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Abstract

Pairs of nucleotides within functional nucleic acid secondary structures often display evidence of coevolution that is
consistent with the maintenance of base-pairing. Here, we introduce a sequence evolution model, MESSI (Modeling the
Evolution of Secondary Structure Interactions), that infers coevolution associated with base-paired sites in DNA or RNA
sequence alignments. MESSI can estimate coevolution while accounting for an unknown secondary structure. MESSI can
also use graphics processing unit parallelism to increase computational speed. We used MESSI to infer coevolution
associated with GC, AU (AT in DNA), GU (GT in DNA) pairs in noncoding RNA alignments, and in single-stranded RNA
and DNA virus alignments. Estimates of GU pair coevolution were found to be higher at base-paired sites in single-
stranded RNA viruses and noncoding RNAs than estimates of GT pair coevolution in single-stranded DNA viruses. A
potential biophysical explanation is that GT pairs do not stabilize DNA secondary structures to the same extent that GU
pairs do in RNA. Additionally, MESSI estimates the degrees of coevolution at individual base-paired sites in an alignment.
These estimates were computed for a SHAPE-MaP-determined HIV-1 NL4-3 RNA secondary structure. We found that
estimates of coevolution were more strongly correlated with experimentally determined SHAPE-MaP pairing scores than
three nonevolutionary measures of base-pairing covariation. To assist researchers in prioritizing substructures with
potential functionality, MESSI automatically ranks substructures by degrees of coevolution at base-paired sites within
them. Such a ranking was created for an HIV-1 subtype B alignment, revealing an excess of top-ranking substructures that
have been previously identified as having structure-related functional importance, among several uncharacterized top-
ranking substructures.
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Introduction
The primary role of nucleic acid molecules, such as deoxyri-
bonucleic acid (DNA) and ribonucleic acid (RNA), is to en-
code genetic information for storage and transfer. However,
both types of molecules can form structures with additional
functions (Mattick 2003). DNA is ordinarily thought of as a
double-stranded molecule forming the now iconic double
helical configuration (Watson and Crick 1953), although
many viral genomes consist entirely of single-stranded DNA
(ssDNA) or single-stranded RNA (ssRNA) molecules. Such
single-stranded nucleic acid molecules are far less constrained
than double-stranded ones in the variety of functional struc-
tures that they can form. For example, the Rev response el-
ement (RRE) within the single-stranded HIV RNA genome
plays a crucial role in the regulation of HIV replication by
binding the HIV Rev protein to facilitate the transfer of HIV
genomes from the nucleus to the cytoplasm where transla-
tion and virion packaging occur (Heaphy et al. 1990;
Daugherty et al. 2010).

The structures that nucleic acid molecules form are com-
monly referred to as their secondary or tertiary structures.
Secondary structure is defined as the set of hydrogen bonding
interactions between the constituent bases of a nucleic acid
molecule; tertiary structure is defined as the arrangement of
the constituent atoms of a nucleic acid molecule in 3D space.
This study focuses exclusively on RNA and DNA secondary
structures.

Both computational (Bernhart et al. 2006; Markham and
Zuker 2008; Sükösd et al. 2012) and hybrid experimental-
computational techniques (Wilkinson et al. 2006) for second-
ary structure prediction exist. However, even if the secondary
structure of an RNA sequence can be accurately determined,
this does not immediately say anything about the potential
functional or biological importance of the identified structure.
Many RNA secondary structures are known to have specific
biological functions, and it is expected that evolutionary con-
servation or adaptation of these structures might detectably
impact patterns of sequence diversity and evolution.
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One evolutionary signal that can be used to identify selec-
tively maintained secondary structures is nucleotide coevolu-
tion. Nucleotide coevolution is expected at base-paired
nucleotide positions within RNA and DNA secondary struc-
tures (Eddy and Durbin 1994; Tuplin et al. 2002; Cheng et al.
2012). Many pairs of nucleotides within RNA molecules ex-
hibit evidence of coevolution, such that whenever a substi-
tution occurs in one partner of the pair, complementary
substitutions are selected for in the other partner in a manner
that is consistent with the selective maintenance of canonical
base-pairing (Cheng et al. 2012). The restricted nature of base-
pairing interactions in nucleic acid structures (compared with
amino acid interactions in protein structures) permits both
nucleic acid structural conformations and nucleotide coevo-
lution to be predicted with relative ease. In this study, we
consider the canonical RNA base-pairs to be the two
Watson–Crick base-pairs, GC and AU, and the weaker GU
wobble base-pair (GC, AT, and GT base-pairs in DNA,
respectively).

Methods for detecting coevolution, such as mutual
information (Eddy and Durbin 1994; Lindgreen et al.
2006), can be used to aid the computational inference
of secondary structures. Accordingly, some RNA compar-
ative secondary structure prediction approaches, such as
PPfold (Sükösd et al. 2012), use information about
coevolving nucleotides inferred from sequence align-
ments to more accurately predict secondary structures.
Conversely, within a given secondary structural element,
evidence that paired bases are coevolving is evidence of
the functional importance of that element (Tuplin et al.
2002; Cheng et al. 2012; Muhire et al. 2014).

Standard approaches for measuring coevolution (or more
accurately: covariation), such as mutual information, are non-
evolutionary in that they do not take into account the phy-
logenetic relationships of the sequences being analyzed.
Founder substitutions can, by chance, induce correlations
between bases in a large number of observed variants or
species (e.g., see, Bhattacharya et al. 2007), which may be
mistaken for strong evidence of coevolution if the phylogeny
is not accounted for. Substitution models provide a proba-
bilistic framework for modeling of both phylogenetic relation-
ships and underlying substitution processes.

In this article, we introduce MESSI (Modeling the Evolution
of Secondary Structure Interactions), a probabilistic model
that generalizes upon the pioneering Muse (1995) (M95)
model of base-pairing evolution. The first way we extend
the M95 model is the addition of parameters that allow us
to differentiate between rates of evolution affecting the three
canonical base-pairs. We used this to compare the role of GU
base-pairs in single-stranded RNA viruses with GT base-pairs
in single-stranded DNA viruses.

It is well-established that GU pairs can hydrogen bond in
RNA to form base-pairs, although they are chemically weaker
than GC and AU base-pairings (Rousset et al. 1991). The
relative chemical strengths of GC, AU, and GU base-pairs
are partially due to the number of hydrogen bonds that
form between their constituent bases: three for GC base-
pairs, two for AU base-pairs, and two for GU base-pairs.

Although GU pairs form the same number of hydrogen
bonds as in AU pairs, the geometry of the bases leads to
the GU pairing being substantially weaker than the AU pair-
ing (Varani and McClain 2000). Despite the weaker chemical
interaction, GU base-pairings are known to be involved in
functional RNA structures (Gautheret et al. 1995). Less well
understood is the role of GT base-pairings in DNA. There are
few reports of GT base-pairings in double-stranded DNA he-
lices (Early et al. 1978; Ho et al. 1985). Although we were
unable to directly measure the chemical strength of these
base-pairing interactions in the present study, we used
MESSI to analyze alignments for evidence of evolutionary
forces favoring GT pairs at base-paired positions.

