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Abstract

Climate change is a global concern, requiring international strategies to reduce emissions,

however, climate change vulnerability assessments are often local in scope with assess-

ment areas restricted to jurisdictional boundaries. In our study we explored tools and impedi-

ments to understanding and responding to the effects of climate change on vulnerability of

migratory birds from a binational perspective. We apply and assess the utility of a Climate

Change Vulnerability Index on 3 focal species using distribution or niche modeling frame-

works. We use the distributional forecasts to explore possible changes to jurisdictional

conservation responsibilities resulting from shifting distributions for: eastern meadowlark

(Sturnella magna), wood thrush (Hylocichla mustelina), and hooded warbler (Setophaga

citrina). We found the Climate Change Vulnerability Index to be a well-organized approach

to integrating numerous lines of evidence concerning effects of climate change, and pro-

vided transparency to the final assessment of vulnerability. Under this framework, we identi-

fied that eastern meadowlark and wood thrush are highly vulnerable to climate change, but

hooded warbler is less vulnerable. Our study revealed impediments to assessing and

modeling vulnerability to climate change from a binational perspective, including gaps in

data or modeling for climate exposure parameters. We recommend increased cross-border

collaboration to enhance the availability and resources needed to improve vulnerability

assessments and development of conservation strategies. We did not find evidence to sug-

gest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate

increasing responsibility for these birds in the Canadian Provinces. These Provinces should

consider conservation planning to help ensure a future supply of necessary habitat for these

species.

Introduction

Assessing the vulnerability of species to the effects of climate change is an important approach

for conservation agencies that want to develop strategies for mitigating or responding to the
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effects of environmental change [1, 2]. Climate change vulnerability assessment (CCVA) is an

integrated approach to examine effect of exposure to a changing climate and sensitivity of the

species to changing conditions [3]. CCVAs are primarily motivated by jurisdictional mandates

to conserve biodiversity in the face of climate change. Although climate change is a global

stressor, requiring an international effort to reduce global emissions, most conservation and

management drivers are local in scope [4]. As a result CCVAs are often restricted to jurisdic-

tional boundaries, and may be inadequate for species conservation where populations range

across international borders and conservation strategies require international efforts [5, 6].

The vulnerability of migratory songbirds, whose breeding ranges lie within the Great Lakes

Basin, is an interesting example of the problem. Vulnerability assessments are conducted

within a defined geographic area, and in this case the assessment area crosses an international

boundary separating Canada and United States (US), and is comprised of watersheds falling

within two Provinces (Ontario and Quebec) and six States (Minnesota, Wisconsin, Michigan,

Ohio, Pennsylvania, and New York) (Fig 1). In addition, the migratory and over-wintering

ranges for some of the migratory species found within the basin overlie several countries

within North America, Central America, and South America. This binational assessment area

creates an interesting, and potentially problematic situation, as the area crosses multiple state,

province and international boundaries and associated jurisdictional responsibilities. From a

conservation perspective jurisdictional responsibility is in part a function of distribution of the

species, and can be defined using a score for responsibility based on proportional distribution

Fig 1. Great Lakes Basin watersheds across Canada and the United States.

doi:10.1371/journal.pone.0172668.g001
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among jurisdictions, and a score for concern representing vulnerability and population trend

[7]. Climate change can affect the proportional distribution and vulnerability of species, how-

ever the magnitude and direction of the impacts are species-specific [8]. All of these factors are

important for developing long-term conservation strategies for migratory birds in the Great

Lakes Basin.

In addition to this jurisdictional complexity, a diversity of factors influence vulnerability.

The effects of climate change on birds within the Great Lakes Basin cross multiple disciplines,

as vulnerability is a function of both the fundamental and the realized niche of the species [9].

The realized niche is often modeled using correlative species distribution models (SDMs),

which consider the species-specific climate envelope habitat needs (ranging from ecosystem to

specific tree distribution). This bioclimatic envelope is further constrained by sensitivity and

adaptive capacity of the species, including the interactive effects of dispersal, phenology, com-

petition, genetic introgression, predators, disease, and parasites [9]. From a forecasting per-

spective models examining global circulation, regionalized temperature and precipitation, tree

distribution, landscape and fire disturbance, bird climatic envelope, and meta-population

dynamics are all useful tools to support the prediction of how climate change will affect the

long-term survival of birds, as well as preparing conservation and management strategies to

reduce the chance of extinction [10].

Several challenges to CCVAs have recently been recognized, including omission of a spe-

cies’ sensitivity and adaptive capacity, focusing on future instead of present climate change

threats, and concentration on direct threats of climate change, without identifying indirect

threats [11]. However, where the conservation concern is binational in perspective, such as the

issue of migratory birds in the Great Lakes Basin, jurisdictional boundaries may further pre-

vent adequate conservation planning because research and management efforts can become

fragmented from perspectives on monitoring, analysis, modeling, and policy, and thereby cre-

ate impediments to vulnerability assessment and development of conservation strategies.

