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In this position paper, we submit a synthesis of theoretical models based on physiology,

non-equilibrium thermodynamics, and non-linear time-series analysis. Based on an

understanding of the human organism as a system of interconnected complex

adaptive systems, we seek to examine the relationship between health, complexity,

variability, and entropy production, as it might be useful to help understand aging,

and improve care for patients. We observe the trajectory of life is characterized by

the growth, plateauing and subsequent loss of adaptive function of organ systems,

associated with loss of functioning and coordination of systems. Understanding

development and aging requires the examination of interdependence among these

organ systems. Increasing evidence suggests network interconnectedness and

complexity can be captured/measured/associated with the degree and complexity

of healthy biologic rhythm variability (e.g., heart and respiratory rate variability). We

review physiological mechanisms linking the omics, arousal/stress systems, immune

function, and mitochondrial bioenergetics; highlighting their interdependence in normal

physiological function and aging. We argue that aging, known to be characterized by a

loss of variability, is manifested at multiple scales, within functional units at the small scale,

and reflected by diagnostic features at the larger scale. While still controversial and under

investigation, it appears conceivable that the integrity of whole body complexity may be,

at least partially, reflected in the degree and variability of intrinsic biologic rhythms, which

we believe are related to overall system complexity that may be a defining feature of

health and it’s loss through aging. Harnessing this information for the development of

therapeutic and preventative strategies may hold an opportunity to significantly improve

the health of our patients across the trajectory of life.

Keywords: aging, heart rate variability, psychoneuroimmunology, inflammation, bioenergetics, mitochondria,

physiological networks

Introduction

From conception to death, the trajectory of life can be described as a period of growth, plateau,
and decline. In this paper, we seek to explore associations between domains of investigation not
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typically evaluated together to uncover new understanding.
Taking a holistic view of the human organism as a non-
equilibrium system, we seek to better understand this trajectory
by exploring the relationship of physiological complexity and
entropy production over time (Figure 1) (Seely and Christou,
2000; Que et al., 2001; Aoki, 2012; Topolski and Sturmberg,
2014). Healthy internal order (negative entropy), including
the complex interactions between organ systems, is only
made possible if the organism excretes a greater amount of
entropy to the environment, which we accomplish largely by
burning oxygen. We believe internal order, functional ability
and system complexity all increase along with whole body
entropy production from conception throughout childhood into
early adulthood during the period of growth and development,
however there comes a point when physiological complexity,
functional ability and entropy productions decrease, at first
slowly, and then more abruptly during aging and illness.
Illness occurs stochastically, resulting in sharp drops along
this curve. Distinct from entropy production (which is the
measurable flow of energy through the human organism leading
to oxygen consumption and carbon dioxide production), whole
body entropy content (total amount of entropy, which is not
measurable, inversely related to order and healthy function)
decreases through growth (Aoki, 2012), and increases through
aging, until rising entropy ultimately becomes incompatible with
life and death ensures (Hayflick, 2000; Lipsitz, 2002). Further
discussion regarding the multiple definitions of entropy and
entropy production may be found here (Seely and Macklem,
2012).

The loss of complexity hypothesis of aging postulates
that aging is associated with loss of dynamic range or
variability in physiological functions; resulting from either
the loss or impairment of functional components and/or
their non-linear coupling (Lipsitz and Goldberger, 1992;
Manor and Lipsitz, 2013). In general terms, this loss of
physiological variability results in a reduced adaptive capacity

FIGURE 1 | Conceptual model of the relationship between

complexity (functional ability) and entropy across the lifespan.

Illness results in sudden increase of entropy which will be reduced with

recuperation. The loss of complexity is associated with an increase in

entropy; when entropy reaches the threshold of viability (dotted line),

death occurs.

(Lipsitz and Goldberger, 1992; Manor and Lipsitz, 2013). In
particular, the loss of complexity in resting dynamics has been
postulated to impair reactive adaptive responses (Lipsitz, 2002).
However, adaptation is also affected by task demands and/or
environmental constraints which have shown bidirectional
changes in complexity in relation to manual tasks (Manor and
Lipsitz, 2013). Healthy behavior and function of the organism
therefore depends upon physiological inter-dependent dynamic
interactions among organ systems, leading to highly complex
variations that reflect a healthy adaptive system.