The second way in which we extended the M95 model was
to allow substitution rates to vary across sites (Yang 1993,
1994), including allowing the two positions involved in a base-
pairing to each to have a potentially different substitution
rate. This was done to account for site-specific substitution
rates, such as those expected within coding sequences. This is
particularly important for virus genomes, where the majority
of nucleotides are in protein coding regions, where some of
these nucleotides additionally participate in functionally im-
portant base-pairing interactions.

The third extension was to permit the strength of co-
evolution to vary across base-paired sites. This provides a
measure of base-pairing coevolution between every pair
of sites in alignment, allowing us to test whether a par-
ticular pair of sites is coevolving in a manner favoring
canonical base-pairing, or whether the two sites are evolv-
ing independently of one another. The use of an evolu-
tionary model addresses the problem of founder effects
potentially inflating signals of covariation. We used this
extension to estimate rates of coevolution at individual
base-paired sites within two HIV alignments, allowing us
to identify and rank substructures within the larger HIV
genomic secondary structure that have potential biolog-
ical functionality. This is a feature of our model that we
expect will assist researchers in focusing their experimen-
tal analyses on those portions of large RNA or DNA sec-
ondary structures that are most likely to be biologically
relevant.

Compared with nonevolutionary methods, the computa-
tional cost of applying evolutionary models, such as MESSI,
can severely limit their utility. We used graphics processing
unit (GPU) parallelism and a Metropolis-within-Gibbs proce-
dure when performing Bayesian inference to reduce these
computational bottlenecks. This provided large speed-ups.
Furthermore, this allowed us to account for a potentially
unknown secondary structure configuration, while simulta-
neously estimating parameters of interest. This implies that
the user need not provide a secondary structure as input.
Relying on a potentially incorrect input secondary structure
may bias parameter estimates, and may also undermine the
conclusions of hypothesis tests based on those estimates. A
further benefit of accounting for an unknown secondary
structure is that this enables MESSI to output a prediction
of the secondary structure and a base-pairing probability
matrix.
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Results

Site Permutation Benchmarks
To assess the degree to which secondary structure dependen-
cies present in real data sets influence model fit, ML inference
was performed on real and permuted data sets, and their
structure-integrated likelihoods and structure information
entropies were compared (see “Site Permutations” in
Materials and Methods). The structure-integrated likelihoods
for the permuted data sets were expected to be lower than
those of the real data sets. Note that comparing these like-
lihoods is valid given they are in effect marginal likelihoods.
Conversely, the structure information entropies were
expected to be higher for the permuted data sets than for
the real data sets. Unlike the real data sets, the patterns of
coevolution in the permuted data sets were not expected to
coincide with stable secondary structure configurations,
thereby spreading the probability mass over a larger number
of secondary structure configurations.

The maximum likelihood estimates of the structure-
integrated likelihoods were indeed lower for the permuted
data sets in every instance (supplementary table S2,
Supplementary Material online). This partially validates our
model and is consistent with the presence of real secondary
structure dependencies in the original data sets. As expected,
the structure information entropies were higher for the per-
muted data sets, with the exception of RF00003, which had
marginally lower structure information entropies for both of
the permuted data sets. This result is surprising as RF00003
corresponds to the U1 spliceosomal RNA, a component of a
spliceosome (Burge et al. 2013) with a thermodynamically
stable structure. Since MESSI uses evolutionary and not ther-
modynamic information to infer secondary structure, one
explanation may be that the patterns of nucleotides within
the RF00003 data set are only weakly informative of the un-
derlying secondary structure.

Benchmarks of RNA Structure Prediction
Although our model was not designed to predict RNA sec-
ondary structure, the expected base-pairing and unpairing
probabilities can be calculated (see supplementary section
1.5, Supplementary Material online) and a Maximum
Expected Accuracy consensus secondary structure deter-
mined (see supplementary section 1.6, Supplementary
Material online). Our method was compared with two com-
parative methods of RNA secondary structure prediction:
RNAalifold (Bernhart et al. 2006) and PPfold (Sükösd et al.
2012). The three methods were benchmarked on 99 align-
ments each having a corresponding experimentally deter-
mined canonical RNA secondary structure from the RFAM
database (Burge et al. 2013). Five different measures were
used to compute predictive accuracy (see supplementary
section 1.8, Supplementary Material online, for definitions
of these measures).

MESSI has lower precision but higher recall than the other
two methods, implying that it predicts more base-pairs
(higher recall), but with a higher number of false-positives
(lower precision; fig. 1). For the F1-score and MCC measures,

both of which combine precision and recall, MESSI performs
slightly better than RNAalifold, and slightly worse than PPfold.
MESSI performs marginally better with respect to the moun-
tain similarity measure—a measure that takes into account
the overall “shape” of the secondary structures being com-
pared, rather than the exact matching of base-pairs.

Overall, our method performs on a par with two well-
established methods of comparative RNA structure predic-
tion. This was surprising given that the model was not devel-
oped for the purpose of secondary structure prediction.
Maximum likelihood inference was used to estimate the
model parameters. Where the coevolution parameters
(kGC; kAU, and kGU) were free to vary with the only restric-
tion being: kGC � 1; kAU � 1, and kGU � 1. Although not
tested here, it might be possible to improve the predictive
accuracy of MESSI’s structure predictions by performing
Bayesian or MAP inference of the parameters using a set of
priors whose hyperparameters are determined from a training
data set of alignments and corresponding structures.

CPU and GPU Timing Benchmarks
The two computational bottlenecks in performing both max-
imum likelihood and Bayesian inference are computing
paired site likelihood matrices (computed using an iterative
version of Felsenstein’s algorithm) and computing inside
probability matrices (using an iterative version of the inside
algorithm); both of these steps are required repeatedly.
Although optimized CPU implementations written in Julia
were created for both of these steps, these were still relatively
slow. Therefore, GPU implementations written in CUDA were
implemented for both.

The number of computational steps is expected to grow
linearly with the number of unique paired site patterns and
hence this was chosen as a predictor of the computational
time required (fig. 2). Compared with the single-threaded
CPU implementation, we achieve a �50� speed-up with
the GPU implementation across most data sets.

The number of computational steps for the inside algo-
rithm is expected to grow OðL3Þ where L is the number of

FIG. 1. Summary of secondary structure prediction benchmarks.
Structure predictions were performed on 99 RFAM data sets using
three different comparative structure prediction methods (MESSI,
RNAalifold, and PPFold).
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alignment sites (fig. 3). A 50- to 200-fold speed-up for the
paired site likelihood calculations was achieved for moderate
data set sizes, with the fold speed-ups for larger data sets
being bigger, due to larger data sets better saturating the GPU.

The speed-ups seen here are significant, enabling us to
analyze data sets which would typically be considered intrac-
table. Note that CPU and GPU implementations were also
developed for the outside algorithm with similar speed-ups
obtained (supplementary fig. S4 in the Appendix,
Supplementary Material online).

