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Simple Summary: Endometrial carcinomas (EC) have been traditionally classified based on histopathol-
ogy (types I and II). Determining the risk of a patient to experience disease recurrence is important to
decide which patients need adjuvant treatment. The current endometrial carcinoma risk assessment
approaches fail to accurately classify patients into low-and high-risk groups. Several studies suggest
that combining molecular characteristics with the current risk classification in EC may improve
patients’ stratification and treatment decision-making. In this review, we describe how evolving
molecular trends can be used as prognostic factors to identify high-risk EC subpopulations. We also
look at how the most recent patient-derived models can help researchers find new possible targets
and treatments for EC patients.

Abstract: Endometrial carcinomas (EC) are the sixth most common cancer in women worldwide and
the most prevalent in the developed world. ECs have been historically sub-classified in two major
groups, type I and type II, based primarily on histopathological characteristics. Notwithstanding
the usefulness of such classification in the clinics, until now it failed to adequately stratify patients
preoperatively into low- or high-risk groups. Pieces of evidence point to the fact that molecular
features could also serve as a base for better patients’ risk stratification and treatment decision-making.
The Cancer Genome Atlas (TCGA), back in 2013, redefined EC into four main molecular subgroups.
Despite the high hopes that welcomed the possibility to incorporate molecular features into practice,
currently they have not been systematically applied in the clinics. Here, we outline how the emerging
molecular patterns can be used as prognostic factors together with tumor histopathology and grade,
and how they can help to identify high-risk EC subpopulations for better risk stratification and
treatment strategy improvement. Considering the importance of the use of preclinical models in
translational research, we also discuss how the new patient-derived models can help in identifying
novel potential targets and help in treatment decisions.

Keywords: endometrial cancer; molecular risk stratification; targeted therapy; adjuvant therapy;
genetic alterations; preclinical models

1. Introduction
1.1. Incidence and Symptoms

EC is the most commonly diagnosed malignancy in post-menopausal women. The
highest incidence is seen between 55 and 64 years [1,2]. It is the sixth most frequent
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cancer in women worldwide and the most prevalent cause of mortality in the developed
world, with 382,096 new cases and 89,929 deaths reported in 2018 [1,3,4]. The incidence
of endometrial cancer differs throughout the world. Globally, North America and most
of Europe have higher age-standardized incidence rates than the rest of the world [5–7].
The number of new cases of EC is expected to further increase, owing to the increasing
aging population as well as the increase in obesity rates, as obesity is considered one of
the main risk factors for EC [1,8]. Diabetes, obesity, nulliparity, early-onset menarche,
late-onset menopause, and exposure to unopposed estrogens or tamoxifen are some of the
well-known and major risk factors for EC development [8,9].

Early onset of signs and symptoms such as postmenopausal bleeding or spotting in
80% of patients leads to early diagnosis of endometrial cancer, where treatment efficacy is
high. When compared to an advanced stage, these tumors are mostly diagnosed as FIGO
(International Federation of Gynecology and Obstetrics) stage I or II, with a 5-year overall
survival (OS) rate ranging from 74–97% [1,10,11]. Although the OS rates for advanced
stage cases (FIGO stage III or IV) with possible distant metastasis differ from study to study,
it is estimated that patients with stage III and IV have dismal 5-year OS rates, ranging from
57–66% and 20–26%, respectively, compared to early stage disease [10–12].

1.2. Classification

EC is traditionally divided into two main categories, type I and type II EC, which
can be distinguished clinically, morphologically, histologically, and genetically. Type I
ECs, commonly referred to as endometrioid EC (EECs), represent up to 80% of the newly
diagnosed cases and account for 15–20% of recurrences. They are typically low-grade
tumors associated with perimenopausal obese women. They are also hormone-dependent
with a favorable prognosis (85% 5 years OS rate) [1,9].

Non-endometrioid ECs make up the majority of Type II ECs. They are more common
in elderly women and are usually hormone-independent. This is a less common group
(10–20%), but it is associated with a higher risk of disease recurrence and a poor prognosis
(25–60% 5 years OS rate) [1,9]. The most frequent mutations in both type I and type II
tumors are listed in Table 1 [6,10,13–18]. However, due to the heterogeneous nature of
ECs, the possibility of having tumors containing both subtypes is high. This limits the
application of a dualistic classification and hinders effective treatment, hence the need for
additional markers to improve or complement the histological classification of ECs.

