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Epicutaneous immunization with modified vaccinia Ankara
viral vectors generates superior T cell immunity against a
respiratory viral challenge
Youdong Pan1, Luzheng Liu1, Tian Tian1, Jingxia Zhao1,2, Chang Ook Park 1, Serena Y. Lofftus1, Claire A. Stingley1, Yu Yan1,
Shenglin Mei3, Xing Liu4 and Thomas S. Kupper 1,5✉

Modified Vaccinia Ankara (MVA) was recently approved as a smallpox vaccine. Variola is transmitted by respiratory droplets and MVA
immunization by skin scarification (s.s.) protected mice far more effectively against lethal respiratory challenge with vaccinia virus
(VACV) than any other route of delivery, and at lower doses. Comparisons of s.s. with intradermal, subcutaneous, or intramuscular
routes showed that MVAOVA s.s.-generated T cells were both more abundant and transcriptionally unique. MVAOVA s.s. produced
greater numbers of lung Ova-specific CD8+ TRM and was superior in protecting mice against lethal VACVOVA respiratory challenge.
Nearly as many lung TRM were generated with MVAOVA s.s. immunization compared to intra-tracheal immunization with MVAOVA and
both routes vaccination protected mice against lethal pulmonary challenge with VACVOVA. Strikingly, MVAOVA s.s.-generated effector
T cells exhibited overlapping gene transcriptional profiles to those generated via intra-tracheal immunization. Overall, our data suggest
that heterologous MVA vectors immunized via s.s. are uniquely well-suited as vaccine vectors for respiratory pathogens, which may be
relevant to COVID-19. In addition, MVA delivered via s.s. could represent a more effective dose-sparing smallpox vaccine.
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INTRODUCTION
Vaccines against viral and bacterial pathogens have become a
fundamental part of pediatric and adult patient care1–4. Once
ubiquitous diseases such as smallpox, polio, measles, tetanus, and
diphtheria have either been eliminated or substantially reduced in
incidence by vaccination in most of the industrialized world.
Vaccination against seasonal influenza has been more challenging,
and vaccination against human immunodeficiency virus has proven
elusive5–7. Vaccines against emerging diseases such as Ebola, severe
acute respiratory syndrome, and Middle East respiratory syndrome,
and most recently Coronavirus disease 2019 (COVID-19) are the
subject of intense interest and widespread activity8–10. Most
vaccines are administered by intramuscular (i.m.) or subcutaneous
(s.c.) injection. Although readily accessible, skeletal muscle and s.c.
adipose tissues are poorly adapted to initiating immune
responses11. In contrast, upper layers of the skin are the site of
continuous and multiple immune responses over a lifetime12.
Smallpox vaccination through epidermis with vaccinia virus (VACV)
has been uniquely successful2,11.
The eradication of smallpox by worldwide epicutaneous

immunization (skin scarification, s.s.) with VACV was arguably the
greatest public health achievement of the twentieth century2. Since
that time, VACV has been employed as a vaccine vector in many
settings13. However, its use has been limited by unacceptable
morbidity, particularly in recipients who are immunocompro-
mised14. More recently, Modified Vaccinia Ankara (MVA), a
replication-deficient variant of VACV, has come into wider use15.
Although it lacks ~10% of the parent genome16, it retains the
immunogenicity of the parent virus and has just been approved by
the Food and Drug Association as a modern alternative for

preventative smallpox vaccination17–19. Similar to VACV, it is also
being widely used as heterologous vaccine vector20. However, MVA
and derivative vectors are almost invariably delivered i.m. or s.c.19,21.
Several important features of smallpox vaccination deserve to

be re-emphasized. Development of a cutaneous “pox” lesions,
achieved only after s.s. immunization, was considered emblematic
of successful protective vaccination, suggesting that this mode of
delivery was critically important14. In addition, smallpox vaccina-
tion with VACV was effective in patients with agammaglobluli-
nema but had disastrous complications in patients with T-cell
deficiency22. This suggested that T cells were critically important
for protective immunity23,24. Finally, Variola virus is transmitted via
respiratory droplets, suggesting an oropharyngeal-pulmonary
mode of transmission25. It is notable that murine models of
epicutaneous skin immunization with VACV generate memory
T-cell populations in both the skin and lung, and these lung
memory T cells protect against lethal pulmonary challenge with
this virus11. Immunization (i.m.) with VACV in these models did not
yield comparable protection. This suggests that protection against
smallpox is at least in part mediated by T cells24,26, and that skin
immunization is an effective means of generating protective
memory T-cell populations in the lung11.
Given the unacceptable morbidity of VACV in humans, in this

study, we aimed to assess the safety and efficacy of MVA
vaccination, and asked whether s.s. immunization with MVA was
superior to other routes of administration. We also asked which
populations of skin antigen-presenting cells play a major role
during MVA s.s. vaccination-induced protection. In addition, we
asked whether skin immunization with an MVA vector encoding a
CD8+ T-cell antigen could generate a population of
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antigen-specific CD8+ T cells in the lung and skin. Finally, we
studied the early imprinting of activated CD8+ T cells in lymph
nodes (LNs) draining the skin, lung, and gut after vaccination with
MVA encoding a CD8+ T-cell antigen.