The Role of GU and GT Base-Pairs in Single-Stranded
RNA and DNA
For all five noncoding RNA data sets (RF00001, RF00003,
RF00010, RF00379, and RF01846), likelihood ratio tests
(LRTs) rejected the GU neutral model in favor of the uncon-
strained model (P< 0.0005. See table 1). This was true for
both the potentially recombinant and the recombination-
free data sets. This is evidence that many GU pairs are under
selective maintenance in the five noncoding RNA data sets
tested.

For four of the five RNA virus data sets tested (Rhinovirus
A, Tobamovirus, human poliovirus 1, and foot-and-mouth
disease virus, see table 1) LRTs rejected the GU neutral model
in favor of the unconstrained model (P< 0.0005 in all four
cases). Curiously, the GU neutral model could not be rejected
in favor of the unconstrained model for the hepatitis A virus
data set (table 1), with the ML estimate for bkGU ¼ 1. The
pattern of results was the same for both the potentially re-
combinant and the recombination-free data sets.

Three of the five DNA virus genome data sets tested
(Human bocavirus, beet curly top virus, and tomato yellow
leaf curl virus in table 1) showed no significant difference
between the unconstrained model and a GU (GT) neutral
model (kGU :¼ 1). In contrast, the Wheat Dwarf Virus data

set rejected the GT neutral model (P< 0.05), and the maise
streak virus data set rejected the GT neutral model
(P< 0.005). ML estimates for bkGT were in the range 1.0–
1.50 for the five ssDNA virus data sets, which was low com-
pared with those determined for the noncoding RNA and
RNA virus data sets. Interestingly, for the recombination-free
data sets, the GT neutral model could not be rejected for all
five data sets, including all four cases where bootstrap P-value
calculations were performed. The ML estimates for bkGT were
in the range 1.0–1.06 when accounting for recombination.

The LRT results and the ML estimates for bkGU (bkGT) sug-
gest that GT pairs are under weak selective maintenance in
DNA virus genomes, and strong selective maintenance in
RNA virus genomes and noncoding RNAs. This may indicate
that GT base-pairings in DNA are chemically weaker relative
to GU base-pairings in RNA and hence do not stabilize DNA
secondary structures to the same extent as GU base-pairings
in RNA.

Please note that these analyses were analyzed under a
model without variable degrees of coevolution (see
“Modeling Variable Degrees of Coevolution”). This was
done to ensure stable convergence of the optimization algo-
rithm when performing ML inference, which is important for
valid LRT statistics and to reduce the computational burden
(which scales with number of coevolution categories, the
default being five categories, whereas one category was
used in this case).

Relative Coevolution Rates
The relative selective strengths of the coevolution rates asso-
ciated with GC, AU, and GU pairs were compared across both
DNA and RNA virus genomes. The original M95 model as-
sumed that kGC :¼ kAU and kGC :¼ 1. Experimental evi-
dence confirms theoretical predictions of physical chemistry
that GC base-pairings are stabilized more by hydrogen bonds
than AU base-pairings in RNA (Mathews et al. 1999), with
both being substantially stronger than GU base-pairings.

To assess whether kGC :¼ kAU is a reasonable assumption,
we performed LRTs comparing the unconstrained model to a

FIG. 2. Paired site likelihoods calculation timings in seconds (log10

axis) as a function of the number unique paired partial site patterns
(log10 axis). Numbers above the GPU timings indicate the fold speed-
up over the CPU version.

FIG. 3. Inside algorithm timings in seconds (log10 axis) as a function of
the number of alignment sites. Numbers above the GPU timings
indicate the fold speed-up over the CPU version.
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kGC :¼ kAU constrained model. For 14 of the 15 data sets,
LRTs rejected the GC–AU constrained model in favor of the
unconstrained model (results not shown). The only exception
was the human poliovirus 1 data set, where the GC–AU
constrained model could not be rejected.

This was explored further by comparing the inferred rela-
tive magnitudes of the rates associated with GC, AU (AT),
and GU (GT) dinucleotides. If the fitness value of a RNA
secondary structure element is positively correlated with its
chemical stability, it is expected that the relative chemical
stabilities associated with the three canonical base-pairs
would be reflected in the relative magnitudes of the coevo-
lution rates inferred by MESSI.

We applied MESSI’s Bayesian posterior inference mode to
15 data sets, five from each of three data set types. Posterior

probabilities associated with all six possible orderings of the
three base coevolution rates were estimated for each data set
(fig. 4). Given the relative chemical base-pairing stabilities, the
dominant ordering for the base coevolution rates was
expected to be kGC > kAU > kGU. For all five ncRNA data
sets, all five ssDNA virus data sets, and two of the five ssRNA
virus data sets the posterior probability associated with the
kGC > kAU > kGU ordering was indeed 1.0.

Interestingly, an unexpected ordering, kGC > kGU > kAU,
emerged for two of the ssRNA with a posterior probability of
1.0 for the Rhinovirus A data set and posterior probability of
0.36 the Human poliovirus 1 data set. An alternative ordering
for the Human poliovirus 1 data set was kGU > kGC > kAU

with a posterior probability of 0.64. The ssDNA virus TYLCV
data set also displayed the ordering kAU > kGC > kGU with a

0.0 0.2 0.4 0.6 0.8 1.0
Posterior probabilities

WDF (r)
TYLCV (r)

MSV (r)
Bocavirus (r)

BCTV (r)
Tobamovirus (r)
Rhinovirus A (r)

H. poliovirus 1 (r)
Hepatitis A (r)

FMDV (r)
RF01846 (r)
RF00379 (r)
RF00010 (r)
RF00003 (r)
RF00001 (r)

Medians
λGC λAU λGU

1.00 5.20 3.29 1.42
0.630.37 3.45 3.38 1.53

1.00 5.06 3.73 1.40
1.00 4.17 2.58 1.05
1.00 4.36 2.81 1.08
1.00 2.95 2.46 2.23
1.00 10.46 5.41 8.98

0.360.64 3.46 3.08 3.52
1.00 3.66 1.90 1.31
1.00 3.96 3.68 2.44
1.00 4.54 2.93 2.16
1.00 7.51 3.68 1.93
1.00 5.52 5.16 2.34
1.00 5.89 3.62 2.47
1.00 6.68 4.75 2.16

Relative magnitudes of λGC, λAU, and λGU

λGC > λAU > λGU
λAU > λGC > λGU
λGC > λGU > λAU
λAU > λGU > λGC
λGU > λGC > λAU
λGU > λAU > λGC

FIG. 4. Estimated posterior probabilities for all six orderings of the three base coevolution rates across 15 data sets.

Table 1. Tests of the GU/GT Neutral Hypothesis across 15 Data Sets: Five Noncoding RNA Alignments from the RFAM Database (denoted by the
prefix “RF”), Five ssRNA Virus Alignments (foot-and-mouth disease, human poliovirus 1, tobamovirus, rhinovirus A, and hepatitis A virus), and Five
ssDNA Virus Alignments (maise streak virus, tomato yellow leaf curl virus, beet curly top virus, and wheat dwarf virus).