Phosphatase and tensin homolog (PTEN), Microsatellite instability (MSI), TP53 Tumor
protein (TP53), Polymerase E(POLE), Phosphatidylinositol-4,5-bisphosphate 3-kinase cat-
alytic subunit alpha (PIK3CA), Phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1),
Catenin beta 1 (CTNNB1), AT-rich interaction domain 1A (ARID1A), KRAS proto-oncogene,
GTPase (KRAS), Fibroblast growth factor receptor 2 (FGFR2), F-box and WD repeat domain
containing protein 7 (FBXW7), Protein Phosphatase 2 scaffold subunit A alpha (PPP2R1A),
Lysine Methyltransferase-2B (KMT2B), CCCTC-binding factor (CTCF), Chromodomain he-
licase DNA-binding protein 4 (CHD4), Ribosomal protein L22 (RPL22), AT-rich interaction
domain 5B (ARID5B), CUB and Sushi multiple domains 3 (CSMD3), Collagen Type I Alpha
1 Chain (COL1A1), Human epidermal growth factor receptor 2 (HER2), Estrogen receptor
(ER), progesterone receptor (PgR), Epithelial cadherin (E-cadherin), and Epidermal growth
factor receptor (EGFR).
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Table 1. Common genetic/molecular alterations and frequencies in type I and type II EC.

Genetic Alteration Type I (%) Type II (%) Reference

PTEN mutation 30–93.7 2–55 [13–18]
PTEN loss 80 5 [13–18]

MSI mutation 33–44 2–14 [13,14]
TP53 mutation 3–35 28–93 [13,15–17]
POLE mutation 11–20 2–7 [13]

PIK3CA mutation 22–90 10–50 [13–17]
PIK3R1 mutation 9–43 5–20 [13,17]

CTNNB1 mutation 19–52 2.7–4.8 [13,15]
ARID1A mutation 39–68.7 7–24 [6,10,18]

KRAS mutation 7–43 2–17 [13–16]
FGFR2 mutation 2–18 1–8 [13,16]
FBXW7 mutation 10–15 7.9–39 [13,15]

PPP2R1A mutation 2.5–13 7–43.2 [13,15,17]
KMT2B mutation 43.7 0 [17]
CTCF mutation 20.6 0 [17]
CHD4 mutation 0 16.3 [17]
RPL22 mutation 12 0 [18]

ARID5B mutation 11 0 [18]
CSMD3 mutation 0 11.6 [18]
COL1A1 mutation 0 11.6 [18]

HER2 overexpression 3–10 18–80 [14,16]
HER2 amplification 1–4 9–44 [13,16]

ER and PgR overexpression 70–73 19–24 [14]
E-cadherin loss 5–50 60–90 [16]

EGFR overexpression 46 34 [16]

1.3. Current Treatment Options

In EC patients who are classified as low- or low-intermediate risk, surgery (abdom-
inal or laparoscopic hysterectomy and bilateral salpingo-oophorectomy) is usually rec-
ommended [10,19,20]. Assigning adjuvant treatment to high-intermediate and high-risk
subgroups depends on the presence of clinicopathological factors such as age, tumor grade,
histologic features, the extent of myometrial invasion, and absence or presence of lym-
phovascular invasion [6,19,20]. Adjuvant radiotherapy–vaginal brachytherapy (VBT) and
pelvic external beam radiotherapy (EBRT)—with or without adjuvant chemotherapy—
are normally assigned to the high-intermediate risk and high-risk subgroups, respec-
tively [21–23]. For advanced and recurrent endometrial cancers, the first-line treatment
is chemotherapy (carboplatin and paclitaxel), which may be combined with hormonal
therapy [24–26]. Although some clinical trials did show treatment benefits, other studies
did not [27,28]. For localized recurrent disease surgery and radiation therapy (intensity-
modulated radiation therapy (IMRT) or a combination of both) can be considered, while, for
non-localized recurrent disease, progestin therapy (medroxyprogesterone acetate or mege-
strol acetate) is given [29]. For advanced EC patients with microsatellite instability-high
(MSI-H)/mismatch repair deficiency (dMMR), the anti-PD-1 blockade, pembrolizumab,
and Dostarlimab-gxly have been approved [30,31]. Furthermore, a combination of pem-
brolizumab and anti-VEGFR, lenvatinib was recently approved for treating patients with
advanced EC with tumors that are not MSI-H or dMMR [32].

In this review, we will briefly discuss the four major EC molecular subtypes described
by TCGA, their prognostic relevance, and future development. In addition, we will discuss
the potential reclassification of high-risk ECs (HR-ECs) using molecular characterization
for better patient stratification. Treatment benefit, clinical implication, and future trends in
EC management based on molecular classification will also be summarized. We will also
outline the importance of molecular characterization in pre-clinical models.
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2. The Cancer Genome Atlas (TCGA) Molecular Classification for Endometrial Cancer

The use of the traditional risk assessment alone lacks the power to adequately preop-
eratively stratify patients into low- or high-risk groups for surgical planning and adjuvant
treatment. This may result in over- and under-treatment of patients, which may have an
impact on the results of various clinical trials because treatment is typically given to pa-
tients based on their risk categories. [33,34]. Integrating the clinicopathologic features with
molecular biomarkers predictive of patient tumor behavior may provide more accurate
risk stratification and improve patients’ prognosis [35–37].

