypes (e.g, pro-
tein stability, binding affinity) and those under evolutionary
selection (fitness); MIC is without doubt a better proxy for
fitness than most molecular phenotypes. However, to system-
atically support this idea, large-scale experiments assessing the
impact of mutations on multiple phenotypic traits in the
same protein would be necessary. In summary, despite not
representing a comprehensive survey, currently available data
suggest a large potential for coevolutionary models in bio-
medical applications, through the in silico prediction of the
role of mutations in rare diseases and cancer.

Materials and Methods

Data

Mutational Data

The original data set (Jacquier et al. 2013) was used directly at
the translated amino acid level. It contains 8,621 (4,094 dis-
tinct) measurements of amoxicillin MIC. Among these 8,112
do not include stop codons, 2,440 are repeated measures of
the wild-type sequence, 3,129 (N,ukiple = 2,051 distinct) have
all mutations inside the part of the sequence covered by the
Pfam domain (i.e, subject to the presented statistical analysis).
Finally, among the latter set, there are Nqjng =742 distinct
single mutation. Each measurement z; falls in nine discrete
classes: 12.5, 25, 50, 125, 250, 500, 1, 000, 2,000, 4,000 (mg/I)
(no single point mutation has z > 1,000). For a given phe-
notype where amino acid g; in position i is replaced with
amino acid b, we have defined a unique experimental fitness
Mexp(ai — b) taking the logarithmic average on all measure-
ments (whenever multiple measurements were available):

N(ai—b)

o — b)zm > log@). ()

where N(a; — b) is the number of measurements of muta-
tion a; — b.

Homologous Sequences and Preprocessing of the Training Set
The genomic model was learned from an MSA of sequences
belonging to the Pfam Beta-lactamase2 family (PF13354)
(Finn et al. 2013). We have used HMMer (Mistry et al.
2013) to search against the Uniprot protein sequence data-
base (version updated to March 2015). The resulting MSA is
L =197 sites long, and contains 5,119 distinct sequences. After
removing all sequences with more than five gaps, 2,462 se-
quences are retained and used for the statistical analysis. They
have an average sequence identity approximately 20% with
the TEM-1 wild-type sequence.
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Statistical Sequence Modeling

Independent Model—Sequence Profile

The basic assumption of the independent model (2) is the
additivity of the mutational effects of different positions in
the amino acid sequence. In terms of statistical sequence
models, this corresponds to a “sequence profile model,”
which assigns to each sequence the factorized probability

L
Pno(as, ..., ar) = Hff(ai) (®)

with f;(a) being the frequency of amino acid a in column i of
the MSA, see below for a precise definition of this frequency.
The factorized form of this expression suggests to use log-
probabilities as a computational predictor of the genotype-
to-phenotype mapping,

,a). )

This leads to an explicit expression of the phenotypic contri-
bution of amino acid a in site i: ¢;(a) = logfi(a).

Epistatic Model—DCA

Following last paragraph’s idea to identify the computational
predictor of the genotype-to-phenotype mapping with the
log-probability of a statistical model inferred from an MSA of
TEM-1 homologs, the latter takes the form

dinp(ar, ..., a) = logPip(ay, ...

Ppca(as, ..., a1) = %exp{q&DCA(m, aL)}, (10)

where

L
bocalar, ..., a.) = Zi=1 pi(a) + Z1si5st(pij(ai’ aj)
(1)

is given in equation (3), and the so-called partition function
Z=73 ",  aexp{dpcal(ai, .., a)} is a normalization factor.
The statistical model Ppc, thus takes the form of a generalized
Potts model or, equivalently, a pairwise Markov random field.
The same model was introduced in the DCA of residue co-
evolution (Weigt et al. 2009; Morcos et al. 2011). Inferring
model parameters ¢ from the MSA is a computationally
hard task, we therefore follow the mean-field approximation
introduced in Morcos et al. (2011). In this context, the epi-
static couplings can be determined by inversion of the em-
pirical covariance matrix Cj(a, b) for the co-occurrence of
amino acids a and b in positions i and j of the same protein
sequence. Once the model parameters are determined, the
context-dependent mutational effects can be estimated using
equation (4).