Although binational programs such as the Great Lakes Water Quality Agreement [12] are in

place to support cooperation and knowledge exchange between nations for aquatic systems

(including annexes on climate change impacts, habitat, and science), such agreements do not

focus on the non-aquatic, terrestrial components of the Great Lakes basin. The importance of

terrestrial systems in the basin for conserving biodiversity has been recognized by some. For

example, Nature Conservancy Canada and Ontario Ministry of Natural Resources and For-

estry developed a Great Lakes Conservation Blueprint for Terrestrial Biodiversity [13]; how-

ever this examines only the Canadian portion of the Great Lakes basin.

Approaching CCVAs from a cross-jurisdictional perspective is still relatively rare, and may

be impeded by funding road-blocks, management direction, and an implicit perception that

such efforts are unnecessary or only marginally important. Also, it is unlikely that organiza-

tions consider the possibility of shifting jurisdictional conservation responsibility for species at

risk. The goal of this study is to explore impediments to assessing and responding to the effects

of climate change on the vulnerability of birds in a binational context. We do this by testing

the policy/research hypothesis that existing assessment and modeling frameworks and tools

are sufficient for assessing vulnerability of migratory birds in the Great Lakes Basin of Canada

and the US. We assess if sufficient and appropriate data, assessment tools, predictive models

and geographic scope of these are in place to enable effective binational CCVA, including the

assessment of possible shifting jurisdictional responsibility. To facilitate our evaluation we

apply and assess the Climate Change Vulnerability Index (CCVI) as this assessment tool is

applicable in both Canada and the US [14, 15]. We evaluate predictive climate change SDMs

for three focal bird species, and associated habitat and vegetation response models that were

developed for use in either the Canada or the US.

Binational climate change vulnerability assessment
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Methods

Study area

Our study area included the terrestrial areas of both the US and Canadian watersheds of the

Great Lakes Basin totally 516 682km2 (Fig 1). The US watersheds extended through the states

of Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania, and New York and

the Canadian component included watersheds located in both Ontario and Quebec.

Selection of focal species

We used a step-wise approach to select three focal species for the assessment that met the joint

criteria of being geographically relevant, at greatest risk, having sufficient research on the key

issues, and being representative of important habitat types that might be differentially affected

by climate change. These were important criteria to test the sufficiency of existing frameworks

and levels of binational cooperation for CCVA analysis of migratory species. Throughout the

Great Lakes Basin, there are 42 migratory birds listed as ‘at risk’. Of these, 29 occur in Ontario

(though not all may be listed as ‘at risk’ in Ontario if they are listed elsewhere). We reviewed

the current peer-review literature on the species biology, population and range trends, and cli-

mate modeling to determine if the species were appropriate for a CCVA. Seventeen species

had sufficient research to complete most of the important questions in the CCVI matrix,

including availability of climate-based species distribution models to answer questions related

to range expansion or contraction. From these we selected 3 focal species that were present in

at least 5 squares (10 km by 10 km UTM grid blocks) of the most recent Ontario Breeding Bird

Atlas [16], represented different habitat needs and had the most information available to fill

the CCVI matrix, to examine their vulnerability to climate change.

The three selected focal species were eastern meadowlark (Sturnella magna), wood thrush

(Hylocichla mustelina), and hooded warbler (Setophaga citrina). Eastern meadowlark is a grass-

land specialist and is listed as threatened, both provincially under the Endangered Species Act

and nationally under the Species at Risk Act (SARA) [17]. Wood thrush a mature deciduous

forest specialist, is listed as threatened nationally and special concern provincially [18]. Hooded

warbler is a gap phase species preferring mature Carolinian deciduous forest with openings that

create a dense understory shrub layer; it is listed as special concern provincially and not at risk

nationally [19]. Hooded warbler has undergone recent range expansion in eastern North Amer-

ica over the last 30 years [20]. These 3 species have breeding grounds within the Great Lakes

basin, with overwintering grounds in Central America for wood thrush and hooded warbler,

and in the southern US portion of its breeding range for eastern meadow lark.

Assessment of vulnerability

We used the NatureServe CCVI release 3.01 to quantitatively derive a vulnerability index [14,

15]. The Index combines information on exposure and sensitivity to produce a numerical

sum, which is then converted to a categorical score (Extremely Vulnerable, Highly Vulnerable,

Moderately Vulnerable, Less Vulnerable, and Insufficient Evidence) based on threshold values

(Fig 2). If there is an available climate SDM then a combination of the result from the expo-

sure/sensitivity/adaptive capacity section and modeling section is used (but with lower weight-

ing for the modeled section). Details on the scoring mechanism are provided in [21].