Data Set Type Number of Sites Potentially Recombinant Recombinant Regions Separated

LRT (M1-M0) bkGU LRT (M1-M0) Bootstrap bkGU

DLL P-Value (bkGT) DLL P-Value P-Value (bkGT)

RF00001 ncRNA 230 226.80 *** 2.15 211.41 *** * ðP < 0:05Þ 2.17
RF00003 ncRNA 203 46.57 *** 2.57 43.51 *** * ðP < 0:05Þ 2.56
RF00010 ncRNA 996 2,964.36 *** 2.35 797.29 *** * ðP < 0:05Þ 2.32
RF00379 ncRNA 335 38.78 *** 1.97 35.31 *** * ðP < 0:05Þ 1.96
RF01846 ncRNA 624 101.72 *** 2.18 71.74 *** * ðP < 0:05Þ 2.10
FMDV ssRNA 8,349 336.64 *** 2.75 211.53 *** n.c. 2.50
Hepatitis A ssRNA 7,572 2.33 * 1.28 3.27 * n.c. 1.30
H. poliovirus 1 ssRNA 7,668 132.18 *** 3.52 140.32 *** n.c. 3.38
Rhinovirus A ssRNA 7,308 2,255.91 *** 10.63 2,188.94 *** n.c. 8.70
Tobamovirus ssRNA 6,849 90.81 *** 2.17 86.96 *** n.c. 2.23
BCTV ssDNA 3,215 0.18 n.s. 1.08 0.10 n.s. n.s. ðP � 0:77Þ 1.06
Bocavirus ssDNA 5,577 0.00 n.s. 1.00 0.00 n.s. n.c. 1.00
MSV ssDNA 2,755 3.77 * 1.35 0.00 n.s. n.s. ðP � 0:92Þ 1.00
TYLCV ssDNA 2,925 4.12 ** 1.50 0.00 n.s. n.s. ðP � 0:87Þ 1.00
WDV ssDNA 2,755 0.04 n.s. 1.04 0.00 n.s. n.s. ðP � 0:87Þ 1.04

NOTE.—n.s., not significant; n.c., not computable.
*P< 0.05; **P< 0.005; ***P< 0.0005.
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posterior probability of 0.37. Possible explanations for this
result include: 1) for many data sets it is not valid to assume
a canonical secondary structure that is conserved across the
entire phylogeny (Rivas et al. 2017). Additionally, the second-
ary structure may be in the form of genome-scale ordered
RNA structure (Simmonds et al. 2004) which is not expected
to be conserved. Two or more parts of the phylogeny may
have different mutually exclusive secondary structures, giving
rise to misleading patterns of pair evolution, and 2) data sets
with coding regions have additional constraints on synony-
mous and nonsynonymous substitutions, and these protein
coding constraints might mislead MESSI.

Degrees of Coevolution Are Correlated with
Experimental SHAPE-MaP Quantities
A notable example of a large RNA structure that has been
partially experimentally determined is that of the HIV-1M
subtype B NL4-3 isolate (Watts et al. 2009; Siegfried et al.
2014). Rather than relying solely on computational techni-
ques for the determination of RNA secondary structure of the
9,173 nucleotide NL4-3 genome, the hybrid experimental-
computational SHAPE-MaP (Selective 20-hydroxyl acylation
analyzed by primer extension and mutational profiling;
Siegfried et al. 2014) approach was used to model the struc-
ture. The SHAPE-MaP approach preferentially mutates un-
paired nucleotides, allowing the mutated nucleotides to be
identified using DNA sequencing following reverse transcrip-
tion. The SHAPE-MaP reactivity information is then used to
constrain a thermodynamic RNA folding algorithm, enabling
the construction of a secondary structure model which is
reflective of the experimental data.

We compared three nonevolutionary computational
measures of covariation (A. Mutual information, B.
RNAalifold mutual information, and C. Mutual information
with stacking; Lindgreen et al. 2006) and two evolutionary
measures of coevolution inferred by MESSI (D. Posterior prob-
ability g 6¼ 1, and E. Posterior mean g) with experimental
SHAPE-MaP reactivities and SHAPE-MaP pairing probabilities
at base-paired sites corresponding to three different data sets:
an HIV 1 b data set, an HIV group 1 M data set, and a Simian
Immunodeficiency Virus (SIV) data set. When analyzing the
HIV data sets the SHAPE-MaP reactivities, SHAPE-MaP pair-
ing probabilities and base-pairings were derived from a
SHAPE-MaP analysis of the HIV NL4-3 sequence (Watts
et al. 2009). When analyzing the SIV data set a SHAPE-MaP
analysis of the SIVmac239 sequence (Pollom et al. 2013) was
used. Given that high SHAPE-MaP reactivities indicate unpair-
ing, we expected that degrees of coevolution (or covariation)
would be negatively correlated with SHAPE-MaP reactivities.
Conversely, given that some paired nucleotides are expected
to be selectively maintained due to structure-related func-
tional importance, we expected a positive correlation be-
tween degrees of coevolution (or covariation) and SHAPE-
MaP pairing probabilities.

For all three data sets, the two measures of coevolution (D
and E) were significantly correlated with both the SHAPE-
MaP reactivities and SHAPE-MaP pairing probabilities using
Spearman’s rank correlation test. The correlations were in the

expected direction (negatively correlated for SHAPE-MaP
reactivities and positively correlated for SHAPE-MaP pairing
probabilities; table 2). For all three data sets, the correlation
coefficients were significantly stronger in the expected direc-
tion for the two coevolution measures (D and E) than the
three covariation measures (A, B, and C; see the 95% con-
fidences intervals for Spearman’s rho). We note that although
many of the correlations were statistically significant, the
magnitudes of the correlations were weak.

Curiously, for the SIV data set, SHAPE-MaP reactivities
were significantly positively correlated with the three meas-
ures of covariation (A, B, and C) rather than negatively cor-
related as expected. There is broad evidence to suggest that
base-paired sites in a functionally important RNA structure
tend to be more conserved (less variable) due to being under
selective constraint (Tuplin et al. 2004; Muhire et al. 2014) and
that double-stranded RNA (i.e., base-paired positions) is less
susceptible to mutational processes (Lindahl and Nyberg
1974). Conversely, unpaired sites are expected to undergo
relatively higher rates of mutation. These higher rates of mu-
tation may cause the three nonevolutionary measures of co-
variation to be erroneously inflated, given that they do not
fully account for site-to-site rate variation (see supplementary
section 1.2, Supplementary Material online) unlike the coevo-
lution measures inferred under our model, which do. It should
also be noted that the SIV data set is highly diverse compared
with the two HIV data sets. Given these factors, it is antici-
pated that weakly base-paired sites will have inflated degrees
of covariation using measures A, B, and C, which may explain
the unexpected positive correlation.