The TCGA research network project used whole genome sequencing, exome se-
quencing, microsatellite instability (MSI), and copy number analysis in 373 EC cases [38].
The TCGA project identified four molecularly defined EC subgroups: (1) ultramutated/
polymerase E (POLE) mutant—7%, (2) hypermutated/MSI–28%, (3) copy-number low/
microsatellite stable (CNL)—39%, and (4) copy-number high/serous-like (CNH)–26%.
After TCGA findings, several studies have confirmed the prognostic significance of the
four molecular subgroups, with further advancement in terms of genetic alterations, es-
pecially in the CNL subgroup [34,37–45]. The description of the four main molecular
subgroups of EC by TCGA with genetic mutations and associated prognostic significance
are summarized in Table 2. However, their work had some limitations such as the use of:
(1) expensive and impractical methods for routine clinical practice, and (2) fresh-frozen
tumor samples, requiring special sample handling, making it difficult for every hospital to
perform such analysis for every patient. To overcome these limitations, two research teams
developed practical and cost-effective molecular classifiers to aid in better risk classification
of EC. Firstly, the ProMisE (Proactive Molecular Risk Classifier for Endometrial Cancer)
study used immunohistochemistry for mismatch repair proteins, TP53 Tumor protein (p53),
and POLE as surrogates of molecular markers and risk-stratified a large cohort of young
women (n = 319) of less than 50 years of age and defined prognosis in this cohort [34].
Secondly, Stelloo et al., to obtain a large series of high-risk ECs using inclusion criteria
of the PORTEC3 (Postoperative Radiation Therapy in Endometrial Cancer 3) study, also
confirmed the molecular classification of EC with further prognostic impact [37].

Table 2. Description of TCGA EC molecular subgroups and prognosis.

Molecular Subgroup Characteristics Mutations Somatic Mutation
Rate Prognosis

POLE-mt

EEC grade 3 tumors
POLE exonuclease
domain mutations,
with V411L and P286R
being the most
common hotspot
mutations in POLE

PTEN (94%), PIK3CA
(71%), PIK3R1 (65%),

FBXW7(82%),
ARID1A (76%), KRAS

(53), ARID5B (47%)

Very high (232 × 106

mutations/Mb)

Excellent prognosis
even in high grade

tumors

MSI

EEC with high
histological grade
Most result of
epigenetic silencing of
MLH1 by promoter
hypermethylation
coupled with low
PTEN levels and high
phospho-AKT levels.

PTEN(88%), RPL22
(33%), KRAS (35%),

PIK3CA (54%), PIK3R1
(40%), ARID 1A (37%)

High (18 × 106

mutations/Mb)
Intermediate prognosis
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Table 2. Cont.

Molecular Subgroup Characteristics Mutations Somatic Mutation
Rate Prognosis

CNH

Mainly serous
endometrial tumors
(94%) and mixed EC
(62%), with fraction of
EEC (12%), and about
25% of high-grade EEC.
High copy number
alterations.

TP53 (92%), PPP2R1A
(22%), PIK3CA (47%)

Recurrent
amplifications in MYC,
HER2, CCNE1, FGFR3

and SOX17

Low (2.3 × 106

mutations/Mb)

Poor prognosis with
significantly worse

progression-free
survival

CNL

Microsatellite stable
tumors
EEC (grades 1, 2 and 3)
low somatic copy
number alterations
p53-wild-type (p53-wt)
or few TP53 mutations

PTEN (77%), PIK3CA
(53%), PIK3R1 (33%),

ARID1A (42%),
CTNNB1 (52%)

Low (2.9 × 106

mutations/Mb)

Good-to-intermediate
prognosis

Significant prognostic
impact

Mutations in exon 3 of
CTNNB1,

L1CAM and ER/PR
expression

Amplification of
chromosome 1q1q32.1

Polymerase mutant (POLE-mt), microsatellite instability (MSI), copy number high (CNH), copy number low (CNL), endometrioid
endometrial cancer (EEC), mutL homolog 1 (MLH1), protein kinase B (AKT), phosphatase and tensin homolog (PTEN), TP53 Tumor protein
(TP53), polymerase E(POLE), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3-kinase
regulatory subunit 1 (PIK3R1), catenin beta 1 (CTNNB1), AT-rich interaction domain 1A (ARID1A), KRAS proto-oncogene, GTPase (KRAS),
fibroblast growth factor receptor 3 (FGFR3), F-box and WD repeat domain containing protein 7 (FBXW7), protein phosphatase 2 scaffold
subunit A alpha (PPP2R1A), ribosomal protein L22 (RPL22), AT-rich interaction domain 5B (ARID5B), human epidermal growth factor
receptor 2 (HER2), cyclin E1 (CCNE1), MYC Proto-Oncogene (MYC), SRY-related HMG-box 17, and L1 cell adhesion molecule (L1CAM).