Exposure to climate stress was based on predicted magnitude of change to climatic condi-

tions in mid-century (based on mid-level greenhouse gas scenario), and included indices of

temperature and moisture severity. Exposure was estimated for the mapped breeding range of

the species contained within the Great Lakes Basin, and was calculated (through GIS overlay)

Binational climate change vulnerability assessment
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as the proportion of the range that falls within each of 6 moisture severity classes. To estimate

moisture severity we used the Hamon AET:PET moisture metric [22], which measures the

moisture deficit between the 2050 time horizon and the 1961–1990 baseline (ensemble Global

Circulation Model (GCM) and medium A1B climate scenario) for the continental US [23]. To

estimate severity of temperature change we used data for the entire basin using an ensemble

GCM, an equivalent medium greenhouse gas scenario (RCP 4.5), with difference in annual

mean temperature based on the difference between the 2050 annual mean and the 1971–2000

baseline [24]. To estimate severity of the exposure to climate change in the overwintering

grounds we used the composite Climate Change Exposure Index (CCEI), available at the

CCVI site [25]. We estimated indirect exposure to climate change based on predicted impact

of land use changes resulting from human responses to climate change (e.g., increased or lon-

ger haying season). The index assesses sensitivity of the species to climate change and the adap-

tive capacity of the species to withstand environmental change [14]. For example, a species

with good adaptive capacity can adjust behaviourally or genetically to climate change. The re-

sults from the indirect exposure and sensitivity/adaptive capacity sections were then weighted

by the scores from the modeled response to climate change section.

Fig 2. NatureServe’s CCVI based on climate change vulnerability and adaptation strategies for natural communities.

doi:10.1371/journal.pone.0172668.g002
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We focused on three climate modeling frameworks developed in the US or Canada

(Table 1). Although other modeling frameworks exist, such as the framework developed for

modeling climate change effects on boreal birds [8], we only considered frameworks that

included a substantial portion of the Great Lakes basin. The US Forest Service’s Climate

Change Tree Atlas and Bird Atlas project (CC-TABA), used a multistage modeling framework

that began with data from the North American Breeding Bird Survey (NA-BBS) and the Forest

Inventory and Analysis program [24, 26–28]. From this they developed SDMs for 134 tree spe-

cies and 147 bird species. The avian models included output from the tree species, which was

an important advantage of this modeling framework. Model extent of the tree distribution

models was restricted to the US limiting the projection in the Great Lakes Basins to the US

watersheds. These statistical models of habitat suitability (DISTRIB) were developed using a

machine learning decision tree method (RandomForests) that included climate, elevation, and

tree distribution variables. Tree distribution for 134 species was modeled using explanatory

variables including climate, soil type, soil characteristics, and landscape variables to predict

changes in habitat driven by changing tree distribution [26, 29].The reliability of current

SDMs were evaluated as High (>0.5), medium (0.3–0.5) and low (<0.3) [26]. The wood thrush

model had high reliability explaining 74% of the deviance, while the eastern meadowlark and

hooded warbler models each medium reliability, with 49.2% and 46.6% of deviance was

explained, respectively. A 1-km cell-based simulation model (SHIFT) was then used to model

possible colonization of suitable new habitat cells (or patches) and the shifting front of species

distribution over the next 100 years [29]. Future climate was projected using 3 downscaled

GCMs (HADCM3, PCM, and GFDL) and two greenhouse gas emission scenarios (A1FI–

where emissions continue to rise without mitigation and B1 –significant conservation effort)

[27, 30, 31]. The DIST model estimate predicted exposure to a new climate, while a database of

sensitivity and adaptability traits of tree species (MODFACS) help managers develop and

assess potential actions.

The Effects of Climate Change on Quebec Biodiversity project (CC-QBD) was initiated by

Ouranos, a non-profit group that mediates the relationship between policy and science, and

Table 1. Summary of modelling frameworks used to support climate change vulnerability assessment.