RESULTS
MVA immunization via s.s. elicits dose-dependent anti-vaccinia
immune response
Doses from 104 to 107 pfu of MVA were used for s.s. and, after
7 days, all T cells from the inguinal LNs or spleen were purified and
stimulated in vitro with VACV-infected splenocytes, and inter-
feron-γ (IFN-γ) production was measured. All MVA doses led to
significant T-cell IFN-γ production, with 106 and 107 pfu being
equally potent (Fig. 1a, b). Other groups of mice were immunized
with these doses and after 30 days these mice were challenged on
the skin with VACV. After 6 days, biopsies of the challenge sites
were taken and VACV DNA was measured by PCR. All immuniza-
tion doses led to diminished VACV DNA at the challenge site
(compared to unimmunized controls), but 106 and 107 pfu
immunization showed superior, albeit partial protection (Fig. 1c).
Other groups of mice were immunized in an identical manner and
were subjected to lethal intranasal infection with VACV at day 30.
All unimmunized mice rapidly lost weight and succumbed to the
infection. In contrast, 40% of 104, 70% of 105, and 100% of 106 and
107 pfu immunized mice survived the infection (Fig. 1d, e). Thus,
106 pfu is the lowest MVA dose that provides both strong T-cell
cytokine production, as well as optimal protective immunity
against the skin and pulmonary infection.

MVA could be safely inoculated to the skin of
immunocompromised mice without morbidity
To test whether delivery of MVA to scarified skin could induce
poxvirus-specific immune responses, we inoculated C57BL/6 mice
with MVA or VACV by scarification. By 7 days after inoculation, a
crusted lesion resembling a “pox” reaction had formed at the
inoculation site in all the immunized mice. The pox lesions
induced by MVA and VACV s.s. followed similar patterns of
evolution (although with different size and kinetics), from macules
to papules to vesicles and finally into pustules which ruptured and
healed over time with scars (Supplementary Fig. 1). MVA-induced
pox reactions did heal more rapidly than those induced by
replication competent VACV (Supplementary Fig. 1). To determine
the safety of MVA in immunocompromised hosts, we next s.s.
immunized immunodeficient Rag1−/− mice with VACV and MVA,
respectively, and followed the mice for several weeks. Although
both groups of mice lost some weight over the first 2 weeks, MVA
immunized mice rapidly regained the weight and flourished over
the next several weeks (Fig. 1g). In contrast, 100% of the VACV-
immunized mice developed progressive weight loss and expand-
ing cutaneous lesions of VACV infection, ultimately requiring
killing (Fig. 1f–h). Thus, MVA can be administered safely to mice
wholly deficient in adaptive immunity.

Langerhans Cells (LC) and Langerin+ Dendritic Cells (DC) are
required for generating optimal CD8+

T-cell responses
In another set of experiments, we s.s. immunized wild-type (WT)
mice and mice deficient in either Langerhans cells (Langerin-DTA)
or both Langerhans cells and langerin-positive dermal dendritic
cells (Langerin-DTR+ DT), respectively. Prior to infection, mice
were loaded with OT-1 cells and the immunizing virus was
MVAOVA. Spleen and LNs were collected at days 10 and 30, the
skin was collected at day 30, and OT-1 T cells were counted. At day
10, effector T cells (Teff) cells were somewhat diminished in
Langerin-DTA mice and more markedly diminished in

Langerin-DTR+ DT mice (Fig. 1i). At day 30, skin tissue resident
memory T cells (TRM) were significantly diminished in Langerin-
DTA mice and even more diminished in Langerin-DTR+ DT mice
(Fig. 1i). This pattern was also true for T cells bearing markers of
central memory T cells (TCM) and effector memory T cells (TEM) in
the LN and spleen. These data suggest that both LC and langerin-
positive dermal DC play an additive role in optimal antigen
presentation of MVA-encoded antigens to T cells.