Consequently health and disease can no longer be simply
defined in dichotomous terms—present or absent; it is
continuously redefined as people adapt to changing functional
abilities throughout the spectrum of life. Health in subjective
and objective terms occurs within a homeostatic/homeokinetic
range that allows “normal function” on a day-to-day basis (Que
et al., 2001; Nicolini et al., 2012). In physiological terms the
homeostatic/homeokinetic range may be characterized by organ
system variability characteristics. Variability is defined as patterns
of variation over intervals-in-time, measured by numerous
techniques all calculating attributes to the degree and character
of variation (e.g., time- and frequency-domain techniques,
detrended fluctuation analysis, sample entropy analysis, or
standard deviation, to name a few). Remarkably, biologic
variation demonstrates multi-scale self-similar correlation (i.e.,
fractal patterns), measured with a scaling index whose slope α

ranges between >0.5 and <1.0 (Kaplan et al., 1991). In addition
to fractal correlation, loss of degree or complexity of variability of
a smaller or larger degree usually defines phenotypical patterns of
disease as initially described by Goldberger and West in relation
to heart rate variability (Goldberger and West, 1987; Goldberger,
1996). However, one limitation of these studies is the lack of
understanding the temporal relationships between the normal
and abnormal variability patterns throughout the trajectory of
life as described in Figure 1, and how such understanding could
help in managing patients in a variety of clinical scenarios in a
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more timely fashion. This is a particular concern in relation to
the physiological variability characteristics near the end of life’s
trajectory when illness may occur involving more than a single
organ “malfunction.”

It is noteworthy that words such as variability, complexity,
fractals, and entropy are confusing and merit clear definitions.
Here we define variability analysis as all measures that reflect
degree and character of variation over intervals in time. We
distinguish between system complexity, which remains a still
poorly defined concept that we simply hypothesize is connected
to health, and time-series complexity, which is measured by
several mathematical measures of the degree of irregularity
and information as well as its fractal characteristics contained
in a time series (e.g., inter-beat interval time-series measured
continuously for 5min). Fractals are scale-free self-similar
structures in either time or space. For example, as discussed
below, healthy heart rate variability is found to be increased
in degree, highly complex, and contains fractal properties;
all are measured using separate variability analysis metrics.
Entropy production is the entropy (heat production divided by
temperature) produced per unit time by the human organism,
which is required to sustain vibrant internal order and health.

In this contribution to the special theme edition of Frontiers
in Physiology we allude to the various network functions of the
human organism by (1) discussion of the “omics,” arousal/stress
systems and immune function, and bioenergetics, (2) show their
key interconnections, and (3) suggest that aging is characterized
by a loss of variability within functional units at the small scale
which are reflected by diagnostic features at the larger scale.
Based on these insights we propose an approach to explore the
temporal patterns of aging changes through heart and respiratory
rate variability (HRV and RRV), gait variability, neuroendocrine-
immune communication, and mitochondrial bioenergetics.

Interconnected Physiological Function

Until now we have been taught to understand the body through
the function of its organ systems as distinct operational units.
Whilst this has been and continues to be essential to diagnose
and manage illness, it fails to appreciate and address the simple
fact that these units consist of networks that function in a highly
interconnected fashion; thus change in any part of the network
affects all other functional components.

Largely as a means to simplify, classify and explain
whole body complexity, textbooks still describe physiologic
function predominantly from a large scale perspective, organized
according to operational units like the cardiovascular or
neurological systems and so forth. This limiting perspective fails
to appreciate the importance of small scale network interactions
as the drivers of large scale phenotypical appearances. Small
scale physiological and molecular networks, through their
interconnected interdependencies, thus contribute to normal and
abnormal organ system function.