3. Post TCGA Molecular Classification and Prognostic Significance in
Endometrial Cancer
3.1. Prognostic Impact of Histology and Grade

The TCGA molecular classification was performed on tumors from the two most fre-
quent histological subtypes, endometrioid, and serous EC (307 endometrioid and 53 serous).
To molecularly characterize other histotypes, other studies have proven that the four main
molecular classifications in EC may be applied to, and may also be clinically relevant for,
other rare histological subtypes such as undifferentiated/dedifferentiated, clear cell EC’s
and carcinosarcomas [34,46–48]. This prompted further studies to better understand how
the four molecular subgroups may influence the prognostic impact of clinicopathological
parameters such as tumor grade and histology. According to the European Society for Med-
ical Oncology (ESMO) guidelines for EC, FIGO stage I grade 1–2 (G1–2) EC are considered
at low-to-intermediate risk, whereas grade 3 (G3) EC are considered at intermediate-high
to high-risk [6].

In assessing the prevalence of the TCGA molecular subgroups across tumor grades, a
systematic review and meta-analysis by Travaglino et al. in EEC reported that G1–2 EECs
are predominantly in the CNL subgroup (63.5%), followed by the MSI subgroup (24.7%),
the POLE-mt subgroup (6.2%), and the CNH subgroup (4.7%). G3 EECs were mostly seen
in the MSI subgroup (39.7%), followed by the CNL subgroup (28%), the CNH subgroup
(21.3%), and the POLE-mt subgroup (12.1%) [49].

In similar studies where both grade and histology across the four molecular subgroups
were analyzed, it has been reported that most G1–2 associated with CNL (84.4%), followed
by POLE-mt group (60.4%), the MSI group (52.6%) and lastly the CNH (10%). On the
other hand, CNH constituted most of the G3 (90%), followed by MSI subgroup (47.4%), the
POLE-mt group (39.6%), and then the CNL subgroup (15.6%) [50]. In terms of histotype
distribution across the four molecular subgroups of EC, following TCGA, most CNL,
MSI, and POLE-mt tumors were reported to be EEC, whereas CNH was categorized as



Cancers 2021, 13, 3988 6 of 17

serous/non-endometrioid EC with non-endometrioid carcinomas having a worse prognosis
in each TCGA subgroup [38,50,51]. Importantly, they observed that the MSI subgroup
has the highest risk of death and recurrence/progression of the disease, followed by the
CNH subgroup, while non-endometrioid POLE-mt carcinomas showed variable prognosis.
However, the EEC POLE-mt subgroup showed the best prognosis, with the CNH subgroup
having the worst prognosis.

In applying molecular features in G3 EEC, four prognostic subgroups were identified.
The 5-year recurrence-free survival (RFS) rates reported were as follows: POLE-mt 96%,
MSI 77%, CNL 64%, and CNH 47% (p = 0.000001), respectively [41]. Combining molecular
features with grade and histology in these studies indicates how some patients may be over
or under-treated if only one of the risk assessment criteria (clinicopathological features or
molecular features) is used [6]. For instance, the presence of grade 3 in the CNL group may
prompt the use of adjuvant therapy, although the CNL subgroup is considered to have
a good to intermediate prognosis. Again, even within G3, which is considered high-risk,
when TCGA molecular characterization is applied, not all patients may need adjuvant
therapy. Considering the fact that POLE-mt patients generally have a good prognosis, it
would conceivably be more appropriate that patients with such mutations irrespective
of grade and stage, but of endometrioid histology are considered low-risk and spared of
unnecessary treatment to avoid over-treatment [41].

3.2. Prognostic Impact within High-Risk EC (HR-EC)

Classifying HR-EC histologically may be problematic since some of these tumors may
show features of multiple histologic subtypes. However, their risk assessment is of utmost
importance as this greatly influences treatment options. The ESMO-ESGO-ESTRO guide-
lines classification of ECs with a high risk of disease recurrence includes: (1) endometrioid
(type I) FIGO stage IB grade 3 tumors (type I/G3ECs), (2) non-endometrioid tumors (type
II), (3) advanced stages of any histological type, and (4) presence of lymphovascular space
invasion (LVSI) [6,9]. In addition to the ESMO-ESGO-ESTRO risk classification of ECs,
recently, a retrospective multicenter study within the European Network for Individualized
Treatment of Endometrial Cancer (ENITEC) has identified a new risk category in ECs. Inves-
tigating the prognostic relevance of pre-operative immunohistochemical (IHC) biomarkers,
the abnormal expression of p53/L1CAM/ER/PR was significantly associated with higher
risk classification groups, which corresponded to the worst patient outcome within the
high-risk subgroup [52]. Although HR-ECs are less prevalent, they are aggressive with a
poor prognosis, and are therefore given adjuvant therapy [6,53,54].