MVA s.s. generated T cells that were both more abundant and
transcriptionally unique
We next compared the anatomical route of vaccine delivery on the
CD8+ T-cell response to MVA vaccination. Using carboxyfluorescein
succinimidyl ester (CFSE) OT-1-loaded mice, MVAOVA was delivered
by s.s., or injected intradermally (i.d.), s.c., or i.m. Draining LNs were
collected at 60 h and 5 days, and OT-1 cells were analyzed by
fluorescence-activated cell sorting. LNs from s.s. immunized mice
showed roughly 90% of OT-1 proliferating and 60% making IFN-γ, at
60 h, with comparable numbers at 5 days (Fig. 2a, c). Vaccination by
i.d. was less effective, with 71% of OT-1 cells proliferating and 33%
making IFN-γ at 60 h, with modest improvement at 5 days post
infection (Fig. 2a, c). Both s.c. and i.m. showed poor OT-1 activation
at 60 h with some improvement at 5 days (Fig. 2a, c). When LN or
spleen OT-1 cells were stimulated with antigen, significantly more
IFN-γ was produced by OT-1 cells from mice vaccinated via s.s.
compared to other routes (Supplementary Fig. 2). Vaccination via i.d.
was intermediate with regard to IFN-γ production, while s.c. and i.m.
led to nearly fourfold lower IFN-γ levels (Supplementary Fig. 2). In
terms of absolute numbers of OT-1 cells generated, s.s. was superior
to all modes of vaccination, with i.d. being second and both i.m. and
s.c. far less effective (Fig. 2b, d). We next took OT-1 cells from the
5-day post-immunization time point and performed transcriptional
profiling on OT-1 cells generated after s.s., i.d., s.c., or i.m.,
respectively. Although there was some overlap, there were many
differences between T cells generated by different routes of
immunization, even at the same day post immunization (Fig. 2e
and Supplementary Fig. 3). Principal component analysis (PCA)
revealed that Teff generated by s.s. and i.m. were transcriptionally
distinct. T cells generated after s.s., i.d., and s.c., were more similar
but still different from one another. T cells generated by s.s. and
i.d. clustered closely but were still clearly not overlapping. Moreover,
s.s generated most abundant skin infiltrating cells at day 5 post
immunization (Fig. 2g).

Delivery of MVA via s.s. generated more memory T cells and is
superior in protecting mice against lethal respiratory challenge
We next examined memory OT-1 T cells generated at 45 days by
these four routes of immunization. With regard to TCM, s.s. generated
the largest population of these cells, roughly twice as many as i.m.
(Fig. 3a). The difference was even more striking when TEM were
examined; here, s.s. generated at least 3-fold more cells than did
other modes of immunization, with s.c. being least effective (Fig. 3b).
TRM were then examined, in both skin and lung. Immunization via
s.s. generated threefold more skin TRM and more than twice as many
TEM, with i.d. being the second most effective route (Fig. 3c–f). As
MVA is often delivered i.m., it is important to note that the number
of TRM generated by this route was ~4-fold lower than by s.s. (Fig.
3c–f). Transcriptional profiling showed that at 45 days, OT-1 TEM’s still
showed non-overlapping PCA clusters from s.s, i.d., s.c., and i.m.
immunized mice. In contrast, TCM from the same mice showed
transcriptional profiles that were more tightly clustered, indicating
that differences between the groups had become minimal (Fig. 2e).
Skin TRM could not be compared because insufficient 45-day TRM
were generated by i.m. and s.c. immunization.
In subsequent experiments, we examined groups of mice

vaccinated by these different routes for their ability to respond to
a lethal intranasal challenge of VACVOVA. Groups of ten mice
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assayed 45 days after initial vaccination were subjected to
intranasal challenge, and mice were weighed daily after vaccina-
tion. Mice that lost >20% of body weight (BW) were killed. Figure
3g, h show that naive mice universally succumbed to the lethal
infection, whereas mice immunized s.s. showed minor transient
weight loss but complete survival. In contrast, mice vaccinated i.d.,
s.c., or i.m. lost substantial weight (Fig. 3g), and although 60% of
i.d. vaccinated mice survived, only 40% and 30% of mice
vaccinated i.m. and s.c., respectively, survived (Fig. 3h). These

results are consistent with the superior production of different
memory T-cell subsets after vaccination by s.s.