Overall, these results provide some reassurance that our
method is performing as expected and that the evolutionary
measures of coevolution are more reliable than the three
measures of covariation that do not take into account evo-
lutionary dependencies among the sequences being analyzed.
The detected degrees of coevolution suggest that a large pro-
portion of the predicted base-pairings in the SHAPE-MaP
structures have been selectively maintained since the com-
mon ancestors of the sequences being analyzed in each of the
three data sets.

Ranking and Visualization of Substructures
Rather than considering the entire secondary structure of a
large sequence, it is often useful to consider individual sub-
structures. There are two primary reasons for considering
substructures: 1) smaller regions are more easily
conceptualized, and 2) if functional components of a second-
ary structure are present, they tend to correspond to small
regions (20–350 nucleotides long) of that secondary
structure.

MESSI automatically ranks substructures by degrees of co-
evolution between their constituent nucleotides (see supple-
mentary methods section 1.9, Supplementary Material
online). We produced two rankings based on an HIV-1 sub-
type B alignment. The first ranking treated the HIV-1 NL4-3
SHAPE-MaP secondary structure as the canonical structure
when inferring coevolution and identifying substructures
(denoted the SHAPE structure ranking; table 3 and
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supplementary table S5, Supplementary Material online). The
second ranking used a consensus structure estimated by
MESSI based on base-pairing probabilities (denoted the con-
sensus structure ranking; table 4 and supplementary table S6,
Supplementary Material online).

The highest ranked substructure in both the SHAPE and
consensus rankings was the RRE (SHAPE RRE visualized in
fig. 5). The RRE occurs in the genomes of all known HIV
groups and plays a crucial role in the regulation of HIV virion
expression (Heaphy et al. 1990; Daugherty et al. 2010).

The longest continuous helix identified in both the SHAPE-
MaP and MESSI structures was ranked 2nd in the SHAPE
ranking and 8th in the consensus ranking, respectively. The
SHAPE-MaP analysis revealed that this helix is highly stable,
although its function is unknown. The significant degrees of
coevolution detected at base-paired sites within this sub-
structure and the fact that MESSI detects it as conserved
across all HIV-1 subtype sequences provides further evidence
of its likely functional importance.

Portions of the 30- and 50-untranslated regions (UTRs)
were ranked 3rd and 4th in the SHAPE ranking, respectively.
This was not surprising given that these are both noncoding

regions. The 50-UTR is involved in regulation of translation
(Damgaard et al. 2004), whereas the 30-UTR is believed to be
involved in regulation of transcription (Watts et al. 2009). A
50-UTR substructure at a similar position is ranked 6th in the
consensus ranking, whereas a 30-UTR substructure at a similar
position was not detected in the consensus structure. This
may be explained by the large number of UTR missing
sequences and high degrees of alignment uncertainty in the
HIV-1 subtype B alignment in the UTR regions; factors which
would both reduce support for the predicted base-pairings in
the consensus structure.

An uncharacterized substructure (alignment position:
1710–1845) ranked 7th in the SHAPE structure ranking and
3rd in the consensus structure ranking (fig. 5). This substruc-
ture warrants further study, given the supporting evidence
from experimental SHAPE-MaP reactivities, MESSI’s coevolu-
tion estimates, and MESSI’s evidence of conservation across
HIV-1 subtype B sequences. Despite MESSI predicting the
same helix as SHAPE-MaP at the base of this substructure,
the remainder of the substructure is different in the SHAPE-
MaP model. It is likely that the SHAPE-MaP model of this
substructure is more accurate in this instance.

Table 2. Spearman’s Correlations (q) and 95% Confidence Intervals (q 95% CI) between Five Different Measures of Covariation/Coevolution and
Base-Pair Averaged SHAPE-MaP Reactivities and the Same Five Measures and Base-Pair Averaged SHAPE-MaP Pairing Probabilities.

Data Set Measure SHAPE-MaP
Reactivities

q 95% CI P-Value SHAPE-MaP Pairing
Probabilities

q 95% CI P-value

q q

A. Mutual information (MI) 20.01 [20.051, 0.035] n.s. 0.11 [0.069, 0.154] ***
B. RNAAlifold MI 0.01 [20.033, 0.053] n.s. 0.01 [20.030, 0.056] n.s.

HIV-1 C. MI with stacking 20.02 [20.060, 0.026] n.s. 0.10 [0.059, 0.144] ***
Subtype B D. pðg 6¼ 0Þ 20.16 [20.202, 20.118] *** 0.19 [0.147, 0.230] ***

E. Posterior mean g 20.14 [20.180, 20.095] *** 0.20 [0.162, 0.244] ***
A. Mutual information (MI) 0.03 [20.016, 0.070] n.s. 0.09 [0.047, 0.132] ***
B. RNAAlifold MI 0.03 [20.013, 0.073] n.s. 0.08 [0.033, 0.119] ***

HIV-1 C. MI with stacking 0.00 [20.043, 0.043] n.s. 0.12 [0.081, 0.166] ***
Group 1M D. pðg 6¼ 0Þ 20.18 [20.225, 20.142] *** 0.27 [0.227, 0.307] ***

E. Posterior mean g 20.16 [20.197, 20.113] *** 0.29 [0.251, 0.330] ***
A. Mutual information (MI) 0.09 [0.053, 0.132] *** 20.04 [20.084, 20.005] *
B. RNAAlifold MI 0.12 [0.086, 0.164] *** 20.07 [20.114, 20.035] ***

SIVmac239 C. MI with stacking 0.10 [0.057, 0.135] *** 20.01 [20.046, 0.033] n.s.
D. pðg 6¼ 0Þ 20.12 [20.160, 20.082] *** 0.19 [0.153, 0.229] ***
E. Posterior mean g 20.10 [20.137, 20.058] *** 0.20 [0.164, 0.240] ***

NOTE.—Underlined values indicate correlations that are statistically significant and in the expected direction. n.s., not significant.
*P< 0.05; **P< 0.005; ***P< 0.0005

Table 3. SHAPE Structure Ranking.

Rank Alignment Position NL4-3 Position Length Name Median Degree of Coevolution z-Score

1 8233–8582 7249–7595 350 Rev response element (RRE) 5.38 5.02
2 2608–2943 1991–2326 336 Longest continuous helix 5.17 2.92
3 10155–10383 8982–9170 229 30-Untranslated region (30-UTR) 5.27 2.69
4 588–838 105–344 251 50-Untranslated region (50-UTR) 5.65 2.61
5 9570–9584 8440–8454 15 5.91 2.29
6 860–979 366–485 120 50-Untranslated region (50-UTR) 5.54 2.28
7 1710–1845 1177–1312 136 5.17 2.28
8 2115–2301 1561–1711 187 Gag-pol frameshift 5.31 2.21
9 1479–1490 946–957 12 5.85 2.04
10 3886–3907 3269–3290 22 5.80 2.01

NOTE.—The top 10 of 86 nonoverlapping HIV NL4-3 substructures ranked from highest to lowest z-score based on the estimated degrees of coevolution within an alignment of
HIV-1 subtype B sequences. Where the HIV NL4-3 SHAPE-MaP secondary structure was used as the canonical structure.
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Interestingly, an additional uncharacterized substructure
(alignment position: 4751–4833) ranked 4th in consensus
ranking, but was not present in the HIV-1 NL4-3 SHAPE
structure and hence was not present in the SHAPE structure
ranking (fig. 5). Overlaid SHAPE-MaP reactivities from the HIV
N4L-3 SHAPE model provide some support for MESSI’s pre-
diction; particularly at unpaired positions which are sup-
ported by high SHAPE-MaP reactivities (indicating single-
strandedness). It is possible that either MESSI’s or SHAPE-
MaP’s prediction is wrong, or that the particular conforma-
tion predicted by MESSI is conserved among a subset of HIV-1
subtype B sequences that excludes NL4-3. It is also possible
that this substructure exists in alternative conformations
depending on in vivo or in vitro conditions.