Details of Statistical Inference

To take into account phylogenetic correlations and sam-
pling biases in the training set, each sequence (a?', ..., a]"),
m =1, ..., M, of the MSA appears in the statistics with the
following weight,

Wiy = (1 + Y O — m)) , (12)

m#m’

with d,,,y being the Manhattan distance (number of mis-
matches) between sequences m and m’ and 6 being the
Heaviside step function whose value is 0 for negative ar-
gument and 1 for positive argument. The reweighting
threshold is set to ¥ = 0.8 as usually done in DCA
(Morcos et al. 2011).

Due to finite sampling, the statistics of the MSA has to be
regularized introducing pseudocounts:

N R R

flj (a, b) = ; + Meﬁ 2 Wmsa{”,aaa;”,bs (13)

m=

R R gL
Ha)==+—= Winam. (14)

i q Meﬁ n; mOal,a
M
with Mg = ) wy, and § the Kronecker’s delta whose value
m=1

is 1 if the variables are equal, and 0 otherwise. We have in-
cluded pseudocounts at two levels: First, for the inference of
epistatic couplings we have used large pseudocounts
(A, = 0.5), needed to correct for systematic biases intro-
duced by the Mean Field (MF) approximation (Barton et al.
2014),

@j(a, b) = [C](a, b), (15)

Cj(a, b) = £;*(a, b) — £ (@) (b) (16)

for all amino acids a and b. Following Tanaka (1998), also di-
agonal terms ¢;(a, b) = [C”]U(a, b) are included. Couplings
with gaps are set to zero, ¢;(a, —) = ¢;(—,a) =0 (cf.
Morcos et al. 2011).

Smaller pseudocounts of Bayesian size (A7 = Nﬂ—q?) have
been used in the regularization of single site frequencies to
infer the fields:

Ay
%(a):,og(/ff ("))—Z%(a,b)};m(b). (17)
j.b

The same small regularization A, = N:_eﬁ‘ has been adopted in
the independent-site model.

Mapping Scores to MIC Values

To compare computational predictions with experimental
MIC values, we map computational scores A¢(a; — b)
into predicted MIC [i(a; — b), by first sorting them and
then associating with the ny, highest score Ag, —the ny,
highest experimental MIC value (i, (1),

[1(Ady,) = tep(nen) - (18)

We subsequently compute linear correlations between the
predicted MIC /i and the experimental one /i, resulting in
nonlinear rank correlations between experimental fitnesses
and raw computational scores A.

This procedure has proved to be more robust than the
standard Spearman rank correlations, because of the peculiar
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distribution of experimental data (bimodal with many re-
peated measures), and helpful to reduce the statistical
weight of outliers (such as strongly destabilizing mutations
in the distribution of AAG predicted by molecular simula-
tions). However, numerical values of Spearman correlations
are in general not very different from those obtained by our
procedure.

Structural Stability Predictions

Bioinformatic Predictors

A list of predicted AAG of E. coli TEM-1 protein point mu-
tations for the web-based programs mentioned in the article
have been downloaded from the SPROUTS database
(Lonquety et al. 2009).

Force-Field-Based Molecular Simulations

Computation of protein thermodynamic stability is compu-
tationally very demanding: A direct calculation of thermody-
namic stability by molecular dynamics simulations implies the
sampling of complete folding and unfolding events. This is
presently infeasible for proteins of the size of TEM-1 (286
amino acids). An alternative, less expensive approach to esti-
mate mutational effects on protein stability is to look for
locally stable configuration performing small structural relax-
ations from a reference structure, with the wild-type amino
acid replaced by the mutant amino acid. Assuming that the
protein can be described by a two-state system (folded vs.
unfolded), and that both the entropy of the folded and the
free energy of the unfolded are not sensibly affected by the
mutation, we can approximate

AAG = AGy — AGpe ~ B2 — P9 = AE. (19)

Moreover, as thermodynamic stability is an equilibrium prop-
erty, one can replace expensive molecular dynamics simula-
tions with more efficient Monte-Carlo sampling.