Various predictive models have indicated the influence of molecular subtypes on
prognostic relevance within HR-EC. [35,44,55–58]. In one study, favorable prognosis was
reported in POLE-mt and MSI tumors in HR patients with 5 year recurrence-free survival
(RFS) of 93% and 95%, compared to 42% and 52% for the CNH and the CNL group,
respectively (p < 0.001) [39]. Léon-Castillo et al. [59], identified outcomes associated with
molecular subgroups of patients with high-risk. They reported that patients classified as
POLE-mt had the best RFS at 5 years of 98%, followed by 74% for those with CNL tumors,
72% for MSI tumors, and 48% among patients with CNH tumors (p < 0.001). The same
trend was seen with OS at 5 years: 98% for POLE-mt, 88.5% CNL, 81.3% for MSI and 54.0%
for CNH (p < 0.001). Regarding treatment outcome, the 5 year RFS with chemoradiation
vs. radiotherapy alone was 59% vs. 36% (p = 0.019) for patients classified as CNH. The
POLE-mt group did well regardless of treatment group; 100% vs. 97% (p = 0.637). Similar
survival was seen in both treatment groups for MSI tumors; 68% vs. 76% (p = 0.428), and
80% vs. 68% (p = 0.243) for CNL [59].

Another group, using DNA damage response biomarkers to further reclassify the
HR group, identified five prognostic subgroups within this population from best to worst
prognosis: (1) group 1 “POLE mutated/Microsatellite unstable” > (2) group 2 “no specific
molecular profile with no DNA damage” > (3) group 3 “TP53 mutated/Non-Homologous
End-Joining negative” > (4) group 4 “no specific molecular profile with high DNA dam-
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age” > (5) group 5 “TP53 mutated/Non-Homologous End-Joining positive”; p = 0.0002).
They reported that, although the markers (δ-H2AX, RAD51, DNA-pk, FANCD2 and PARP-
1) alone within the four molecular subgroups were not prognostic, δ-H2AX+ expression
within CNL (Hazard Ratio = 2.56; p = 0.026) and DNA-pk+/FANCD2 within the CNH
group (Hazard Ratio = 4.95; p = 0.009) significantly predicted poor disease free sur-
vival [60]. These results strongly highlight the prognostic value and impact of molecular
classification in high-risk EC patients, advocating the need for the incorporation of molecu-
lar signatures in risk stratification for better refinement of treatment at the patient level.
Apart from this, there are insufficient data on the prognostic value of surgical staging in
the different molecular groups. For example, traditionally, lymph node status is the most
important prognostic factor in EC. However, its importance in the different molecular sub-
groups to date has insufficiently been investigated. The same basically applies to peritoneal
staging by omentectomy and/or peritoneal biopsies.

4. Treatment Benefit in HR-ECs under the Influence of TCGA Molecular Subtypes

Despite the disappointing outcomes of some clinical trials in HR-ECs [61–63], treat-
ment benefit has been demonstrated in a subset of high-risk patients that are categorized
in any of the four molecular subgroups. The outcome of immunotherapy treatment in the
POLE-mt subgroup is very promising, due to their high mutational load, as evidenced
by high numbers of tumor-infiltrating T cells [64,65]. In a sub-analysis of POLE-mt EC,
where confirmed high-risk women were treated with VBT or EBRT, the 10 year RFS for the
POLE-mt subgroup was 100% [66]. Due to the good prognosis in the POLE-mt subgroup,
the high treatment response rates observed across multiple treatment regimens may imply
that these tumors have some intrinsic characteristics (strong host immune response), inde-
pendent of sensitivity to the treatment—hence the proposal by some authors to safely omit
adjuvant therapy in early stage POLE-mt ECs [34,67]; however, further prospective sup-
portive research is strongly needed before concluding on the use or omission of adjuvant
therapy in the POLE-mt subgroup [68].

MSI tumors, like POLE-mt, are immunogenic, explaining the increased interest in
immunotherapy in the MSI group [69–71]. For example, in a recent case report, two
chemotherapy-resistant EC patients (one with MSI and the other with POLE-mt) showed
an exceptional clinical response to the anti–PD-1, nivolumab [72]. Despite the negative
prognostic markers associated with MSI [73,74], in a long-term study in high-intermediate
risk (HIR) EC, MSI patients treated with VBT or EBRT had a 10-year cancer-specific survival
(CSS) of 84.8%. Importantly, it was also reported that vaginal brachytherapy only was
equally effective in preventing pelvic lymph node recurrences in the absence of prognostic
markers such as p53abn, L1CAM, and substantial LVSI, indicating the possibility of low
risk in the MSI subgroup [66].