Finally, the gag-pol frameshift-associated substructure was
ranked 8th in the SHAPE ranking and 2nd in the consensus
rankings. This substructure regulates the ratio of HIV gag/gag-
pol that is expressed. Ribosomal synthesis of the gag-pol
polyprotein requires a �1 ribosomal frameshift, without
which translation ends in synthesis of the gag protein alone.

Overall, there is an excess of top-ranking substructures
that have been identified previously in the literature as having
structure-related importance. This is particularly evident in
the SHAPE-MaP structure ranking. The use of the
experimentally determined SHAPE-MaP structure as the ca-
nonical structure strongly informs the SHAPE structure rank-
ing, but has the disadvantage that it is based only on the HIV
NL4-3 sequence rather than being representative of base-
pairings conserved across all sequences within the HIV-1 sub-
type B alignment. By contrast, the consensus ranking canon-
ical structure is predicted by MESSI and is based solely on
evolutionary information, rather than experimental or ther-
modynamic information. In the future, we hope to extend
MESSI by adding both experimental constraints from experi-
ments such as SHAPE-MaP and thermodynamic constraints
from folding software such as Vienna RNAfold. We expected
this to improve estimates of coevolution and the overall rank-
ing provided by MESSI.

Concluding Remarks
MESSI was developed for modeling substitutions that are
consistent with the maintenance of canonical base-pairing
at paired sites within alignments of DNA and RNA sequences.

To achieve this, we extended an existing model, M95 (Muse
1995), in four major ways: 1) differentiating between the three
canonical base-pairs (GC, AU, and GU), 2) allowing substitu-
tion rates to vary across sites, 3) permitting the strength of
coevolution to vary across base-paired sites, to measure the
strength of selection operating on particular base-pairs, and
4) accounting for a potentially unknown secondary structure.

Among these extensions, extending the model to permit
an unknown secondary structure posed the greatest compu-
tational challenges. The first challenge was the need to com-
pute likelihoods using Felsenstein’s peeling algorithm for all

L

2

 !
paired sites. Fortunately, a large number of redundant

calculations could be avoided due to a large proportion of
paired sites sharing the same partial site patterns (Pond and
Muse 2004), resulting in at least a 5� speed-up. Additionally,
a further 50� speed-up was achieved using a GPU imple-
mentation of Felsenstein’s peeling algorithm. The second
challenge was the need to marginalize an unknown secondary
structure using the inside algorithm. Computational speed-
ups of 50�–200� were achieved using a GPU implementa-
tion of the inside algorithm. For Bayesian inference, a
Metropolis-within-Gibbs procedure was implemented to fur-
ther avoid calculating the paired matrix likelihoods and inside
probabilities at every iteration.

ML and Bayesian inference were used for different analyses.
ML inference allowed us to perform likelihood ratio tests of
various hypotheses, for which Bayesian model comparison
was computationally intractable. Bayesian inference was
used to obtain posterior distributions over various parame-
ters, including the rates of coevolution associated with the
three canonical base-pairs, and posterior probabilities and
degrees of coevolution at base-pair sites.

To perform an initial validation of our model, site permu-
tations of nucleotide alignments were performed to disrupt
the secondary structure dependencies expected in real data
sets. Consistent with the model behaving desirably, the
structure-integrated maximum likelihood values were lower,
and the structure information entropy values higher for the
permuted data sets overall.

The ability to marginalize an unknown secondary structure
shared among an alignment of sequences, implies that MESSI
is also capable of secondary structure prediction. Although

Table 4. Consensus Structure Ranking.

Rank Alignment Position NL4-3 Position Length Name Median Degree of Coevolution z-Score

1 8240–8577 7256–7590 338 Rev response element (RRE) 5.64 6.53
2 2202–2229 1645–1672 28 Gag-pol frameshift 8.17 4.56
3 1710–1845 1177–1312 136 6.44 4.50
4 4751–4833 4134–4216 83 6.47 3.97
5 4505–4709 3888–4092 205 5.22 3.21
6 591–939 108–445 349 50-Untranslated region (50-UTR) 5.38 3.16
7 133–151 NA 19 6.85 2.94
8 2564–2890 1947–2273 327 Longest continuous helix 4.44 2.62
9 9782–9800 8645–8663 19 6.92 2.55
10 3612–3623 2995–3006 12 6.74 2.50

NOTE.—The top 10 of 118 nonoverlapping HIV consensus substructures ranked from highest to lowest z-score based on their degrees of coevolution within an alignment of HIV-
1 subtype B sequences. Where the canonical structure was treated as unknown and a consensus structure predicted by MESSI.
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MESSI was not designed with structure prediction in mind,
we found that it performed similarly to two popular compar-
ative secondary structure prediction methods: RNAalifold
(Hofacker 2009) and PPfold (Sükösd et al. 2012). This result
further validates our approach.

We found strong evidence that GU pairs are selectively
favored at base-paired sites in five noncoding RNA data sets
and four of five RNA virus genome data sets. Strong evidence
for selection of GT pairs at base-paired sites was found for
only one out of five of the DNA virus data sets tested.

FIG. 5. Visualization of several top ranking substructures in the SHAPE-MaP structure and consensus structure rankings. NL4-3 SHAPE-MaP
experimental reactivities are mapped and visually overlaid using the same color scheme as in Watts et al. (2009). Depicted within each nucleotide is
a sequence logo summarizing the nucleotide composition at the corresponding alignment position. Mean degrees of coevolution inferred using
MESSI are depicted for each base-pair using colored links (blue–green–yellow gradient).
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Whereas no evidence was found when taking into account
recombination. The notion that GU pairs play a role in sta-
bilizing RNA secondary structures is consistent with numer-
ous phylogenetic, and experimental analyses of RNA
molecules (Woese et al. 1980; Eddy and Durbin 1994;
Deigan et al. 2009). The role of GT base-pairings in stabilizing
DNA genomic secondary structures remains unclear.