Physiological Networks

We focus on genes and their related transcriptional and
proteomic networks. We examine how arousal/stress systems

influence inflammatory networks and the bioenergetics networks
of mitochondria as well as how inflammation and mitochondrial
bioenergetics affect the arousal/stress systems.

Genome, Transcriptome, Proteome, and
Metabolome Networks

Rarely is a gene responsible for a particular disease outcome.
Instead, health and disease outcomes result from the interaction
of many genes, i.e., diseases arise from genome interactions
(Noble, 2011). Goh et al. (2007) mapped the phenotypic
appearance of human disease—the disease phenome—and the
underlying disease gene networks—the disease genome. These
maps reveal important genome linked diseases and have clarified
how and why certain diseases frequently form clusters within the
same person.

The expression of the >25,000 genes that compose the
human genome is regulated by several external factors that
converge on gene regulatory pathways (Komili and Silver,
2008). These pathways entail specific transcription factors
and chromatin-modifying epigenetic processes that activate
or repress downstream genes (Portela and Esteller, 2010).
This results in varying amounts of messenger RNA (mRNA)
transcripts corresponding to different genes—the transcriptome.
The transcriptome is processed [e.g., by alternative splicing
(Luco et al., 2011)] and translated into proteins that collectively
compose the proteome. Proteins then carry out all molecular and
enzymatic activities, including those within mitochondria, that
transform metabolic substrates into various metabolites (i.e., the
metabolome) that also contribute to gene regulatory networks
(Gut and Verdin, 2013) (Figure 2).

Thus, the genome, transcriptome, proteome and metabolome
collectively give rise to cell functions and dysfunctions,
underlying the development of pathophysiology. Common
disease states are reflected at these different levels, including
diabetes (Mootha et al., 2003; Wang et al., 2011), and other
complex disease states such as Parkinson’s disease, cancer,
dementia and premature aging (Li et al., 2014). For example,
the pathophysiological state leading to memory impairment
is detectable in the metabolome and predicts later disease
development (Mapstone et al., 2014). It is therefore relevant to
understand how environmental factors influence these cellular
networks by the activation of pleiotropic arousal systems and
mitochondrial bioenergetics.

Arousal and Stress Networks: Getting
Under the Skin

The external environment influences health through the brain’s
perception of the situational demands and learned or experiential
skills to manage them (Lazarus and Folkman, 1984). If a situation
requires more than the perceived ability to cope, then the
nervous system sets into action a series of events enabling the
body to overcome the excessive need. The sympathetic adrenal-
medullary (SAM) and the hypothalamic-pituitary-adrenal (HPA)
axes activate to support the behaviors that the brain perceived
necessary to succeed or survive in a given situation. The
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FIGURE 2 | Regulatory cycle linking the omics of life. The genome

comprises the totality of genes within an organism, which constitute

the blueprint for the transcriptome, whose translation leads to proteins

that accomplish enzymatic functions including bioenergetics

transformations that consume and produce metabolites constituting the

metabolome. In turn, gene transcripts, proteins and metabolites all

impact expression genetic elements via dynamic processes subject to

regulation.

SAM-axis floods the body with norepinephrine and epinephrine
through endocrine and neural pathways, while the HPA-axis
elevates hormones such as the corticotropin releasing hormone,
adrenocorticotropin hormone, and cortisol (Bennett et al.,
2013b) (Figure 3). These neuroendocrine hormones have a
wide array of effects throughout the body; thus, providing the
functional link between the external environment and overall
health via the internal response to the perceived challenges or
threats.