In addition to approximately 90% mutation in the TP53 gene in CNH, overexpression
of epidermal growth factor receptor 2 (HER2) has been observed in this subgroup [37].
In addition to treatment benefit that resulted from the proposal of adjuvant treatment
escalation for both high-intermediate-risk and high-risk patients in CNH subgroup [59],
other treatment benefits have been indicated. A recent randomized phase II clinical trial
found that treating 61 patients with stages III and IV or recurrent HER2 positive serous
EC with carboplatin-paclitaxel–trastuzumab reduced the risk of progression and increased
PFS from 8 to 13 months when compared to carboplatin-paclitaxel alone. [75]. Again,
trastuzumab alone or in combination with chemotherapy was found to be beneficial in
serous EC with HER2 overexpression [76,77], though other studies using trastuzumab as a
single agent failed to demonstrate any prognostic benefit [78,79].

The CNL subgroup, which lacks a distinct molecular pattern, is distinguished by a
low mutational burden and is associated with a poor prognosis. Mutation of CTNNB1 is
one of the most common molecular changes in this subgroup [41]. Although CTNNB1
exon 3 mutation is associated with decreased OS [44], patients with CTNNB1 mutations
benefited from the combination of everolimus, letrozole, and metformin with acceptable
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toxicity [80], indicating that the CNL subgroup may benefit from treatments targeting
glucose metabolism.

5. Potential Clinico-Molecular Guided Risk Stratification and Treatment Benefit
in HR-ECs

Some retrospective studies revealed a potential impact of the molecular-based classifi-
cation of EC on EC patients in the clinics. ESGO and ESTRO have recommended a new
molecular-based clinicopathological risk stratification system for adjuvant treatment [81],
where POLE-mt was assigned to the low-risk and MSI, CNH, and CNL were assigned to
the intermediate-to high-risk group. In the high-risk group, chemoradiation and EBRT
were recommended. In addition to the current clinico-molecular-based treatment recom-
mendations in high-risk subgroups, it is thought that these patients could benefit from
other treatment options based on their molecular profiles, as previously described in this
review. To test these hypotheses, prospective randomized trials on patients stratified based
on molecular subgroups should be conducted in the future.

The ongoing randomized PORTEC-4a trial (NCT03469674, ClinicalTrials.gov) is the
first and only clinical trial that is investigating the use of an integrated clinicopathological
and molecular risk profile for adjuvant therapy selection in stages I–II high-intermediate
risk EC patients. [82]. Other prognostic factors, such as significant LVSI, L1CAM, and
CTNNB1 mutation, are used in addition to the molecular profile to differentiate favorable,
intermediate, and unfavorable profiles. The primary goal of this trial is to determine
and compare the rates of vaginal recurrence after various post-surgery treatment options.
Patients are randomized (2:1) to adjuvant treatment based on their molecular-integrated
risk profile or standard adjuvant vaginal brachytherapy after surgery in this trial. Based
on the molecular profile of the patients, 40% will receive brachytherapy, 5% will receive
external beam radiation therapy, and 55% will be in the observation group.

In general, PORTEC trials lack data on prognosis based on tumor staging, either by
lymphadenectomy or sentinel lymph node staging prior to EBRT administration. Nonethe-
less, the ongoing randomized PORTEC-4a clinical trial (NCT03469674, ClinicalTrials.gov)
on molecular risk stratification may help guide adjuvant treatment decisions for better
treatment strategy and patient management.

6. Potential of Molecular Targeted Therapies in HR ECs

Apart from histology, EC heterogeneity is reflected in genetic expression/alteration
and other altered genetic pathways. HR-EC is associated with mutations in NRAS, APC,
SMAD4, and expression of PD-L1/2, in addition to some of the genetic alterations listed
in Tables 1 and 2 [38,40,56,83–85]. Genetic mutations and molecular and signaling path-
way abnormalities differ from patient to patient, emphasizing the need for personalized
treatment. Based on genetic alterations, the benefit of targeted therapy in HR-ECs has
been demonstrated.

Treatment response with the mTOR inhibitor temsirolimus in women with recurrent
or metastatic EC, for example, has been tested in patients with mutated PTEN. In particular,
14% of 20 women who had not previously undergone chemotherapy showed a partial
response and 69% had stable disease, whereas 4% of 25 women who had previously
received chemotherapy showed a partial response and 48% had stable disease. When
compared to single-agent chemotherapeutic or hormonal agent regimens, 17% of the
patients experienced disease progression under temsirolimus [86].