We applied our model to the HIV-1 NL4-3 secondary
structure and two corresponding alignment data sets con-
taining large numbers of HIV-1 sequences, and an SIVmac239
secondary structure and a corresponding alignment of SIV
sequences. We found that correlations between the SHAPE-
MaP-determined quantities and degrees of coevolution as
detected using MESSI were stronger than correlations be-
tween the same quantities and three nonevolutionary meas-
ures of covariation.

Interactive visualizations of the HIV-1 NL4-3 SHAPE-MaP
and consensus secondary structures with the inferred degrees
of coevolution overlaid were automatically generated by
MESSI. Two rankings of substructures based on inferred
degrees of coevolution within an alignment of HIV-1 subtype
B sequences demonstrated an excess of high-ranking sub-
structures that have been commonly cited in the literature
as having structure-related importance. This ranking proce-
dure is expected to aid researchers in characterizing the sec-
ondary structures of less well-studied viruses.

A feature that was not fully accounted for in our model
and that is especially important for viral genomes, such as
HIV, is that their genomes simultaneously encode for pro-
teins. This implies a dual evolutionary constraint, whereby
selection may be acting on the amino acid sequence, while
simultaneously acting to maintain base-pairing interactions in
biologically functional RNA secondary structures. In the fu-
ture, we would like to consider a model that explicitly
accounts for both protein-coding and RNA base-pairing
constraints.

A second limitation of our model is the assumption of a
canonical RNA secondary structure shared across the entire
evolutionary history of the sequences being analyzed. This is
considered a reasonable approximation for low- and moder-
ately diverged alignments, where many of the sequences are
expected share a high proportion of the same base-pairs.
Notwithstanding, it is also likely that different parts of the
tree relating the sequences will have at least some parts of
those sequence adopting alternative secondary structure con-
formations. These regions are interesting from a functional
perspective. The ability to identify these alternative evolution-
ary conformations and the mutations responsible for them
may lead to significant insights into viral adaptations, such as
structural changes following zoonotic transmission of viruses
from nonhuman hosts to humans or the development of
drug resistance.

Materials and Methods

The Muse 1995 Model
Muse (1995) developed a paired site model, henceforth
referred to as the M95 model. M95 accounts for RNA

base-pairing constraints by modeling pairs of nucleotide posi-
tions using a 16� 16 matrix. The model generalizes upon
standard 4� 4 nucleotide substitution models, such as the
GTR model, by introducing a coevolution parameter, k, that
is intended to capture substitutions at paired positions that
are consistent with the maintenance of canonical RNA base-
pairing. We define the set of canonical base-pairs as follows:

C ¼ fGC; CG; AU; UA; GU; UGg (1)

Equation (2) presents a version of the original M95 paired
model based on a GTR model Q and a set of canonical base-
pairs C:

Mab ¼

qabk pairing gained

a 62 C and b 2 C; e:g:a ¼ AC! b ¼ AU

qab pairing unchanged

a; b 62 C or a; b 2 C; e:g:a ¼ AU! b ¼ GU

qab=k pairing lost

a 2 C and b 62 C; e:g:a ¼ AU! b ¼ AC

0 2 differences

e:g:a ¼ AU! b ¼ GC

;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
(2)

where a and b are nucleotide pairs. Note that when a and b
differ at both positions they are assigned a rate of zero. They
are only given a positive rate when differing at a single posi-
tion. Note that a and b in qab refers to the entry of the GTR
matrix Q corresponding to the differing nucleotide position
within the nucleotide pair, and k is a parameter capturing the
degree of RNA coevolution; that is, the degree to which ca-
nonical RNA base-pairing is evolutionary maintained (k > 1)
or disrupted (k < 1). k¼ 1 represents the neutral case, in
which each of the two nucleotide positions in a pair are
treated as evolving independently under the GTR model
specified by Q.

Furthermore, let pdinuc denote a length 16 vector of paired
frequencies. pdinuc is the concatenation of two mutually ex-
clusive sets: pdinuc ¼ punpaired_ppaired; punpaired represents the
cases where the target pair cij is not in the set of canonical
base-pairs (cij 62 C), and ppaired represents the cases where the
target pair cij is in the set of canonical base-pairs (cij 2 C),
respectively:

punpaired
cij

¼ j�1
1 pipj and ppaired

cij
¼ j�1

1 pipjk
2;

Note that i and j correspond to the first and second posi-
tions of the target pair, respectively. Where pi is the equilib-
rium frequency under the GTR model, Q, of the nucleotide in
the first position of the target pair cij, and similarly pj is the
equilibrium frequency of the nucleotide in the second posi-
tion. j1 ¼ 1þ 2ðpGpC þ pApU þ pGpUÞðk2 � 1Þ is a nor-
malizing constant that ensures the entries of pd sum to 1.

Note that within the set of canonical base-pairs, C (defined
in eq. 1), there are three pairs of symmetrical base-pairs:
fGC; CGg; fAU; UAg, and fGU; UGg. It is assumed
that each base-pair within a symmetrical pair has the same
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fitness. This is a reasonable assumption as it treats the evo-
lution of nucleotides toward the 50-end of the sequence the
same as nucleotides toward the 30-end. From this point for-
ward, we assume this symmetry and refer to the three pairs of
symmetrical base-pairs as the three canonical base-pairs.

In the formulation of the original M95 model in equation
(2), all three canonical base-pairs in the set C are treated as
having equal fitness. However, there is good evidence that GU
base-pairings in RNA, for example, are deleterious evolution-
ary intermediates relative to GC and AU (Rousset et al. 1991).
In light of this, in the next section, we extend the M95 model
such that substitutions affecting the three canonical base-
pairs are not constrained to have the same rate of
coevolution.

Differentiating between Types of Base-Pairing
Substitutions
We extend the M95 model to differentiate between the three
different canonical base-pairs, by introducing potentially dis-
tinct coevolution rates (kGC; kAU, and kGU) for each of three
different base-pairs (GC, AU, and GU, respectively). Using
similar notation as in equation (2), the extended rate matrix
is given as follows:

Mab ¼

qabkGC GC pairing gained

e:g:a ¼ AC! b ¼ GC

qabkAU AU pairing gained

e:g:a ¼ AC! b ¼ AU

qabkGU GU pairing gained

e:g:a ¼ GA! b ¼ GU

qab=kGC GC pairing lost

e:g:a ¼ GC! b ¼ GA

qab=kAU AU pairing lost

e:g:a ¼ AU! b ¼ AG

qab=kGU GU pairing lost

e:g:a ¼ GU! b ¼ GA

qabkGU=kGC GC to GU

qabkGC=kGU GU to GC

qabkGU=kAU AU to GU

qabkAU=kGU GU to AU

qab pairing unchanged

e:g:a ¼ AC! b ¼ UC

0 2 differences

e:g:a ¼ AU! b ¼ GC

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(3)

and the corresponding paired frequencies are:

punpaired
cij

¼ j�1
2 pipj

pGC ¼ j�1
2 pGpCk2

GC

pAU ¼ j�1
2 pApUk2

AU

pGU ¼ j�1
2 pGpUk2

GU;

(4)

where j2 ¼ 1þ 2½pGpCðk2
GC � 1Þ þ pAp Uðk2

AU � 1Þþ
pGpUðk2

GU � 1Þ�.