MVA s.s. generated more than half number of lung TRM compared
to intra-tracheal immunization
We were struck by the capacity of skin immunization via s.s. to
generate both skin TRM and lung TRM. Although skin and gut T-cell
trafficking have been studied extensively, lung T-cell trafficking
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Fig. 1 MVA immunization via skin scarification (s.s.) elicits dose-dependent anti-VACV immune response. a, b IFN-γ secretion by vaccinia-
specific T cells isolated from draining lymph nodes (a) or spleens (b) at 7 days post MVA infection at indicated dose. c Quantitative real-time
PCR (qRT-PCR) analysis of skin viral load at 6 days post re-infection. Mice were immunized with the indicated doses of MVA via s.s. 45 days
later, mice were re-challenged with 1.8 × 106 pfu vaccinia virus (VACV). Then 6 days later, skin tissues were collected and processed to qRT-PCR.
d, e Body weight (BW) (d) and survival measurements (e) of WR-VACV re-challenged mice that were immunized previously with MVA at
indicated dose 45 days earlier. f Photographs of pox lesion in Rag1−/− mice taken on day 4, 7, 14, and 28 post immunization with the same
amount (1.8 × 106 pfu) of MVA or VACV. g, h Immunized Rag1−/− mice were monitored for BW change (g) and survival (h) for up to 12 weeks
after immunization with the same amount (1.8 × 106 pfu) of MVA or VACV. i Quantification of effector T cell (Teff, day 5), central memory
(TCM, day 45), effector memory (TEM, day 45), or tissue resident memory (TRM, day 45) T cells post MVA infection. Naive OT-I Thy1.1+ cells were
transferred into Thy1.2+ recipient mice 1 day before mice were infected with 1.8 × 106 pfu MVA-Ova. Then, at different time points post
infection, OT-I cells were isolated from the lymph nodes (Teff, TCM, TEM) or skin (TRM) and analyzed by flow cytometry. a–c Data are
representative of three independent experiments. Symbols represent individual mice (n= 5 mice/group). a–d Unimmunized (UI) mice were
included as controls. Graphs show mean ± SD (n= 5), ns= not significant, *p < 0.05, **p < 0.01.
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has been studied less comprehensively. We immunized CFSE OT-1
loaded mice with MVAOVA via three routes: s.s. to assess skin
homing, intraperitoneally (i.p.) to assess gut homing, and intra-
tracheally (i.t.) to assess lung homing. At 60 h, T cells were
collected from the respective draining LNs (inguinal for skin,
mesenteric for gut, and mediastinal for lung) and were sorted
based on CFSE expression into cells that had not divided (P0) or
had divided once through five times (P1–P5; Fig. 4a). Cells were
subjected to transcriptional profiling, and results were analyzed
bioinformatically. By PCA analysis, P0 cells from skin, gut, and lung
homing nodes clustered near each other (Fig. 4b). However, as
early as P1 and clearly by P2, OT-1 cells activated in different
nodes diverged significantly in transcriptional profile. In particular,
OT-1 cells from mesenteric nodes were quite distinct from OT-1
cells from inguinal and mediastinal nodes (Fig. 4b). Interestingly,
P1–P5 cells from inguinal (skin draining) node clustered closely
with P1–P5 cells from mediastinal (lung draining) nodes,

suggesting similar pathways involved in skin and lung homing
imprinting (Fig. 4b). Excluding genes upregulated in all T-cell
groups, lung and skin homing T cells shared upregulation of 150
genes, compared to 73 and 90 upregulated in only the skin or only
the lung, respectively (Fig. 4c, d). In contrast, only 11 upregulated
genes were shared between skin and gut, and only 36 between
lung and gut. Examination of genes encoding tissue-homing
molecules showed homology between lung and skin immuniza-
tion (CCR2, CCR4, and CCR10), whereas gut immunization showed
unique upregulation of CCR9, α4, and β7 integrins (Fig. 4e). These
data suggest a similar pattern of gene expression of T cells
activated in skin- vs. lung-draining LN, and a pattern in
gut-draining LN that is very different from the lung- and
skin-draining LN.
We next directly compared the capacity of skin (s.s.), lung (i.t.),

and gut (i.p.) immunization with MVAOVA to generate lung TRM.
Mice were immunized by the above routes and after 45 days, lung
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Fig. 2 Delivery of MVA via s.s. generates T cells that are both quantitatively more abundant and qualitatively distinct from those
generated from i.d., s.c., and i.m. a–d Flow cytometric analysis (a, c) and quantification (b, d) of OT-I cell proliferation in draining lymph nodes
of recipient mice at 60 h (a, b) and 5 days (c, d) post MVA infection via different routes. CFSE-labeled naive OT-I Thy1.1+ cells were transferred
into Thy1.2+ recipient mice 1 day before mice were infected with 1.8 × 106 pfu MVA-Ova via indicated infection routes. e Principal component
analysis (PCA) of gene expression for T cells generated by MVA infection via different routes. Naive T cells (TN) were sorted from the peripheral
lymph nodes of naive OT-I mice. Effector T cells (Teff) were sorted from draining lymph nodes at 5 days post infection. Central memory T cells
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infiltrating T cells at day 5 post 1.8 × 106 pfu MVA-Ova infection via indicated routes. a, c Data are representative of three independent
experiments (n= 5 mice per group). b, d, g Unimmunized (UI) mice were included as controls. Graphs show mean ± SD (n= 5). *p < 0.05,
**p < 0.01.
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TRM were analyzed. As expected, lung immunization resulted in
the highest number of lung TRM, but skin immunization by s.s.
generated more than half as many TRM in the lung (Fig. 4f). In
contrast, i.p. immunization resulted in <10% of the lung TRM
generated by lung immunization (Fig. 4f). Similar to the skin TRM,
lung TRM were CD69+, CD103+, CD62L−, and KLRG1−, and
expressed E and P-selectin ligands (Supplementary Fig. 4). A
companion cohort of mice were subjected to lethal intranasal
challenge with VACVOVA. Mice immunized i.t. or s.s. showed mild
weight loss but 100% recovery and survival (Fig. 4g, h). Mice
immunized i.p. showed more severe weight loss, and only 60%
survived the infectious challenge (Fig. 4g, h). In another series of
experiments, i.t. immunization was compared to s.s. immunization
with regard to generation of skin TRM. Although s.s. was most
efficient at generating skin TRM, lung immunization via i.t.
generated 50% of the skin TRM compared to s.s. immunization
(Supplementary Fig. 5). These data confirm that lung immuniza-
tion can generate abundant skin TRM, and skin immunization can
generate abundant lung TRM.