Modelling framework Geographic range Modeling approach GCMs, scenarios, and principal data

sources

Climate change tree atlas and bird

project (CC-TABA) [26–29]. http://

www.fs.fed.us/nrs/atlas/

US portion of Great Lakes

Basin (Canada excluded)

Integrated modelling framework. SDMs

(habitat suitability) developed for trees and

birds based on machine learning (Random

Forests); distributional changes modeled

using cell-based colonization models;

outputs assessed in context of tree species

adaptability

● Birds: NA-BBS

● Vegetation: Tree database

● Climate: 3 downscaled GCMs

(HADCM3, PCM, and GFDL) and two

greenhouse gas emission scenarios

(A1FI–where emissions continue to rise

without mitigation and B1 –significant

conservation effort)

Effects of climate change on

Quebec biodiversity (vegetation

and birds) (CC-QBD) [32]. http://cc-

bio.uqar.ca/english/en_atlas.html

● Birds: Most of the Great

Lakes; some portions of

Minnesota missing

● Trees and Shrubs: US

and Quebec portion of the

Great Lakes Basin (Ontario

excluded)

Partially integrated modelling framework for

bird and vegetation SDMs (ecological niche

models). SDMs developed from alternative

machine learning models (Generalized

Additive Models, MaxEnt, and

RandomForests) with outputs averaged to

estimated expected response.

● Birds: NA-BBS; Quebec Bird Atlas[33]

● Climate: 15 global climate models and

3 projected greenhouse gas emissions

scenarios (A2, A1B and B1).

Coupled SDM/meta-population

dynamic model for hooded warbler

(CC-SDM/MPD) [34]

Breeding range of Hooded

warbler (Almost entire Great

Lakes Basin)

Hierarchical modeling framework SDMs

developed using machine learning

(MaxEnt); Spatial distribution using

RAMAS GIS; links to meta-population

dynamics models; sensitivity analysis tools

applied to outputs.

● Hooded warbler: NA-BBS and Ontario

Breeding Bird Atlas

● Climate: 4 downscaled GCMs

(HADCM3, CCMA, CSIRO, and NIES)

using the A2 scenario only.

doi:10.1371/journal.pone.0172668.t001
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was created as a joint initiative of the Quebec government, Hydro-Quebec, and Environment

Canada [32]. This boundary group acts as a catalyst for teamwork. The modeling framework

of this group is focused on creating SDMs (they term ecological niche models) to forecast

future changes in distribution and abundance of organisms (Table 1). SDMs are based on cor-

relative relationships between primarily climatic variables and the North American Breeding

Bird Survey [33] for bird abundance observations, or the Quebec Bird Atlas for presence/

absence, but for some species environmental features also included non-climatic variables

such as altitude, soil characteristics, and landcover. For bird species, the extent of the modeling

area covered almost all of the Great-Lakes Basin, with only a small portion of Minnesota miss-

ing. For tree and shrub species, modeling covered the US portion of the Great Lakes Basin,

with Ontario excluded and only the Quebec portion included for Canada. Rather than deriving

SDMs based on a single modeling approach, this group takes an ensemble approach where

they use model-averaging of the various statistical models (e.g., Generalized Additive Models,

MaxEnt, and RandomForests) [32]. They use this averaging approach to map shifting climate

envelopes. Likewise, they use an ensemble approach to GCMs, where they averaged 70 climate

change permutations using 15 global climate models and 3 projected greenhouse gas emissions

scenarios (A2, A1B and B1). Mapped species distribution is averaged to provide a perspective

on the shifting climate envelope that is not dependent on a single SDM or GCM. Although

both bird and vegetation species were modeled, at this point the projections are not well inte-

grated. These climate envelopes applied and averaged across scenarios predict exposure to new

climates. Subsequent vulnerability assessments were supported by also considering a species’

life-history traits (using the NatureServe database) to better understand potential sensitivity

and adaptability to the new climate.Current SDMs were evaluated using Area Under the

Curve (AUC), where AUC scores�0.7 indicate good model fit. All models scored�0.98.

A third climate change modeling framework coupled an SDM to a meta-population dynamic

model (which we term CC-SDM/MPD), but this effort was specific to hooded warbler, and was

focused on assessing model uncertainties. A University of Toronto group used this approach to

provide projections of habitat suitability over the entire breeding range for hooded warbler,

which include almost all of the Great Lakes Basin [34]. The hierarchical modeling framework

began with a SDM derived through MaxEnt using the NA-BBS records and point-count loca-

tions from the first (1981–1985) and second (2001–2005) Ontario Breeding Bird Atlases and

current climate data from the Worldclim database [35]. Climate variables were selected a priori

because on biologically relevant factors for migratory birds over the breeding range and were

summarized with months associated with the breeding season. The SDMs were project forward

using four downscaled GCMs (HADCM3, CCMA, CSIRO, and NIES), as well as an ensemble

model, using the A2 scenario only to assess future climate suitability. Additionally, the authors

assessed the deviations among GMCs during late-century projections to understand which cli-

mate variables were most significant in determining future projections of habitat suitability.