Molecular simulations were performed using SIMONA
(Strunk et al. 2012), a Monte-Carlo-based simulation software
for efficient molecular simulations which have proved useful
to obtain reproducible folding in a series of test cases (Schug
et al. 2003; Verma et al. 2006). As reference structure for
molecular relaxations we have taken a highly resolved
(0.8 A) structure (PDB: 1M40; Minasov et al. 2002). Further
details of the simulations are reported in next section.

Details and Calibration of the Molecular Simulations
To estimate the thermodynamic stability of TEM-1 mutants,
we have executed the following steps:

1) Starting from a sufficiently close reference state (in our
case the SIMONA-relaxed structure of the wild-type mol-
ecule), the wild-type amino acid is replaced by the
mutant one.

2) Monte-Carlo simulations are performed under SIMONA
to locally minimize the energy function.

3) The resulting energy change AE =E,; — Ey s
determined.

In the simulation, we have included the complete forcefield
PFFO3v4-all parallel OpenMP (scale 1.0), which makes use the
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amber99sb-star-ildn dihedral potential with an implicit sol-
vent model. It contains the following contributions:

12 6
-l
i ij ij

T S oA+ Y Ve (20

ij g(Ng() Fij i hBonds

where r; represents the distance between atoms i and j, and
g(i) the type of amino acid i, Vj; and R; are Lennard—Jones
parameters, g; and €,(ig(;) are the partial charges and group-
specific dielectric constants for nontrivial electrostatic inter-
actions, g; and A; are the free energy per unit area and the
area of atom i in contact with fictitious solvent, respectively,
and finally V,,, is a short range interaction term for back-
bone-backbone hydrogen bonding (Schug et al. 2003).

Supplementary Material

Supplementary tables S1-S3, figures S1-S13, text S1, and a
Matlab implementation of DCA modeling and sequence scor-
ing are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).

Acknowledgments

The authors are grateful to Jacques Chomilier for help with
the SPROUTS database. M.W. was partly funded by the
Agence Nationale de la Recherche project COEVSTAT
(ANR-13-BS04-0012-01). This work undertaken partially in
the framework of CALSIMLAB is supported by the public
grant ANR-11-LABX-0037-01 overseen by the French
National Research Agency (ANR) as part of the
“Investissements d’Avenir” program (ANR-11-IDEX-0004-02)
O.T. and HJ. were supported by the European Research
Council under the European Union’s Seventh Framework
Program (FP7/2007-2013)/ERC Grant 310944.

Note Added in Proof

The Marks lab has performed a related analysis with
comparable conclusions on the role of epistatic couplings
in predicting mutational effects, a preprint is available on
arXiv:1510.04612.

References

Abriata LA, Palzkill T, Dal Peraro M. 2015. How structural and physico-
chemical determinants shape sequence constraints in a functional
enzyme. PLoS One 10(2):e0118684

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR. 2010. A method and server for pre-
dicting damaging missense mutations. Nat Methods. 7(4):248-249.

Ambler R, Coulson A, Frére J-M, Ghuysen J-M, Joris B, Forsman M,
Levesque R, Tiraby G, Waley S. 1991. A standard numbering
scheme for the class a beta-lactamases. Biochem J. 276(Pt 1):269.

Ashenberg O, Gong LI, Bloom JD. 2013. Mutational effects on stability
are largely conserved during protein evolution. Proc Natl Acad Sci U
S A. 110(52):21071-21076.