DISCUSSION
Smallpox vaccination via epidermal disruption (also known as s.s.)
using VACV provided broad and effective protective immunity
against Smallpox caused by Variola major, and led to the
eradication of this devastating infectious disease in the twentieth
century14. MVA is derived from VACV but has lost roughly 10% of
the parent genome, including several immune inhibitory genes

that block CC chemokines, IFNα/β, IFNγ, tumor necrosis factor-α,
and STING27, and does not replicate in mammalian cells20. In
addition to its use as a smallpox vaccine, MVA has been used
extensively as a heterologous vaccine vector15, although we were
unable to find any description of it being delivered through s.s.21,
except for one study showing that MVA administered by
percutaneous inoculation could elicit protective immune
responses that are comparable or better to s.c. vaccination28.
There are no clear reasons that MVA has not been delivered via s.
s., other than the assumption that replication was required for
this route of administration. Here we show that MVA delivered by
s.s. can provoke a potent immune response at doses lower than
those used for i.m. and s.c. injection. Dose-sparing effects of MVA
after i.d immunization vs. i.m. and s.c. immunization were also
found in a human trial using ACAM300029. In a direct comparison
of delivery via i.m., s.c., and i.d. routes, s.s. administration of lower
doses of MVA provide superior protective immunity against a
lethal VACV challenge. These data suggest that similar to VACV,
MVA delivered by s.s. provides a potent and durable immune
response. We found that both Langerhans cells and CD207+

dermal dendritic cells were both required for optimal immuniza-
tion via this route. In contrast to VACV, mice deficient in adaptive
immunity could be safely immunized via s.s. with MVA,
supporting the safety of this vector in immunocompromised
hosts. One other advantage of the s.s. mode of delivery is dose
sparing—doses of MVA that are too low to elicit immune
response when given i.m.are highly effective when delivered by
s.s.
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Fig. 3 Delivery of MVA via s.s. is superior in generating memory T cells and is superior in protecting mice against lethal respiratory
challenge. a, b Quantification of OT-I TCM and TEM cells from spleen of mice at 45 days post MVA infection via indicated routes. c–f Flow
cytometric analysis (c, e) and quantification (d, f) of OT-I TRM cells isolated from skin (c, d) or lung (e, f) tissue at 45 days post MVA infection via
indicated routes. g, h Body weight (BW) (g) and survival measurements (h) of WR-VACV re-challenged mice that were previously immunized
with MVA via indicated routes 45 days earlier. OT-I WT cells were adoptively transferred into µMT mice before mice were infected with 1.8 ×
106 pfu MVA via indicated routes. 45 days later, mice were re-challenged with a lethal dose of WR-VACV by intranasal infection. c, e Data are
representative of three independent experiments (n= 5 mice per group). Graphs show the mean ± SD (n= 5). UI= unimmunized. **p < 0.01.
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When used as a heterologous vaccine vector encoding for a
T-cell antigen, MVAOVA delivered s.s. provided the earliest and best
activation of OVA-specific T cells (OT-1) in draining LNs at 60 h and
day 5 post immunization. In contrast, s.c. and i.m. immunization
generated the latest and lowest number of activated LN OT-I cells,
as indicated by negative CFSE staining (Fig. 2a–d). These results
indicated that in addition to a different capacity to generate
activated T cells, there are also differences in T-cell activation and
proliferation kinetics related to these different antigen delivery
routes. Interestingly, CD8+ Teff cells in skin-draining LNs at day
5 showed different patterns of gene expression after immuniza-
tion s.s., i.d., s.c., and i.m., respectively. T cells generated by i.m.
were most distinct transcriptionally from those generated by s.s.

immunization. When T cells were collected from spleens at day 45
after immunization, cells with TEM markers retained distinct
transcriptional profiles, with i.m. immunization-generated TEM
cells being most distinct from s.s. immunization-generated TEM
cells. Day 45 memory T cells expressing CD62L (TCM) showed
smaller transcriptional differences between immunization routes,
but s.s. generated TCM cells were still readily distinguishable from
those generated by i.m. immunization. These surprising data
suggest that there are qualitative (e.g., transcriptional) differences
in Teff and memory T cells (TM) cells generated by immunization
route that are evident by day 5 and persist at day 45.
There were also quantitative differences in TM generation