Of particular importance is how these neuroendocrine
mediators impact immune cell function; influencing gene
regulation and the cascade of transcriptome, proteome
and metabolome function. For example, epinephrine and
norepinephrine promote nuclear factor-kappa B (NF-κB)
activation (Black, 2002; Bierhaus et al., 2003). NF-κB is a
transcription factor that regulates gene expression of several
proinflammatory mediators, such as IL-6 and IL-8, and enhances
inflammation (Bierhaus et al., 2003). Cortisol can inhibit immune
cell activity by binding to glucocorticoid receptors; this process
inhibits activation and release of proinflammatory cytokines
via inhibition of NF-κB (Barnes, 1998). However, chronic stress
can lead to hippocampal damage and HPA axis dysregulation
resulting in uncontrolled cortisol production (Sapolsky et al.,
1985); immune cells downregulate expression of glucocorticoid
receptors when exposed chronically to cortisol (Webster
et al., 2002). As a result, chronic stress exposure can increase
inflammation due to unregulated immune cells producing
proinflammatory cytokines. Acetylcholine, the neurotransmitter
of the parasympathetic nervous system (PNS), can decrease
NF-κB activity via nicotinic acetylcholinergic receptors;

resulting in reduced immune cell activity (Tracey, 2007). Thus,
chronic stress/arousal leads to increased inflammation via
diminished sensitivity to cortisol and excessive activation of the
sympathetic nervous system (SNS) which suppresses the PNS
and acetylcholine release.

It is through these arousal and stress responses that the
external environment influences the internal physiological
networks. Chronically, activation of the SAM and HPA-axes as
well as elevated inflammation is linked to non-communicable
diseases like cardiovascular disease, type 2 diabetes, depression,
and osteoporosis (Bennett et al., 2013a). Chronic activation of
the SAM and HPA-axes leads to tonic elevation in basal state
and a loss of the ability to augment stress responses; leading to a
loss in the network variability (and complexity of variability) and
linked to disease, poor prognosis, and possibly accelerated aging
(Bennett et al., 2013a).

Immunosenescence, the natural decline in variability
of the adaptive immune system and increased activity of
innate immunity (i.e., inflammation), occurs as the immune
system ages (Franceschi et al., 2000; Fulop et al., 2010).
For example, compromised cellular control of multiple
herpesviruses has been linked to elevated inflammation
(Bennett et al., 2012); suggesting that reduced adaptability
of cellular immunity can fuel systemic inflammatory mediators.
Elevated inflammation has independently been associated
with age and frailty, morbidity, and mortality in elderly adults
(Bennett et al., 2013a). The arousal and stress systems modify
gene expression and cell functionality and these changes
influence performance of the stress systems including the
autonomic nervous system. Thus, examining the performance
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FIGURE 3 | Activation of arousal/stress systems—the

autonomic nervous system and hypothalamic-pituitary-adrenal

axis—has complex interconnections among the heart,

immune cells, mitochondria, and gene expression that can

also have modulating effects on the arousal/stress system

activation. Red bolt depicts internal and external stressors.

CRH, corticotropin releasing hormone; ACTH, adrenocorticotropin

hormone; SNS, sympathetic nervous system; INFα,

interferon-alpha; INFβ, interferon-beta; IL, interleukin; TNF, tumor

necrosis factor.

of adaptive and innate immunity and arousal/stress systems
may provide a better estimate of the body’s overall loss in fractal
complexity.

Mitochondrial Bioenergetics

Mitochondria are symbiotic organelles producing the majority
of cellular energy required for normal function. In evolution,
approximately 1.5 billion years ago, the ancestor of today’s

eukaryotic cell engulfed a bacterium with the capacity to
use oxygen for energy production, which later evolved as
mitochondria (Sagan, 1967). The symbiotic relationship that
emerged, with a newly acquired ability to make large amount
of energy through aerobic metabolism, was a critical point
that enabled the evolution of complex genomes and life forms
(Lane and Martin, 2010; Wallace, 2010). For this and other
reasons, abnormal mitochondrial bioenergetics can cause death
in infancy or severe multisystemic pediatric and adult diseases
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(Koopman et al., 2012). From this symbiotic relationship, cells
have therefore acquired particular sensitivity to bioenergetics
signals from mitochondria.