Next, the climate SDM was integrated with a metapopulation model using empirical and expert

knowledge [36] and dispersal was modelled in RAMAS GIS [37]. A binary map (forest and

non-forest) of suitable cover was derived for southern Ontario to map suitable habitat patches

of mature forest with openings or gaps greater than 1 km2 (Table 1). The relative habitat suit-

ability map based on the SDMs was modified by multiplying it by the binary forest map. RAMAS

GIS was then used to identify patches of suitable habitat and link projections to meta-population

dynamic models that considered habitat patch occupancy and extinction risk. This model was

then used to assess extinction risk under the GCMs as well as the impact of the direct loss of

habitat, where patches were randomly removed from the landscape. The influence of various

parameters was assessed using the RandomForest decision tree program. The model including all

climate variables produced the highest AUC score (0.802).

Binational climate change vulnerability assessment
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Results

From a multinational perspective, the CCVI enabled a basic CCVA for our focal migratory

birds, and allowed relevant information to be incorporated from Canada, US and Central

America into the CCVA (Table 2). The CCVI considered i) exposure of the species to climate

change within the breeding range, ii) indirect climate exposure resulting from human re-

sponses to climate change, iii) sensitivity to climate exposure and adaptive capacity, iv) an

exposure index for the overwintering grounds, v) modeled distributional changes (or changes

in climate envelope) expected under specific climate change scenarios, and vi) documented

responses (peer review) to climate change [38]. A concise assessment is provided here, and

details of the literature review to complete the CCVI assessment and the full CCVI table is pro-

vided in Section A and Table A in S1 File.

Some of the readily assessable data required to populate the CCVI table was restricted to

specific jurisdictions (Table 2). For example, to estimate moisture severity we used the Hamon

AET:PET moisture metric [22], which measures the moisture deficit between the 2050 time

horizon and the 1961–1990 baseline (ensemble GCM and medium A1B climate scenario) for

the continental US [23]. AET:PET values were taken from the packaged climate summaries

available on the CCVI site, and produced by the Climate Wizard development team [25, 39].

For the Canadian portion of the basin, however, we had to extrapolate values to estimate

approximate moisture deficit values. Approximately 53% of the basin is in Canada, and the

amount of extrapolation required differs among species. Approximately 25% of the hooded

warbler breeding range required extrapolated moisture change values, while close to 50% of

meadow lark and wood thrush required extrapolated values (and encompassed a much greater

area than the hooded warbler range). Patterns of moisture change were fairly homogenous on

the US side, so we assumed that they would be equally homogenous on the Canadian side. The

extrapolation was not precise and is subject to unquantifiable error, but provides an approxi-

mate estimate of how moisture conditions will change in the area.

Predictive temperature data required for the suggested GCMs and scenarios for CCVI were

available in GIS for only for the US portion of the basin, although the issue here may be related

to technical problems with web-based tools to generate data for a specific geographic area

rather than management decisions to restrict extent of data. To resolve this issue, we used pre-

dictive CC data that included both the US and Canadian portions of the basin, and that was

based on a mid-century (2050s), ensemble GCM and a medium emission scenario (RCP 4.5)

and is roughly equivalent to the CCVI suggested A1B scenario. An additional consideration

was GIS conversion of Celsius to Fahrenheit, as the North American predictive temperature

data we used was mapped in Celsius while the CCVI requires estimates in Fahrenheit. We had

no issues estimating the severity of the exposure to climate change in the southern US and

Central American overwintering grounds as all the necessary data was available at the CCVI

site [25].

The basic modeling frameworks, including species distribution (SDM) and vegetation

models varied among both jurisdictions and species (Table 1). Geographically, SDMs were

generally available for the entire breeding range, while more specific vegetation response mod-

els were largely restricted to the US portion of the basin. For eastern meadowlark both the

Canadian-based CC-QBD and US-based CC-TABA modeling frameworks were used to evalu-

ate changing climate envelopes and habitat. For the 2041–2070 time horizon the CC-QBD

SDM models predicted a net gain in habitat area resulting in a northward expansion of 307 km

from 1990 to 2070 (Fig 3), and 465 km by 2071–2100 horizon [32]. However, the grassland

habitats that eastern meadowlarks inhabit are unlikely to move northward as quickly, as the

northern region lies on the boreal shield, where grasslands are rare. In contrast, the CC-TABA

Binational climate change vulnerability assessment
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Table 2. CCVI1 scores for eastern meadowlark, wood thrush, and hooded warbler in the Great Lakes Basin (GLB).

Vulnerability Indices Specific questions Eastern

Meadowlark

Wood Thrush Hooded

Warbler

Section A: Exposure to Local Climate

Change

Temperature: Severity (% of GLB) What percentage of the breeding range will

experience a small to large increase in temperature?

>6.0˚ F warmer 0 0 0

5.6–6.0˚ F warmer 0 0 0

5.1–5.5 ˚ F warmer 10 10 0

4.5–5.0 ˚ F warmer 80 80 50

3.9–4.4 ˚ F warmer 10 10 50

<3.9 ˚ F warmer 0 0 0

Hamon AET:PET Moisture Metric: Severity

(% of GLB)

What percentage of the breeding range will

experience a small to large increase in drier

conditions?