depending on route of administration. Immunization via s.s.
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generated greater numbers of both TEM and TCM at 45 days after
immunization. When skin TRM were measured, s.s. generated more
CD8+ T cells than other routes, with i.m. being least efficient.
Because lethal intranasal challenge with VACV results in death
from pulmonary inflammation, we also measured lung TRM.
Accordingly, s.s. generated higher numbers of lung TRM than
other routes, consistent with previous reports11,30, with i.m.
generating fewest lung TRM. TRM from skin and lung both
expressed CD69 and CD103, with expression of E- and P-selectin
ligands detectable as well. When animals were challenged by
lethal intranasal infection with VACVOVA, mice immunized by s.s.
showed minimal weight loss and 100% survival. Mice immunized
by all other routes showed greater morbidity and some mortality,
with i.m. immunization being least effective. Whether the ability of
s.s. immunized mice to universally survive the intranasal challenge
of VACVOVA was due to higher numbers of lung TRM, circulating
TEM and TCM, or qualitatively different Teff and memory T cells
cannot be determined from these data. However, this suggests
that the original method of smallpox vaccination—s.s. adminis-
tration—appears to be uniquely effective at generating robust
protective immunity against airway challenge.
As s.s. immunization was so efficient at generating lung T cells

and protective immunity against a pulmonary infectious challenge,
we compared skin infection with direct lung infection, and assessed
Teff in skin and lung-draining LN, respectively, using i.p. injection and
mesenteric nodes as a control. Thus, three routes of immunization
were compared—s.s., i.t., and i.p.—and Teff from draining LNs—
inguinal, mediastinal, and mesenteric, respectively—were compared
by transcriptional profiling. Although proliferating Teff from skin-
draining and gut-draining nodes rapidly diverged, proliferating Teff
from skin-draining and lung-draining nodes showed significant
overlap over time. Notably, α1β1 integrin, CCR4, and CCR8 were
preferentially elevated in T cells from skin and lung-draining nodes,
and α4β7 and CCR9 were preferentially upregulated in mesenteric
LNs, consistent with previously reported data31–33. When lung TRM
were examined after 45 days, both skin and lung infection
generated abundant lung TRM, whereas i.p. immunization was less
effective at generating these cells. Protection against lethal
intranasal challenge was complete in skin and lung immunized
mice, but only partial after i.p. immunization. These data suggest
that there is substantial overlap in T cells imprinted by skin and
lung-draining LNs and suggests that skin immunization is well-suited
at generating T cells with lung-tropic properties. Of note, another
recent work showed that skin immunization with MVA generated
T cells that protected the host against systemic viral spread by
seeding distant tissues, including lung34. Even though i.t. immuniza-
tion generated more lung TRM and was equally protective as s.s.
immunization, there is concern that using such an approach (e.g.,
mucosal immunization) in patients might provoke an unacceptable
hyperinflammatory response in lung. For this and other reasons, s.s.
immunization seems to be a more promising route of
administration.
Two important conclusions can be drawn from this study that

may be relevant to human disease. First, immunization with MVA
generates powerful adaptive immunity, but like VACV the most
potent local and systemic adaptive immunity generated occurs
after superficial s.s. that involves epidermal disruption. The dose of
MVA used in s.s. delivery is lower than required in muscle/i.m.
delivery. This suggests the possibility that doses of MVA being
stockpiled in anticipation of a dystopian future smallpox attack
may protect orders of magnitude for more people if delivered s.s.
instead of MVA. The second conclusion is that MVA delivered by
s.s. is a very effective way of generating protective CD8+ TM in
lung, in addition to a more robust circulating T-cell response. MVA
vaccines are being developed for respiratory pathogens, including
influenza A and respiratory syncytial virus35,36, but these are being
tested only by i.m. or s.c. injection. Our data strongly suggests that
delivering these vaccines via s.s. may generate even more

effective protective immunity to pathogens that infect lung.
Although there is no direct evidence of correlation between
clinical protection efficacy with the findings from this study, it is
interesting to speculate about vaccine development against
airway viral infections like COVID-19. Future studies using MVA
encoding for COVID-19 surface proteins, particularly spike protein,
should to be done to assess whether MVA delivered s.s. could
provide protective immunity against COVID-19.
There are several limitations to this study, which should be

noted. All mouse experiments were performed with CD57Bl/
6 strain, primarily to facilitate working with the syngeneic
transgenic T-cell line OT-1. Additional strains of mice should be
tested to determine whether the superiority of s.s. extends to
other strains. And of course, we cannot determine from our data
whether s.s. in human subjects would lead to superior T-cell
immune response, although i.d. administration of ACAM3000
appears to be more immunogenic than i.m. or s.c.29. While the
data using the ovalubumin peptide is clear, additional CD8+

antigens should ultimately be studied. In addition, although we
have shown previously that humoral responses are superior in
mice immunized with MVA s.s. vs i.m.11, we did not explore
humoral responses in the present study. Finally, it will be
important to replicate these findings in human subjects, using
the currently licensed MVA vaccine.

METHODS
Mice
WT C57BL/6, CD45.1+, Thy1.1+, Rag1−/−, µMT, Langerin-DTA, and
Langerin-DTR mice were purchased from Jackson Laboratory. Thy1.1+

Rag1−/− OT-I mice were maintained through routine breeding in the
animal facility of Harvard Institute of Medicine, Harvard Medical School.
Six- to 8-week-old male mice were used and were randomly assigned to
each group before start. All experiments were performed blinded with
respect to treatment. For survival experiments, mice that had lost over 25%
of original BW were killed.