Baldassi C, Zamparo M, Feinauer C, Procaccini A, Zecchina R, Weigt M,
Pagnani A. 2014. Fast and accurate multivariate Gaussian modeling
of protein families: predicting residue contacts and protein-interac-
tion partners. PLoS One 9(3):€92721.


http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv211/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv211/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv211/-/DC1
http://www.mbe.oxfordjournals.org/

Coevolutionary Landscape Inference - doi:10.1093/molbev/msv211

MBE

Barton J, Cocco S, De Leonardis E, Monasson R. 2014. Large pseudo-
counts and | 2-norm penalties are necessary for the mean-field
inference of Ising and Potts models. Phys Rev E. 90(1):012132.

Bloom JD, Glassman M]. 2009. Inferring stabilizing mutations from pro-
tein phylogenies: application to influenza hemagglutinin. PLoS
Comput Biol. 5:21000349.

Bloom D, Silberg JJ, Wilke CO, Drummond DA, Adami C, Arnold FH.
2005. Thermodynamic prediction of protein neutrality. Proc Natl
Acad Sci U S A. 102(3):606-611.

Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA. 2012.
Epistasis as the primary factor in molecular evolution. Nature
490(7421):535-538.

Bustamante CD, Townsend JP, Hartl DL. 2000. Solvent accessibility and
purifying selection within proteins of Escherichia coli and Salmonella
enterica. Mol Biol Evol. 17(2):301-308.

Capra A, Singh M. 2007. Predicting functionally important residues from
sequence conservation. Bioinformatics 23(15):1875-1882.

Capriotti E, Fariselli P, Casadio R. 2005. I-mutant2. 0: predicting stability
changes upon mutation from the protein sequence or structure.
Nucleic Acids Res. 33(Suppl 2):W306-W310.

Cheng ), Randall A, Baldi P. 2006. Prediction of protein stability changes
for single-site mutations using support vector machines. Proteins
62(4):1125-1132.

Cheng RR, Morcos F, Levine H, Onuchic JN. 2014. Toward rationally
redesigning bacterial two-component signaling systems using co-
evolutionary information. Proc Natl Acad Sci U S A. 111(5):E563—
E571.

Chou H-H, Chiu H-C, Delaney NF, Segre D, Marx CJ. 2011. Diminishing
returns epistasis among beneficial mutations decelerates adaptation.
Science 332(6034):1190-1192.

Cirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in
common disease through whole-genome sequencing. Nat Rev
Genet. 11(6):415-425.

Dago AE, Schug A, Procaccini A, Hoch JA, Weigt M, Szurmant H. 2012.
Structural basis of histidine kinase autophosphorylation deduced by
integrating genomics, molecular dynamics, and mutagenesis. Proc
Natl Acad Sci U S A. 109(26):E1733-E1742.

Davison HC, Woolhouse ME, Low JC. 2000. What is antibiotic resistance
and how can we measure it? Trends Microbiol. 8(12):554—559.

de Juan D, Pazos F, Valencia A. 2013. Emerging methods in protein co-
evolution. Nat Rev Genet. 14(4):249-261.

de Visser JAG, Krug J. 2014. Empirical fitness landscapes and the pre-
dictability of evolution. Nat Rev Genet. 15(7):480-490.

Dehouck Y, Kwasigroch JM, Gilis D, Rooman M. 2011. Popmusic 2.1: a
web server for the estimation of protein stability changes upon
mutation and sequence optimality. BMC Bioinformatics 12(1):151.

Deng Z, Huang W, Bakkalbasi E, Brown NG, Adamski CJ, Rice K, Muzny
D, Gibbs RA, Palzkill T. 2012. Deep sequencing of systematic com-
binatorial libraries reveals B-lactamase sequence constraints at high
resolution. | Mol Biol. 424(3):150-167.