The maintenance of physiological parameters within
homeostatic/homeokinetic ranges requires continuous flux of
energy. The maintenance of cell membrane potential, gene
expression, protein and hormone biosynthesis, secretion, heart
and muscle contraction, digestion and breathing are all processes
requiring constant energy input in the form of adenosine
triphosphate (ATP). Because mitochondria are the major
source of cellular ATP, they are understood to maintain health by
enabling cellular functions, and by determining adaptive capacity
(Manoli et al., 2007). Whereas in humans mitochondrial defects
predominantly affect the same organs (e.g., heart, muscles,
and the brain) that preferentially decline with aging (Wallace,
2005); in animal models the accumulation of mitochondrial
DNA (mtDNA) mutations that erode mitochondrial function
accelerates the biological aging process (Trifunovic et al.,
2004; Kujoth et al., 2005; Safdar et al., 2011), indicating
their broad physiological effects of relevance to the aging
process.

Mitochondria are also endowed with the capacity to sense
neuroendocrine stress mediators and to produce signals of
adaptation (Picard et al., 2014a). For instance, the glucocorticoid
receptor (Lee et al., 2013) as well as other steroid hormone
receptors are present in mitochondria (Psarra and Sekeris, 2009).
The receptor activation by stress hormones influences mtDNA
gene expression for the energy-producing machinery (Psarra
and Sekeris, 2009). In turn, when their function is altered,
mitochondria release signals that trickle down to the nucleus
to influence expression of nuclear genes. For example, the
progressive increase in mtDNA mutation load in human cells
leads to dose-response changes in gene expression profiles, or
“transcriptional reprogramming” affecting the majority of the
human genome (Picard et al., 2014b). In fact, likely as a result
of mitochondria’s role in the evolution of eukaryotic cells, gene
expression is under the control of various metabolites derived
from mitochondrial function (Wallace and Fan, 2010; Gut and
Verdin, 2013). Mitochondria thus lie at the interface of the
neuroendocrine andmetabolic environment, and the plastic (epi)
genome that influence the aging trajectories (Picard, 2011).

Mitochondria are also linked to immune system activation
and inflammation (Koshiba et al., 2011; West et al., 2011).
Because the mtDNA is of bacterial origin, it is recognized as
foreign by the body if released. Its release during mitochondrial
damage can engage the immune system to promote inflammation
(Zhang et al., 2010; Shimada et al., 2012). More specifically,
mtDNA release from mitochondria exposed to oxidative stress
engages the inflammasome (Lu et al., 2014). But these
proinflammatory pathways can be blocked by acetylcholine,
underscoring the interplay of mitochondria and neuroendocrine
factors in response to stress (Lu et al., 2014).

Mitochondrial dysfunction can also influence SAM and HPA-
axes functionmore directly. For example, mtDNAmutations that
impair mitochondrial energy production lead to hyperactivation
of the SNS in response to mild physical stress, as evidenced by the
excessive epinephrine and norepinephrine secretion (Jeppesen

et al., 2009). In addition, mitochondrial oxidative stress due to
genetic defects of the mitochondrial antioxidant system leads
to adrenal cortex atrophy and hypocortisolemia (Meimaridou
et al., 2012). Both major stress response systems, the SAM and
HPA-axes, are therefore subject to modulation by mitochondrial
bioenergetics.

In summary, mitochondria are linked to other physiological
networks of adaptation via inflammatory processes, and the SAM
and HPA-axes. Mitochondrial bioenergetics also contributes to
immediate cellular adaptation by determining maximal energy
capacity and long-term by influencing gene expression patterns.
This organelle is therefore functionally positioned to contribute
to the age-related physiological decline via different inter-related
pathways.

Physiological Networks and Their Relation
to Health and Disease

Whilst we understand a great deal about the individual networks,
and have a reasonable yet incomplete appreciation of their
interdependencies, we have a limited understanding how these
system interactions relate to health and disease. Nevertheless,
viewing health and disease as functional consequences of
small scale network functions and dysfunctions—maintaining
or crossing homeostatic/homeokinetic boundaries—demands
a very different way of thinking and managing a person’s
complaint. Ideally clinicians would only “nudge” these networks
along to maintain their physiological homeostatic/homeokinetic
range—narrowing with age—to achieve an optimal balance
between ever decreasing physiological complexity and ever
increasing entropy (Figure 1). This concept has not yet been
explored in the literature.