Ethics
Animal experiments were performed in accordance with the guidelines put
forth by the Center for Animal Resources and Comparative Medicine at
Harvard Medical School and were approved by the Harvard/BWH
Institutional Animal Care and Use Committee (IACUC).

Viruses
An attenuated strain (VACV) of WR-VACV was used in some experiments as
control vaccine and was a kind gift from Dr. Bernald Moss (National
Institutes of Health, Bethesda, MD). WT WR-VACV were purchased from
American Tissue Culture Company (ATCC). The virus stocks were expanded
and tittered in Hela cells and CV-1 cells (ATCC) by standard procedures.
ACAM3000MVA (Acambis MVA) and DF-1 cells were gifted by Dr. Michael
Seaman (Beth Israel Deaconess Medical Center, Boston MA). MVA-OVA was
gifted by Dr. Ingo Drexler (Technische Universita¨ t Mu¨nchen and
Helmholtz Centre Munich, Germany). MVA stocks were expanded and
titrated in DF-1 cells.

Virus infection
Mice were immunized with the MVA or VACV at the indicated doses by
s.s.11. Briefly, mice were anesthetized with 2,2,2 tribromoethanol (250mg/
kg, Sigma) by i.p. injection with a target of 25–30min of immobility. Five
microliters of trypsinized virus at varying titer were placed on the
inoculation skin site, which was then scarified with a 28 g needle (500 μl
insulin syringe) by poking 25 times and scratching 25 times, endeavoring
to stay within the superficial epidermis and to minimize bleeding.
Alternatively, mice were immunized by s.c., i.d., or i.m. injection at the
indicated dose. For secondary challenge, memory mice were challenged
intranasally with a lethal dose of WR-VACV (2 × 106 pfu in 20 µl of
phosphate-buffered saline, PBS) at 6–20 weeks post immunization.
The change of BW and survival of mice were monitored daily following
challenge for up to 12 days.
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In vitro restimulation assay
Poxvirus-specific T-cell response against poxvirus was assessed at day 7
post challenge. T cells isolated from draining LNs or spleens was
suspended in T-cell medium (RPMI containing 10% fetal bovine serum,
2mM 2-β mercaptoethanol, 1× nonessential amino acid, 1× sodium
pyruvate) and were used as effector cells. For target cell preparation, naive
splenocytes was infected at 37 °C for 5 h with WR-VACV at a multiplicity of
infection of 5 in RPMI medium supplemented with 10% fetal calf serum.
After infection, the cells were washed three times with PBS and co-cultured
(5 × 105 cells/well) with effector cell at a 1 : 1 ratio in 96-well plate in T-cell
medium at 37 °C for 48 h. Uninfected naive splenocytes co-cultured with
target cells were used as negative controls. IFN-γ concentration in the
culture supernatants were measured by enzyme-linked immunosorbent
assay using anti-IFN-γ mAb pairs (BD Pharmingen) according to
manufacturer’s protocol.

Preparation of cell suspensions
LNs and spleens were collected and pressed through a 70 µm nylon cell
strainer to prepare cell suspensions. Red blood cells (RBCs) were lysed
using RBC lysis buffer (00-4333-57; eBioscience). Skin tissue was excised
after hair removal, separated into dorsal and ventral halves, minced, and
then incubated in Hanks balanced salt solution supplemented with 1mg/
ml collagenase A (11088785103; Roche) and 40 μg/ml DNase I
(10104159001; Roche) at 37 °C for 30min. After filtration through a
70 μm nylon cell strainer, cells were collected and washed three times with
cold PBS before staining. Gate strategy of T cells (Supplementary Fig. 6):
Teff, CD8

+ CD90.1+ CD44+ CD62L−; TCM, CD8
+ CD90.1+ CD44+ CD62L+;

TEM, CD8
+ CD90.1+ CD44+ CD62L−; TRM, CD8

+ CD90.1+ CD44+ CD62L−

CD69+.

Antibodies and flow cytometry
The following anti-mouse antibodies were obtained from BD PharMingen:
PerCP-conjugated anti-CD3e (553067, 1 : 100), PE-conjugated anti-CD8
(557654, 1 : 100), PE-Cy7-conjugated anti-CD8 (552877, 1 : 100), APC-Cy7-
conjugated anti-CD8 (557654, 1 : 100), PE-conjugated anti-CD90.1 (561404,
1 : 100), APC-conjugated anti-CD90.1 (557266, 1 : 100), PE-Cy7-conjugated
anti-CD62L (560516, 1 : 100), APC-Cy7-conjugated CD62L (560514, 1 : 100),
and APC-conjugated anti-IFN-γ (554413, 1 : 100). Biolegend: PE-conjugated
anti-CD44 (103008, 1 : 100), PE-Cy7-conjugated anti-CD44 (103030, 1 : 100),
PE-Cy7-conjugated anti-CD69 (104512, 1 : 100), and APC-conjugated anti-
CD103 (121414, 1 : 100). Flow cytometry data were acquired with a FACS
Canto II flow cytometer (BD Biosciences) and data were analyzed with
Flowjo software (Tree Star).