Drawz SM, Bethel CR, Hujer KM, Hurless KN, Distler AM, Caselli E,
Prati F, Bonomo RA. 2009. The role of a second-shell residue in
modifying substrate and inhibitor interactions in the shv S-lacta-
mase: a study of ambler position asn276. Biochemistry 48(21):4557—-
4566.

Echave J, Jackson EL, Wilke CO. 2015. Relationship between protein
thermodynamic constraints and variation of evolutionary rates
among sites. Phys Biol. 12(2):025002.

Ekeberg M, Lovkvist C, Lan Y, Weigt M, Aurell E. 2013. Improved contact
prediction in proteins: using pseudolikelihoods to infer Potts
models. Phys Rev E. 87(1):012707.

Ferguson AL, Mann JK, Omarjee S, Ndung'u T, Walker BD, Chakraborty
AK. 2013. Translating HIV sequences into quantitative fitness land-
scapes predicts viral vulnerabilities for rational immunogen design.
Immunity 38(3):606-617.

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger
A, Hetherington K, Holm L, Mistry J, et al. 2013. Pfam: the protein
families database. Nucleic Acids Res. 42(D1):D222-D230.

Firnberg E, Labonte JW, Gray JJ, Ostermeier M. 2014. A comprehensive,
high-resolution map of a gene’s fitness landscape. Mol Biol Evol.
31(6):1581-1592.

Franzosa EA, Xia Y. 2009. Structural determinants of protein evolution
are context-sensitive at the residue level. Mol Biol Evol. 26(10):2387—
2395.

Halabi N, Rivoire O, Leibler S, Ranganathan R. 2009. Protein sectors:
evolutionary units of three-dimensional structure. Cell 138(4):774—
786.

Harms MJ, Thornton JW. 2013. Evolutionary biochemistry: revealing the
historical and physical causes of protein properties. Nat Rev Genet.
14(8):559-571.

Hopf TA, Colwell L), Sheridan R, Rost B, Sander C, Marks DS. 2012.
Three-dimensional structures of membrane proteins from genomic
sequencing. Cell 149(7):1607-1621.

Hopf TA, Scharfe CPl, Rodrigues JPGLM, Green AG, Kohlbacher O,
Sander C, Bonvin AMJ}, Marks DS. 2014. Sequence co-evolution
gives 3d contacts and structures of protein complexes. elife
3:203430.

Jacquier H, Birgy A, Le Nagard H, Mechulam Y, Schmitt E, Glodt J, Bercot
B, Petit E, Poulain ), Barnaud G, et al. 2013. Capturing the mutational
landscape of the beta-lactamase tem-1. Proc Natl Acad Sci U S A.
110(32):13067-13072.

Kather |, Jakob RP, Dobbek H, Schmid FX. 2008. Increased folding sta-
bility of tem-1 beta-lactamase by in vitro selection. | Mol Biol.
383(1):238-251.

Kauffman S, Levin S. 1987. Towards a general theory of adaptive walks
on rugged landscapes. | Theor Biol. 128(1):11-45.

Khan Al, Dinh DM, Schneider D, Lenski RE, Cooper TF. 2011. Negative
epistasis between beneficial mutations in an evolving bacterial pop-
ulation. Science 332(6034):1193-1196.

Lonquety M, Lacroix Z, Papandreou N, Chomilier J. 2009. Sprouts: a
database for the evaluation of protein stability upon point muta-
tion. Nucleic Acids Res. 37(Suppl 1):D374-D379.

Lui S, Tiana G. 2013. The network of stabilizing contacts in proteins
studied by coevolutionary data. ] Chem Phys. 139(15):155103.

Mann JK, Barton JP, Ferguson AL, Omarjee S, Walker BD, Chakraborty A,
Ndung'u T. 2014. The fitness landscape of hiv-1 gag: advanced
modeling approaches and validation of model predictions by in
vitro testing. PLoS Comput Biol. 10(8):¢1003776.