In another study looking at the expression of ARID1A in various solid tumors, in-
cluding EC, patients with ARID1A-mutated tumors had significantly longer median PFS
after anti-PD-1/PD-L1 immunotherapy than patients with ARID1A wild-type tumors (11
months vs. 4 months, p = 0.006). In addition, multivariate analysis revealed that ARID1A
alterations predicted longer PFS after the checkpoint blockade (HR (95% CI), 0.61 (0.39
to 0.94), p = 0.02) [87]. As a result, HR-ECs may benefit from a PD-1/PD-L1 checkpoint
blockade followed by EZH2 inhibitors as a targeted therapy against ARID1A mutation.
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A modest clinical efficacy in EC patients with PD-L1 positive tumors treated with
pembrolizumab has also been reported. In a phase Ib trial, 24 patients with PD-L1 positive
recurrent metastatic EC were included in the study, and, after pembrolizumab treatment,
the ORR was 13%. [88]. Figure 1 depicts a treatment decision in high-intermediate ECs
under molecular/genetic influence.
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Figure 1. Molecular and genetic alterations in HR-EC with potential therapeutic targets and benefits. The classification of
high-intermediate and high-risk EC based on the clinico-molecular risk stratification resulted in recommended treatment
regimens in these categories. Anomalies in these tumors’ genetic and signaling pathways may also offer a novel treatment
strategy and benefit based on specific alterations. Endometrial cancer (EC), lymphovascular space invasion (LVSI), mis-
match repair deficiency (MMRd), non-specific molecular pattern (NSMP), catenin beta 1 (CTNNB1), mammalian target
of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K), microtubule associated protein kinase (MAPK), F-box and WD
repeat domain containing protein 7 (FBXW7), protein phosphatase 2 scaffold subunit A alpha (PPP2R1A), human epidermal
growth factor receptor 2 (HER2), AT-rich interaction domain 1A (ARID1A), poly adenosine diphosphate-ribose polymerase
(PARP), enhancer of zeste homolog 2 (EZH2), transforming growth factor 1 (TGF-1), cyclin-dependent kinase 4/6 (CDK
4/6), and programmed cell death 1/ligand 1 (PD-1/PD-L1).

7. Characterization of EC Patient-Derived Preclinical Models

The use of various preclinical models to enable potential drug target identification
and also guide novel effective drug development is the pivot in EC research [89]. Patient-
derived models include cell lines, explants, xenografts, and organoids. For more per-
sonalized patient care, these models can be molecularly characterized. Patient-derived
models have several advantages, including the following: (1) they reflect several features
of the original patient tumor specimen, (2) they can be used to identify potential genetic
and molecular defects in genes, proteins, and signaling pathways in patients, and (3)
they can predict the response of individual patients to different combinatorial treatment
options, both conventional and novel anti-cancer therapeutics. Unlike lung, breast, and
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ovarian cancers, very few endometrial patient-derived cell lines have been generated and
characterized [90–93]. Schrauwen et al. established and characterized for the first time
seven primary EC cell lines and further developed subcutaneous and orthotopic xenograft
models from some of the primary cell lines. Although the cell lines mimicked the genetic
characteristics of the primary tumor, they observed that MSI status is the determinant of
successfully establishing these cell lines [93].

Several studies in PDX and organoid models have demonstrated how these models,
both histologically and genetically, resemble the primary tumor [93–97]. EC patient-derived
preclinical models have contributed to novel findings in EC, which may influence the
development of new anticancer drugs.

For example, Urick and Bell identified for the first time PADI2 (peptidyl arginine
deiminase 2) as a novel therapeutic target for these tumors’ analysis of FBXW7 in serous
EC cells [98]. In another study, inhibition of the mTOR and PI3K pathways in PTEN-
deficient cell lines increased their sensitivity to PARP inhibitors, indicating the potential
benefit of combining PI3K/mTOR inhibitors and PARP inhibitors in patients with PTEN
mutations [99,100]. It has also been reported that TGF-1 signaling was associated with a
high-risk recurrence phenotype in EC, implying that TGF-1 could be used to further stratify
HR-ECs into high and low risk. TGF-1 inhibition with SB-431542, a specific TGF-1 inhibitor,
slowed tumor growth and invasion, indicating a potential therapeutic benefit for HR-EC
patients [101].

Depreeuw et al. established and characterized a panel of 24 EC PDX models. In one
model derived from a patient who had previously received multiple lines of chemotherapy
with PTEN, PIK3CA, and KRAS mutations, combining NVP-BEZ235 (dual PI3K-mTOR
inhibitor) and AZD6244 (MEK1/2 inhibitor) treatment, resulted in stable disease [94].
Furthermore, they observed a significant enrichment of 2 molecular subgroups—MSI (62%)
and POLE-mt (15%)—in the engrafted models, implying that immunotherapy may be
beneficial in these models as well. A similar combinatorial effect of NVP-BEZ235 and
AZD6244 was observed or confirmed in EC-derived primary cell lines, whereas NVP-
BEZ235 alone was able to reduce tumor growth in vivo [102]. PTEN deficiency in EC
PDX models also resulted in an anti-tumor effect with the CDK4/6 inhibitor, Palbociclib
(PD-332991) [103].