<-0.119 0 0 0

-0.097–-0.119 0 0 0

-0.074–-0.096 20 20 50

-0.051–-0.073 60 55 50

-0.028–-0.050 20 20 0

>-0.028 0 5 0

Migratory Exposure—Climate Change

Exposure Index: Severity (% of GLB)

What percentage of the over-wintering range will

experience a small to large increase in temperature?

>7 85 85 80

6–7 10 10 10

4–5 5 5 10

<4 0 0 0

Section B: Indirect Exposure to Climate

Change

2) Distribution to

a) Natural Barriers

How will the effect of climate on natural barriers to

range shifts (e.g., presence of prairie habitat)

influence vulnerability?

Increase

3) Predicted impact of land use changes

resulting from human responses to climate

change.

How will landuse change, such as spring farming

practices, affect vulnerability?

Increase

C. Sensitivity and Adaptive Capacity

Factors

ii) physiological hydrological niche. How will changes to a specific hydrologic regime (e.g.

prairie soil moisture) affect vulnerability?

Increase/

Somewhat

Increase

c) Dependence on a specific disturbance

regime likely to be impacted by climate

change.

How will an increased fire rate affect vulnerability? Increase

4) Interspecific interactions

a) Dependence on other species to

generate required habitat.

How will climate effects on availability of specific tree

species affect vulnerability?

Increase/

Somewhat

Increase

Increase Somewhat

increase

b) Dietary versatility (animals only). For birds with specific diets, how will climate change

affect food supply and their vulnerability?

Increase

e) Sensitivity to pathogens or natural

enemies.

How will changes to the prevalence of pathogens that

attack specific tree species affect vulnerability?

Increase Somewhat

increase

c) Reproductive system

(Continued )
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models predicted a decrease in abundance in the western part of the eastern meadowlark

range by 2100 and do not predict any movement in the core of the range or northern expan-

sion [27, 28]. Model predictions encompassed the eastern US, but did not include any

Table 2. (Continued)

Vulnerability Indices Specific questions Eastern

Meadowlark

Wood Thrush Hooded

Warbler

6) Phenological response to changing

seasonal temperature and precipitation

dynamics.

How will a species’ inability to change its breeding

arrival dates and behavior affect vulnerability?

Increase/

Somewhat

Increase

Increase Somewhat

Increase

Section D: Documented or Modeled

Response to Climate Change

2) Modeled future (2050) change in

population or range size

If published SDMs predict changes to population size

or range size, how will this affect vulnerability?

Increase Increase Somewhat

increase

3) Overlap of modeled future (2050) range

with current range

If overlap of predicted future range and current range

changes, how will this affect vulnerability?

Somewhat

Increase

Somewhat

Increase

Somewhat

increase

4) Occurrence of protected areas in

modeled future (2050) distribution

How will the presence of parks and refuges in the

predicted future range affect vulnerability?

Neutral

Vulnerability to Climate Change Scores

Climate Change Vulnerability Index (CCVI) Highly Vulnerable Highly

Vulnerable

Less

Vulnerable

Confidence in Vulnerability Score Very High Very High Very High

Climate Exposure in Migratory Range High High High

Conservation Concern

COSEWIC (National—Canada) Threatened Threatened Not at Risk

SARA (Ontario) Threatened Special

Concern

Special

Concern

NatureServe G-rank (Global) Secure Secure Secure

1. Detailed explanation of variables provided in the CCVI spreadsheet [38]. Only values that were scored we included in this table.

doi:10.1371/journal.pone.0172668.t002

Fig 3. Climate niche model for eastern meadowlark; A. modeled current distribution (probabilities of occurrence; 1961–1990); B. potential distribution

change (2041–2070); C. potential distribution change (2071–2100) (from CC-QBD–Berteaux et al. [40]).

doi:10.1371/journal.pone.0172668.g003
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predictions north of the border due to a lack of climate-vegetation modeling in Canada. The

overall CCVI score for meadowlark was highly vulnerable (Table 2).

Wood thrushes are mature forest species found in mixed wood and deciduous forests, often

preferring previously disturbed sites [41]. They nest in interior edges [42], selecting deciduous

trees such as American beech (Fagus grandifolia), American elm, and red maple (Acer rubrum)

for nesting [43]. For wood thrush the CC-QBD model predicts a range expansion with an

increase in habitat area by 25.5%, a northward range expansion of 28 km/decade for an overall

range extension of 304 km by 2041–2070 (Fig 4) with an additional 119 km by 2071–2100 [32].