Mouse adoptive transfer and treatment
LNs were collected from naive donor mice at age of 6–8 weeks. T cells were
purified by magnetic cell sorting using a mouse CD8α+ T-cell isolation kit
(130-104-075; Miltenyi Biotec) or a mouse CD4+ T-cell isolation kit (130-
104-454; Miltenyi Biotec), according to the manufacturer’s protocols. T cells
were then transferred intravenously into recipient mice at a total number
of 5 × 105. T cells were labeled with CFSE (65-0850; eBioscience) before co-
transfer, where indicated.

Microarray, data analysis, and quantitative real-time PCR
For each group of microarray dataset, OT-I cells from 15 to 20 mice of 3–4
independent biological replicates (5 mice/group) were sorted with a
FACSAria III (BD Biosciences) and pooled. RNA was extracted with a RNeasy
Micro kit (74004; Qiagen). RNA quality and quantity were assessed with a
Bioanalyzer 2100 (Agilent). Then RNA was amplified and converted into
cDNA by a linear amplification method with WT-Ovation Pico System
(3302-60; Nugen). Subsequently, cDNA was labeled with the Encore Biotin
module (4200-60; Nugen) and hybridized to GeneChip MouseGene 2.0 ST
chips (Affymetrix) at the Translational Genomics Core of Partners
Healthcare, Harvard Medical School. GeneChips were scanned using the
Affymetrix GeneChip Scanner 3000 7 G running Affymetrix Gene Com-
mand Console version 3.2. The data were analyzed by using Affymetrix
Expression Console version 1.3.0.187 using Analysis algorithm RMA. To
evaluate overall performance of microarray data, PCA and Pearson’s
correlation coefficients among 12 diverse samples were applied by using
26,662 transcripts (R Program). All microarray data has been submitted
to the Gene Expression Omnibus (accession code GSE150190).

For relative quantitative real-time PCR, RNA was prepared as described
above. Bio-Rad iCycler iQ Real-Time PCR Detection System (Bio-Rad) was
used with the following settings: 45 cycles of 15 s of denaturation at 95 °C,
and 1min of primer annealing and elongation at 60 °C. Real-time PCR was
performed with 1 μl cDNA plus 12.5 μl of 2 × iQ SYBR Green Supermix (Bio-
Rad) and 0.5 μl (10 μM) specific primers. For absolute quantitative real-time
PCR, each standard curve was constructed using tenfold serial dilutions of
target gene template ranging from 107 to 102 copies per mL and obtained
by plotting values of the logarithm of their initial template copy numbers
vs. the mean Ct values. The actual copy numbers of target genes were
determined by relating the Ct value to a standard curve.

Determination of viral load
Viral load in various tissues following MVA or VACV s.s. was determined by
quantitative real-time PCR. Briefly, DNA was purified using the DNeasy Mini
Kit (Qiagen, Valencia, CA). The primers and TagMan probe used in the
quantitative PCR assay are specific for the ribonucleotide reductase Vvl4L
of VACV. The sequences are: (forward) 5′-GAC ACT CTG GCA GCC GAA AT-
3′, (reverse) 5′-CTG GCG GCT AGA ATG GCA TA-3′, (probe) 5′-AGC AGC CAC
TTG TAC TAC ACA ACA TCC GGA-3′. The probe was 5′-labeled with FAM
and 3′-labeled with TAMRA (Applied Biosystems, Foster City, CA). Real-time
PCR was performed with the Bio-Rad iCycler iQTM Real-Time PCR Detection
System (Bio-Rad Laboratories). Thermal cycling conditions were 50 °C for
2 min and 95 °C for 10min for one cycle, followed by 45 cycles of
amplification (94 °C for 15 s and 60 °C for 1 min). Standard curve was
established from DNA of an MVA or VACV stock with previously
determined titer. Corresponding CT values obtained by the real-time PCR
reactions were plotted on the standard curve to calculate viral load in the
samples. The number of viral DNA copies was normalized to that in the
skin samples of uninfected naive mice.

Statistical analysis
Comparisons for two groups were calculated using Student’s t-test (two
tailed). Comparisons for more than two groups were calculated with one-
way analysis of variance (ANOVA) followed by Bonferroni’s multiple
comparison tests. Two-way ANOVA with Holm–Bonferroni post hoc
analysis was used to compare weight loss between groups and Log-rank
(Mantel–Cox) test was used for survival curves. p < 0.05 was considered
statistically significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Microarray data have been submitted to the Gene Expression Omnibus (accession
code GSE150190).
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