Marks DS, Hopf TA, Sander C. 2012. Protein structure prediction from
sequence variation. Nat Biotechnol. 30(11):1072-1080.

Mclaughlin RN Jr, Poelwijk FJ, Raman A, Gosal WS, Ranganathan R.
2012. The spatial architecture of protein function and adaptation.
Nature 491(7422):138-142.

Melamed D, Young DL, Gamble CE, Miller CR, Fields S. 2013. Deep
mutational scanning of an rrm domain of the Saccharomyces cere-
visiae poly (a)-binding protein. RNA 19(11):1537-1551.

Minasov G, Wang X, Shoichet BK. 2002. An ultrahigh resolution struc-
ture of tem-1 B-lactamase suggests a role for glu166 as the general
base in acylation. ] Am Chem Soc. 124(19):5333-5340.

Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in
homology search: Hmmer3 and convergent evolution of coiled-coil
regions. Nucleic Acids Res. 41(12).e121.

Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina
R, Onuchic JN, Hwa T, Weigt M. 2011. Direct-coupling analysis of
residue coevolution captures native contacts across many protein
families. Proc Natl Acad Sci U S A. 108(49):E1293-E1301.

Morcos F, Schafer NP, Cheng RR, Onuchic JN, Wolynes PG. 2014.
Coevolutionary information, protein folding landscapes, and the
thermodynamics of natural selection. Proc Natl Acad Sci U S A.
111(34):12408—12413.

Ng PC, Henikoff S. 2003. Sift: predicting amino acid changes that affect
protein function. Nucleic Acids Res. 31(13):3812-3814.

Ng PC, Henikoff S. 2006. Predicting the effects of amino acid substitu-
tions on protein function. Annu Rev Genomics Hum Genet. 7:61-80.

Nugent T, Jones DT. 2012. Accurate de novo structure prediction of
large transmembrane protein domains using fragment-assembly

279



Figliuzzi et al. - doi:10.1093/molbev/msv211

MBE

and correlated mutation analysis. Proc Natl Acad Sci U S A.
109(24):E1540—-E1547.

Otwinowski J, Plotkin JB. 2014. Inferring fitness landscapes by regression
produces biased estimates of epistasis. Proc Natl Acad Sci U S A.
111(22):E2301-E2309.

Ovchinnikov S, Kamisetty H, Baker D. 2014. Robust and accurate pre-
diction of residue-residue interactions across protein interfaces
using evolutionary information. eLife 3:202030.

Podgornaia Al, Laub MT. 2015. Pervasive degeneracy and epistasis in a
protein-protein interface. Science 347(6222):673-677.

Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ. 2007. Empirical fitness
landscapes reveal accessible evolutionary paths. Nature
445(7126):383-386.

Pollock DD, Thiltgen G, Goldstein RA. 2012. Amino acid coevolution
induces an evolutionary stokes shift. Proc Natl Acad Sci U S A.
109(21):E1352-E1359.

Ponder JW, Richards FM. 1987. Tertiary templates for proteins: use of
packing criteria in the enumeration of allowed sequences for differ-
ent structural classes. | Mol Biol. 193(4):775-791.

Procaccini A, Lunt B, Szurmant H, Hwa T, Weigt M. 2011. Dissecting the
specificity of protein-protein interaction in bacterial two-compo-
nent signaling: orphans and crosstalks. PLoS One 6(5):¢19729.

Raquet X, Vanhove M, Lamotte-Brasseur J, Goussard S, Courvalin P,
Frere J-M. 1995. Stability of tem B-lactamase mutants hydrolyzing
third generation cephalosporins. Proteins 23(1):63-72.

Reva B, Antipin Y, Sander C. 2011. Predicting the functional impact of
protein mutations: application to cancer genomics. Nucleic Acids
Res. 39(17):e118.

Romero PA, Tran TM, Abate AR. 2015. Dissecting enzyme function with
microfluidic-based deep mutational scanning. Proc Natl Acad Sci U S
A. 112(23):7159-7164.

Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DN. 2013.
Analyses of the effects of all ubiquitin point mutants on yeast
growth rate. ] Mol Biol. 425(8):1363-1377.

Salverda ML, De Visser J, Barlow M. 2010. Natural evolution of tem-1 -
lactamase: experimental reconstruction and clinical relevance. FEMS
Microbiol Rev. 34(6):1015-1036.

Sanner MF, Olson AJ, Spehner J-C. 1996. Reduced surface: an efficient
way to compute molecular surfaces. Biopolymers 38(3):305-320.
Schenk MF, Szendro IG, Salverda ML, Krug J, de Visser JAG. 2013.
Patterns of epistasis between beneficial mutations in an antibiotic

resistance gene. Mol Biol Evol. 30(8):1779-1787.

Schug A, Herges T, Wenzel W. 2003. Reproducible protein folding with
the stochastic tunneling method. Phys Rev Lett. 91(15):158102.

280

Schug A, Weigt M, Onuchic JN, Hwa T, Szurmant H. 2009. High-reso-
lution protein complexes from integrating genomic information
with  molecular simulation. Proc Natl Acad Sci U S A
106(52):22124-22129.

Serohijos AW, Shakhnovich El. 2014. Merging molecular mechanism and
evolution: theory and computation at the interface of biophysics and
evolutionary population genetics. Curr Opin Struct Biol. 26:84-91.

Shekhar K, Ruberman CF, Ferguson AL, Barton JP, Kardar M,
Chakraborty AK. 2013. Spin models inferred from patient-derived
viral sequence data faithfully describe HIV fitness landscapes. Phys
Rev E. 88(6):062705.

Strunk T, Wolf M, Brieg M, Klenin K, Biewer A, Tristram F, Ernst M,
Kleine P, Heilmann N, Kondov |, et al. 2012. Simona 1.0: an
efficient and versatile framework for stochastic simulations of
molecular and nanoscale systems. | Comput Chem. 33(32):2602-
2613.

Sutkowska JI, Morcos F, Weigt M, Hwa T, Onuchic JN. 2012. Genomics-
aided structure prediction. Proc Natl Acad Sci U S A. 109(26):10340—
10345.

Tanaka T. 1998. Mean-field theory of Boltzmann machine learning. Phys
Rev E. 58(2):2302.

Tien MZ, Meyer AG, Sydykova DK, Spielman SJ, Wilke CO. 2013.
Maximum allowed solvent accessibilities of residues in proteins.
PLoS One 8(11):e80635.

Verma A, Schug A, Lee K, Wenzel W. 2006. Basin hopping simulations
for all-atom protein folding. J Chem Phys. 124(4):044515.

Wang X, Minasov G, Shoichet BK. 2002. Evolution of an antibiotic re-
sistance enzyme constrained by stability and activity trade-offs. ] Mol
Biol. 320(1):85-95.

Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. 2009. Identification of
direct residue contacts in protein—protein interaction by message
passing. Proc Natl Acad Sci U S A. 106(1):67-72.

Weinreich DM, Delaney NF, DePristo MA, Hartl DL. 2006. Darwinian
evolution can follow only very few mutational paths to fitter pro-
teins. Science 312(5770):111-114.

Wright S. 1932. The roles of mutation, inbreeding, crossbreeding, and
selection in evolution. Vol. 1. In: Proceedings of the 6th International
Congress of Genetics. p. 356—366.

Wylie CS, Shakhnovich El. 2011. A biophysical protein folding model
accounts for most mutational fitness effects in viruses. Proc Natl
Acad Sci U S A. 108(24):9916-9921.

Zou Z, Zhang J. 2015. Are convergent and parallel amino acid substitu-
tions in protein evolution more prevalent than neutral expecta-
tions? Mol Biol Evol. 32(8):2085-2096.