However, the deciduous trees that wood thrushes select for nesting are unlikely to move north-

ward as quickly. The northern range limit lies on the boreal shield, where nesting tree species

such as American elm, American beech and red maple are rare. In contrast, the US-specific

CC-TABA CC-vegetation models predicted a decrease in abundance in the western and south-

ern parts of the wood thrush range [28]. The top predictors in this model were red maple dis-

tribution, annual precipitation, American beech distribution, American elm distribution, and

the mean difference between July and January temperatures [27]. Given the jurisdictional

boundary of the modeling, it is difficult to extrapolate the changes at the northern range limit

into Canada; however, current research suggests that American beech may decline throughout

its range across eastern US, while American elm may increase within the northern extent of its

range across the northern US [31]. The overall CCVI score was highly vulnerable (Table 2) for

wood thrush.

Hooded warblers breed from southern Ontario east to Rhode Island, south through north-

ern Florida, and across the Gulf Coast through northeastern Texas [44] (Fig 5). These birds

breed in mature forest that has gaps or openings where early successional vegetation grows.

Within the Great Lakes, hooded warblers are found only in the basins of Lake Michigan,

Lake Erie, and Lake Ontario. Hooded warblers occupy deciduous forest stands dominated by

maple, American beech, and oak (Quercus spp.) [44]. For hooded warbler all three modeling

frameworks predicted northern expansion in range in relation to different climate scenarios.

Fig 4. Climate niche model for wood thrush; A. modeled current distribution (probabilities of occurrence; 1961–1990); B. potential distribution change

(2041–2070); C. potential distribution change (2071–2100), (from CC-QBD–Berteaux et al. [40]).

doi:10.1371/journal.pone.0172668.g004
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The Canadian CC-QBD models predicted a range expansion with an increase in habitat area

by 28.6%, a northward range expansion of 34 km/decade for an overall range expansion of 378

km [32] by 2041–2070, and a further 156 km expansion by 2071–2100 (Fig 5). The US CC-

TABA model predicts a decrease in abundance in the southern part of the hooded warbler

range and an increase in the northern US part of their range through the eastern seaboard as

well as northern Minnesota, northern Wisconsin, and Michigan, including the upper penin-

sula [27].

For hooded warbler only, the coupled species distribution—metapopulation dynamics

model (CC-SDM/MPD) offered additional insights related to uncertainty based on choice of

GCM and demographic parameter uncertainty. This modeling effort was applied to the entire

Great Lakes Basin, so extrapolation of results across jurisdictional boundaries was not neces-

sary. The researchers found that interpretations of vulnerability were influenced in part by the

particular GCM selected for modeling climate change, but that vulnerability was also strongly

affected by habitat loss. These results point to concerns with using alternative GCMs or emis-

sion scenarios to estimate temperature and to the inadequacy of using only climate based pre-

dictions and not accounting for habitat change. The overall CCVI score was less vulnerable

(Table 2) for hooded warbler.

Discussion

We utilized three modeling frameworks, in conjunction with NatureServe’s CCVI, to assess

the whether current tools and geographic extent of data are sufficient to conduct CCVAs for

migratory birds in the Great Lakes Basin. Our study indicated current modeling efforts are in

some cases restricted by jurisdictional boundaries; this impedes vulnerability assessments by

necessitating extrapolations to complete the CCVI. For species that are already experiencing

population and habitat declines, conservation planning and research efforts should include a

coordinated binational approach to ensure that conservation strategies are effective and suit-

able for those species that are most vulnerable to climate change.

Fig 5. Climate niche model for hooded warbler; A. modeled current distribution (probabilities of occurrence; 1961–1990); B. potential distribution change

(2041–2070); C. potential distribution change (2071–2100), (from CC-QBD–Berteaux et al. [40]).

doi:10.1371/journal.pone.0172668.g005
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We discovered several impediments to assessing the impacts of climate change on avian

species and jurisdictional shifts, including border-related data gaps in climate exposure param-

eters, as well as modeling frameworks and a lack of examination of critical habitat factors.

Despite these impediments, we were able to use the CCVI to identify that eastern meadowlark

and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnera-

ble. Our results support previous research that highlights the importance of understanding the

individuality of species’ vulnerability to climate change to appropriately inform conservation

efforts [8, 45, 46]. Modeling frameworks that integrate critical habitat factors extend the con-

cept of the climatic envelope into a bioclimatic envelope of necessary conditions, and conse-

quently better define the fundamental niche. All three modeling frameworks included SDMs

(or climate envelopes) and were based on current climatic correlations with current species

distribution.