Clinicians usually have to make pragmatic decisions at the
time of the consultation and rely on the large scale characteristics
(or phenotypic appearances) of disease/s. Given that the human
body functions as a multi-scale entity it would be useful to
rely on easily obtainable large scale measure/s of the underlying
small scale network dys/function. Along those lines, in the social
sciences, the highly inclusive and subjective measure of self-
rated health (SRH) has been validated as an effective predictor of
future health outcomes including mortality (Benyamini, 2011).
More interestingly, SRH is a more valid health indicator than the
combination of several objective biomarkers and sophisticated
subjective constructs (Picard et al., 2013). Such a large-scale
physiological measure of a system’s complexity would provide
a true reflection of the person’s current state (rather than being
“another” surrogate).

The measurement of variability of physiological parameters
provides an indication of the overall function of the person.
For example, Goldberger (1996) showed that the sinus wave
pattern of heart rate variability (HRV) is associated with severe
system dysfunction, and Bravi et al. (2012) demonstrated that
the onset of sepsis in immune compromised patients is preceded
by a progressive loss of inter beat HRV starting 60 h before
its clinical diagnosis. We also have good evidence that specific
medical conditions are associated with changes in their respective
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variability characteristics, like Parkinson’s and Huntington’s
disease, Cushing’s disease, diabetes, mental illness etc. (Sturmberg
and West, 2013).

Variability Changes Across the Life
Span—the Trajectory of Decline with and
Without Overt Disease

Most aging people manage life well in spite of declining
physiological stability. Clinically we see people age at different
rates and in different patterns that can be categorized as
symmetrical, where loss of function in all networks results in
generalized frailty, or asymmetrical, where loss in one particular
network—heart, kidneys, vision or memory—precedes that of all
others.

Physiological functionality occurs within a
homeostatic/homeokinetic range. These ranges of variability
have not yet been clearly defined for healthy young volunteers,
and are even less quantified regarding the changing patterns
of homeostatic/homeokinetic ranges during growth and
development or aging. Bioenergetic function, indexed by the
body’s maximal oxygen consumption capacity, experiences
a steady decline with aging, which may underlie differential
“pathways to aging” (Picard, 2011). Clinical experience
shows that homeostatic/homeokinetic ranges are markedly
different in the elderly, e.g., lowering blood pressure to
“young adult” normal ranges is very frequently associated
with lethargy, reduced cognitive function and falls secondary
to cerebral hypo-perfusion (Mallery et al., 2014; Mossello
et al., 2015; Sabayan and Westendorp, 2015)—stiffer vessels
require a higher pressure to deliver the same amount of
blood/oxygen, and older people with diabetes often experience
hypoglycemic symptoms with even “high normal young
adult” blood sugar readings (Lipska et al., 2014). These
observations would indicate that homeostatic/homeokinetic
ranges shift with aging to the right, or the width of the range may
reduce.

Variability and Health and Illness

In health, variability measures show a high degree of variation
and complexity, whereas illness is characterized by a variable
losing its variability and complexity (Seely and Macklem, 2004).
The magnitude of loss of variability correlates with the severity of
the illness. Aging is associated with a general loss of complexity
in physiological functioning involving all organ systems (Lipsitz
and Goldberger, 1992; Vaillancourt and Newell, 2002). Whilst
clinically healthy elderly show loss in variability, its degree
is distinctively different to that seen in disease (Goldberger
et al., 2002) as exemplified in Figure 4 for heart rate and gait
variability.

Heart Rate Variability

We believe that HRV may be utilized as an indicator
of autonomic modulation, inter-organ coupling and overall

system adaptability. High variability (including both degree and
complexity of variation) is a sign of adaptability and health,
whereas lower variability is a sign of inadequate adaptability
and an indicator of physiological dysfunction. Such dysfunction
can be caused by specific diseases, but also is an indicator of
risk of adverse outcomes in otherwise clinically healthy people.
Autonomic regulation, as reflected in HRV, is a vital mechanism
for maintaining health (Pumprla et al., 2002). However, as
Nicolini et al. (2012) pointed out, the concept of HRV may be
viewed as a reflection of autonomic modulation of the system wide
adaptive processes affecting all organ systems, where autonomic
regulation results from multiple feedback loops of all other
regulatory systems (Figure 3).