A drug screening performed in EC patients-derived organoid cultures identified
menin-MLL inhibitor (MI-136), as a potential therapeutic target for endometrial cancer due
to its regulation of the HIF pathway [104]. Paclitaxel also synergized with an aldehyde
dehydrogenase (ALDH) inhibitor to inhibit cancer proliferation in EC organoids with high
ALDH levels [105].

There is no doubt that patient-derived preclinical EC models have paved the way for
drug screening and novel drug development in ECs, but these models could be further
improved. The way forward could be to molecularly risk-stratify these models into var-
ious risk categories and then test a treatment regimen based on their molecular profile.
These preclinical findings will then be used to determine which drugs may perform better
clinically or could be tested on humans, facilitating the design of novel clinical trials.

8. Conclusions and Future Perspectives

Treatment efficacy in EC, especially in the high-risk subgroup, has not yet shown
satisfactory results, despite increased efforts in improving treatment strategy. Patient risk
stratification is of utmost importance in assigning the most appropriate treatment regimen
to avoid under- and or over-treatment of patients. The TCGA molecular classification of EC
has added a risk assessment tool to the current risk stratification. In recent years, several
retrospective studies after TCGA have indicated how incorporating molecular features or
testing into traditional risk assessment may help in identifying the high-risk population,
and further aid in reclassifying the HR-EC subgroup. Furthermore, the application of
molecular or genetic risk profile in patient-derived EC preclinical models may facilitate the
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development and the evaluation of the efficacy of novel targeted drugs, as well as assist in
identifying predictive/prognostic biomarkers to assess patient treatment response.
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Abbreviations

Akt Protein kinase B
APC Adenomatous polyposis coli
ARID1A AT-rich interaction domain 1A
ARID5B AT-rich interaction domain 5B
CDH1 Cadherin-1
CTCF CCCTC-binding factor
CSS Cancer specific survival
CTNNB1 Catenin beta 1
CCNE1 Cyclin E1
CDK4,6 Cyclin-dependent kinase 4,6
CHD4 Chromodomain helicase DNA-binding protein 4
COL1A1 Collagen Type I Alpha 1 Chain
CNH Copy number high
CNL Copy number low
CR
CSMD3 CUB and Sushi multiple domains 3
DNA-PK DNA-dependent protein kinase
EC Endometrial cancer
EEC Endometrioid endometrial cancer
EZH2 Enhancer of zeste homolog 2
ER/PR Estrogen/progesterone receptor
EGFR Epidermal growth factor receptor
E-cadherin Epithelial cadherin
EBRT External beam radiotherapy
ENITEC European Network for Individualized Treatment of Endometrial Cancer
ESGO European Society of Gynaecological Oncology
ESMO European Society for Medical Oncology
ESTRO European SocieTy for Radiotherapy & Oncology
FANCD2 Fanconi Anemia, Complementation Group D2
FBXW7 F-box and WD repeat domain containing protein 7
FGFR2 Fibroblast growth factor receptor 2
GOG Gynecologic Oncology Group
δ-H2AX H2A histone family member X
HER2 Human epidermal growth factor receptor 2
HIR High–intermediate risk
HRD Homologous recombination deficiency
HR-ECs High-risk endometrial cancer
IMRT Intensity-modulated radiation therapy
FIGO International Federation of Gynecology and Obstetrics
KRAS KRAS proto-oncogene, GTPase
L1CAM L1 cell adhesion molecule
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KMT2B Lysine Methyltransferase-2B
LVSI Lymphovascular space invasion
mTOR Mammalian target of rapamycin
MSI Microsatellite instability
MSI-H Microsatellite instability-high
MMR Mismatch repair
SMAD4 Mothers against decapentaplegic homolog 4
MLH MutL homolog 1
MYC MYC Proto-Oncogene
NRAS Neuroblastoma RAS viral oncogene homolog
OS Overall survival
ORR Overall response rate
PADI2 Peptidyl arginine deiminase 2
PARP1 PARP Poly (ADP-ribose) polymerase 1
PD-1 Programmed cell death protein 1
PD-L1/2 Programmed cell death protein ligand 1/2

PI3K Phosphoinositide 3-kinase
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1
PDX Patient-derived xenograft
POLE Polymerase E
POLE-mt Polymerase mutant
PORTEC3 Postoperative Radiation Therapy in Endometrial Cancer 3
PFS Progression free survival
ProMisE Proactive Molecular Risk Classifier for Endometrial Cancer
PPP2R1A Protein Phosphatase 2 scaffold subunit A alpha
PgR Progesterone receptor
PR Partial response
PTEN Phosphatase and tensin homolog
RAD51 RAD51 recombinase
RFS Recurrence-free survival
RPL22 Ribosomal protein L22
SOX17 SRY-related HMG-box 17
p53 TP53 Tumor protein
TCGA The Cancer Genome Atlas
TGF-β1 Transforming growth factor beta 1
VBT Vaginal brachytherapy
VEGFR Vascular endothelial growth factor receptor
Wnt Wingless/integration-1
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