Two of the modeling frameworks, CC-TABA and CC-QBD, provided online interactive

mapping functions, and this greatly aided the ability to explore changes in predicted distribu-

tion and abundance. However, differences in model output, including base GCMS and catego-

rization of predicted presence and absence made direct comparison difficult. CC-TABA

provided a richer set of interactive maps overall, including predicted tree distribution, but

mapping was restricted to the US portion of the basin.

While bird SDMs are a valuable first step [8, 32, 34], they do not explicitly consider other

critical habitat factors, such as distribution of edaphic conditions required to support habitat

producing species (e.g., specific tree species such as Beech or specific ecosystem types such as

tallgrass prairies). For example, the CC-TABA model provided predicted distributional infor-

mation for tree habitat species, and thus contributed knowledge on the predicted future avail-

ability of critical habitat. A risk of not including the biotic habitat component is an overly

optimistic view of how the species could respond to a shifting climatic regime. The three

modeling frameworks we used all included biotic habitat components, but these habitat com-

ponents often did not extend into the Canadian/Ontario component of the Great Lakes Basin,

so generalizations or spatial extrapolations had to be made for the assessment. The SDM com-

ponents for birds were always based on NA-BBS data, an easily accessible binational dataset on

bird distribution, but similar data (or modeling effort) was not available for tree distribution

and other biotic factors. As a result, the climate envelope and habitat envelope were not well

integrated into a single bioclimatic envelope. Iverson et al. [29] provide a useful review of

opportunities and lessons for integrating habitat, disturbance and life-history traits into these

distributional models.

One of the modeling frameworks (CC-SDM/MPD) coupled a SDM to a meta-population

dynamic model, and we found this particularly interesting [34]. This model was used to assess

landscape and habitat level responses specific to hooded warbler, and thereby added a dimen-

sion of realism to the CCVA by better estimating the realized niche response. While intensive

to produce, process-based models may better estimate responses to future conditions that exist

outside the domain of measured current and historical responses to climate change factors [9].

This model showed that habitat loss, as modeled by random patch removal, had a significant

impact on extinction risk for this species.

NatureServe’s index explicitly considers factors such as climate exposure, adaptive capacity

relevant to migratory birds, and modeled species distribution changes. However, the applica-

tion of the CCVI required careful consideration of each factor as it may be entered in several

places. For example, northern expansion of eastern meadowlark is restricted in some areas due

the presence of boreal shield, which in turn is a barrier to expansion of prairie grasslands. This

could be considered under dispersal and movement (of grasslands), dependence on other

(grassland) species, disturbance regime (to maintain grasslands), distribution relative to

Binational climate change vulnerability assessment
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natural barriers (boreal shield), and restriction to uncommon geological features or derivatives

(grassland edaphic conditions). We decided this was an indirect factor (as presence of boreal

shield is itself uninfluenced by climate), and that the factor was a barrier to climate-induced

range expansion rather than a modifier expressing sensitivity or adaptive capacity of the spe-

cies. Of the diverse group of climate related responses we discovered through our literature

review for the 3 focal species, no factor was left unaddressed by the CCVI. We should note,

however, that the environmental effect of climate change on the breeding grounds, phenology,

and habitat can be quite different than those on the wintering grounds [2].The index helps in

application of critical thought to the vulnerability review process, and with careful application,

we would expect results to be consistent and repeatable among different reviewers.

Our study revealed impediments to assessing and modeling vulnerability to climate change

from a binational perspective for the whole of the Great Lakes Basin. For almost every climate

exposure parameter considered there were gaps in data or modeling. In some cases models did

not exist for Canada (e.g., Hamon moisture metric[22]), and in other cases data was difficult

to access because of broken web-links or issues with automated mapping. Best guess extrapola-

tions were used where data was lacking in the Canadian watersheds. Improving ClimateWi-

zard’s packaged climate data [39] to enable easy extraction of Canada and Central American

GIS data would eliminate this impediment. Cross-border conservation efforts can be hindered

by cutting model outputs at the international border. In general, we recommend increased

cross-border collaboration, particularly in the Great Lakes Basin, to enhance the availability

and resources needed to improve vulnerability assessments and development of conservation

planning and monitoring strategies.

The focal species we selected are all within the northern periphery of their geographic

ranges, where habitat amount and quality is lower than in the core of their range [47]. The

jurisdictional responsibility for Canada is currently very low (0–1) for these species [48], but

our vulnerability assessment suggests a future increase in responsibility for the Canadian Prov-

inces, perhaps to levels 2–3 based on the priority setting tool [7]. Canadian Provinces should

consider conservation planning for using these and other focal species to help ensure supply of

future habitat conditions that are suitable for these species. This would likely involve collabora-

tion among resource agencies (e.g., Ontario Ministry of Natural Resources and Forestry, Cana-

dian Wildlife Service, and US Fish and Wildlife Service) from both nations.

Supporting information
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