Beat to beat variation is regulated by parasympathetic
synaptic acetylcholine and sympathetic synaptic norepinephrine
release. Acetylcholine has a very short latency period and
high reabsorption rate, and results in slowing of the heart
rate. Norepinephrine in contrast is reabsorbed more slowly
and results in increasing of the heart rate. The dynamics of
the parasympathetic and sympathetic nervous system show
different frequencies and can be identified in the HRV spectrum;
higher frequency indicates parasympathetic, and low frequency
sympathetic dominance (Nicolini et al., 2012).

Of note, the rapid control of heart rate is mediated by the
parasympathetic pathway (Nicolini et al., 2012). In addition, the
modulation of HRV through the autonomic nervous system itself
is influenced by neuroendocrine feedback loops as shown in
Figure 3. Adrenal stimulation by internal or external stressors
increases adrenergic surges promoting proinflammatory activity.
Disease processes result in the increase of inflammatory
cytokines, which in turn activate the SAM and HPA-axes.

The Prognostic Value of HRV

A fine-tuned highly adaptive system shows high degree
of variation, highly complex variation, including fractal-like
properties; and loss of degree and complexity of variation is
associated with emerging pathology (Nicolini et al., 2012). In this
context HRV has emerged as a robust and sensitive indicator
of overall physiological functioning (Nicolini et al., 2012); HRV
decreases with any disease, even those unrelated to heart disease
(Tsuji et al., 1994; Dekker et al., 2000; Pumprla et al., 2002;
Galluzzi et al., 2009; Stein et al., 2009; De Vilhena Toledo
and Junqueira, 2010; Kemp et al., 2012; Nicolini et al., 2012;
Madhavi and Ananth, 2013; Soares et al., 2013; Adlan et al., 2014;
Harnod et al., 2014; Masel et al., 2014; De Couck and Gidron,
2013), and greater HRV decrease is a prognostic indicator of
all-cause mortality (Tsuji et al., 1994; Mouton et al., 2012;
Nicolini et al., 2012; De Couck and Gidron, 2013). Equally, HRV
improvement is associated with improvement in disease states
(Pumprla et al., 2002). Sometimes criticized for being overly
sensitive, HRV, whilst not diagnostic of specific diseases, is a
powerful indicator of altered health states (Madhavi and Ananth,
2013). Interestingly, a dose-response relationship exists between
HRV and SRH, also considered to be a marker of general health
(Jarczok et al., 2015).
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FIGURE 4 | Heart rate (left panel) shows the “physiological” decrease

in HRV of an elderly person, however, it is greater than that of a

person with severe heart failure (note: in AF HRV is greater than that

of a health adult, not shown). Gait variability (right panel) shows the stride

variability over time of a young, elderly and a person with Huntington’s

disease. The plot of F(n) by log(n) of this non-linear time-series of gait reveals

the scaling exponent α which decreases with aging and is more pronounced

in disease.

The physiological changes associated with many diseases
directly influence HRV modulating feedback pathways and
explain Dekker and colleagues’ proposition that low HRV is
a general sign of poor health (although elevated HRV is seen
in heart diseases like AF) (Dekker et al., 2000). HRV thus is
a sensitive indicator of overall bodily function and could be
utilized more in general medical practice both as a diagnostic and
prognostic indicator.

Aging is a stochastic process and shows a high degree of
individual variability after the age of 30 (Hayflick, 2000) due to a
progressive loss of physiological reserve, and thus results in lower
adaptability to changing internal and external challenges. This is
observed also at the bioenergetics level, with an overall decline
in maximal oxygen consumption capacity (VO2max) (Hawkins
and Wiswell, 2003; Short et al., 2005; Kodama et al., 2009),
which is dictatedmainly bymitochondrial oxidative capacity (the
ability of mitochondria to use oxygen for energy production)
(Picard, 2011). Loss of mitochondrial oxidative capacity leads to
decreased ability to burn oxygen to carbon dioxide and produce
entropy (i.e., releasing it to the environment), thus inevitably
leading to a rise in internal entropy content. This loss of oxygen
consumption and entropy production affects both, the structure
and function of the system, and results in the narrowing of the
dynamic capacity to respond—the homeostatic/homeokinetic
range becomes restricted. As hypothesized previously, fractal
complex time series arise due to their proposed optimization
of entropy production, and the loss of fractal complexity
accompanies the loss of oxygen consumption and entropy
production (Seely and Macklem, 2012). In summary, whilst
ignoring the considerable complexities relating to standardized
measurement of variability, the accumulating evidence points to
the value of utilizing variability to track growth and development,
to provide a measure of health, and to monitor the aging process.

Whilst we know that aging is associated with HRV decrease
(Tsuji et al., 1994; Nicolini et al., 2012), reflecting the general
decline in physiological adaptability, especially of the immune,
bioenergetics and neuroendocrine components, we have so far
no understanding how these changes interact and progress over
time and might be driving disease development. To that end
we propose a research agenda that explores aging patterns by
following individuals over time. What is the relationship of HRV
and gait variability? How do HRV changes relate to changes of
SAM and HPA-axes or systemic inflammation and bioenergetics
function, and how does disease exacerbation and recuperation
change these markers? How do both degree and complexity
of HRV measures change correlate with oxygen consumption?
Such insights would enable doctors and patients to make
better shared decisions about ongoing care—independent of the
patient’s specific diseases—that best reflects personal aspirations
and medical possibilities, especially in the growing aging
population.

What is required to harness this information is to create
innovative bedside products using variability-derived prognostic
information about individual patients, which demonstrate
meaningful improvements to care in randomized controlled
trials. This is an arduous, expensive and time-consuming process,
and has been and remains a major barrier to bedside application.
However, it can be done. An example of this approach is
offered by the remarkable story of neonatal HRV monitoring;
over a decade of research, several heart rate variability metrics
along with clinical variables have been translated into a score
reflecting a baby’s risk of deterioration due to sepsis, which is
monitored at the bedside as score (Toweill et al., 2000; Griffin
and Moorman, 2001; Griffin et al., 2003, 2005a,b; Moorman
et al., 2006). In a large 9 site multicenter randomized controlled
clinical trial involving 3003 neonates with very low birth
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weight, simply displaying this score at the bedside led to a
reduction of in-hospital mortality rate from 10.2 to 8.1% (p =

0.04) (Moorman et al., 2011). This reduction was particularly
noteworthy given the fact that monitoring was un-protocolled,
namely individual clinician’s response was left up to their clinical
judgment. This commercialization and randomized controlled
evaluation is what is necessary to transform research into
improvements in care.

Conclusion

The human organism consists of a series of interdependent
complex systems whose structure and function show high
variability and demonstrate multi-scale self-similarity (fractal
patterns). The “omics,” arousal/stress, immune, and bioenergetics
systems and their multiplicative interconnected responses to
perturbations regulate body function and show varying patterns
across the trajectory of life—growth from birth through
adolescence, plateauing in young adulthood and a steady decline
throughout aging. They show high levels of variability, and higher
variability is associated with better health across the lifespan.

Aging involves the loss of system complexity and variability at
multiple scales and these patterns are exacerbated in disease.

The current approach to understanding disease as
resulting from perturbations of individual organ systems is
enormously useful, but fails in the appreciation and study of
the interconnected whole system, its complexity, adaptability
and overall health of the human organism. Emerging evidence
suggests that the organism’s network interconnectedness and
complexity can be described by the degree and complexity of
biologic rhythm variability. The interconnected relationships
of the various systems described point to HRV reflecting a
global measure of an individual’s current functional health state.
Recognizing the theoretical nature of our argument, this is a call
for the empirical examination of HRV’s role in health, aging, and
disease across the lifespan.
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