Stationarity and Time-Reversibility
We are able show for the extended model that the paired
frequencies, p, given in (4) correspond to the stationary dis-
tribution of M by verifying that:

pM ¼ 0; (5)

and that time-reversibility of M holds:

paMab ¼ pbMba 8ab (6)

where a and b represent nucleotide pairs. The conditions in
(5) and (6) were verified using the symbolic math package,
SYMPY (Joyner et al. 2012), as implemented in the musesym-
bolic.py script (see Supplementary Material online).

Modeling Variable Degrees of Coevolution
In the M95 model (2), the rate of coevolution was assumed to
be the same for each base-paired site within a secondary
structure S. However, it is expected that the strength of
the selective forces maintaining canonical base-pairing will
vary among base-paired sites in S. In this section, we extend
the M95 model such that the degree of coevolution, denoted
by gq;r , is able to vary from base-paired site to base-paired site.
gq;r is drawn independently for each base-paired site (de-
scribed in the next section), and acts to scale the three co-
evolution rates as follows:

kq;r
GC ¼ ðkGC � 1Þgq;r þ 1

kq;r
AU ¼ ðkAU � 1Þgq;r þ 1

kq;r
GU ¼ ðkGU � 1Þgq;r þ 1

; (7)

where kGC � 1; kAU � 1, and kGU � 1 are the base-pairing
substitution rates shared across all paired sites. This parame-
trization was chosen so that kq;r

GC ¼ kq;r
AU ¼ kq;r

GU ¼ 1 when
gq;r ¼ 0, where q, r refer to a pair of nucleotide positions q
and r.

In addition to allowing the degree of coevolution, g, to vary
across base-paired sites, we also allow substitution rates to
vary from site to site following the gamma distributed sites
rate approach of (Yang 1993, 1994). For unpaired sites, se-
quence evolution is modeled using a standard GTRþC
model. For base-paired sites, slightly more care needs to be
taken (see supplementary section 1.2, Supplementary
Material online, for details). We call the version of our
generalized M95 model that differentiates between the three
canonical base-pairs and takes into account site-to-site rate
variation, the “unconstrained M95 model.”
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Testing Neutrality of Coevolution
To test the hypothesis that two nucleotide positions within a
particular base-paired site are evolving neutrally, that is, the
substitutions at each of the two sites are occurring indepen-
dently rather than actively favoring the maintenance canon-
ical base-pairing, we assume that the degree of coevolution,
gq;r , at each base-paired site is distributed as follows: gq;r ¼ 0
with probability wg (the neutral, independent case), other-
wise with probability 1� wg; gq;r is drawn from a discretized
gamma distribution with M categories (the dependent case).
Note that gq;r � 0 and therefore the case where substitu-
tions are acting to disrupt canonical RNA base-pairing is not
considered, that is, the case where the coevolution parame-
ters are between 0 and 1. For all analyses, a discretization of
M¼ 4 was used, resulting in five rate categories: one neutral
category with probability wg, and four positive categories
each with probability

1�wg

4 .

Parameters
Table 5 lists the parameters and their distributions used in the
most general version of the implemented model (the uncon-
strained model). Note that for some analyses we perform
Bayesian inference, whereas for others, we perform maximum
likelihood (ML) inference. The distributions over the param-
eters specified here are those used for Bayesian inference,
however, we also indicate how the parameters are treated
during ML inference. Parameters are either estimated while
ignoring the prior distribution, or fully marginalized under the
prior distribution. Note that the phylogenetic tree, bT , relating
the alignment of sequences, D, for both Bayesian and ML
inference is estimated in advance and fixed a priori using
FastTree (Price et al. 2010) under a GTRþCAT model.

Computer Representations of Secondary Structure
To model nucleic acid secondary structure, a suitable defini-
tion of secondary structure is required. We use the definition
outlined in Moulton et al. (2000): a secondary structure,S, for

a nucleic acid molecule consisting of N nucleotides is a simple
graph specified by the vertex set ½N� :¼ f1; . . . ;Ng and an
edge set BS . Where each vertex in ½N� corresponds to a nu-
cleotide and each edge in the edge set BS corresponds to a
base-pair. S is such that if fi; jg; fk; lg 2 BS with i< j and
k< l then:

1) i ¼ k if and only if j ¼ l, and

2) k � j implies that i < k < l < j.

Vertices that are not contained within the edge set BS are
termed unpaired. Condition (1) implies that each vertex (nu-
cleotide) belongs to at most one base-pair. Condition (2)
prevents pseudoknotting, that is, nonnested base-pairs.

Note that pseudoknotting is physically possible in both
real RNA and DNA structures, but is excluded in many def-
initions of secondary structures as efficient algorithms exist
for marginalizing or maximizing over secondary structures
when assuming (2). Our method permits a canonical second-
ary structure with pseudoknots to be specified a priori, how-
ever, if the user instead treats the structure as unknown,
MESSI will strictly marginalize over nonpseudoknotted struc-
tures only.

Figure 6 gives a computational format for representing
secondary structures. The dot-bracket format (fig. 6A) is a
natural and compact way of representing nonpseudoknotted
secondary structures. Matching brackets represent base-
paired nucleotide positions and dots represent unpaired (sin-
gled-stranded) nucleotide positions. To represent pseudo-
knotted structures (structures that violate condition [2]),
additional bracket types are required (fig. 6D).

Likelihood
Conditioned on a secondary structure, S, unpaired nucleo-
tide positions within S, denoted by q	, and base-paired nu-
cleotide positions within S, denoted by cq; r , are assumed to
be independent. The likelihood of an alignment,D, is given by
a simple product of unpaired and paired site likelihoods:

Table 5. Parameters of the Unconstrained Model and Their Distributions.

Parameter and Distribution Marginalized or Estimated Description

wg � Betað2; 2Þ Estimated Probability of neutral coevolution.
Xq;r � BernoulliðwgÞ Marginalized Indicates neutral coevolution at position q, r when Xq, r 5 1.
c � Exponential 1

10

� �
Estimated Shape and rate parameter of prior over coevolution rates gq;r .

gq;r50 if Xq;r51, otherwise: Marginalized The rate of coevolution at each paired position q, r.
gq;r � DiscretisedGammaMðc; cÞ
d � Exponential 1

10

� �
Estimated Shape and rate parameter of prior over substitutions rates qq.

qq � DiscretisedGammaKðd; dÞ Marginalized Substitution rate at each unpaired position q.
ðpA; pC; pG; pTÞ � Dirð1; 1; 1; 1Þ Estimated GTR equilibrium frequencies of the four nucleotides.
qAC � Exponential 1

10

� �
Estimated GTR rate matrix entry AC.

qAG � Exponential 1
10

� �
Estimated GTR rate matrix entry AG.

qAT � Exponential 1
10

� �
Estimated GTR rate matrix entry AT.

qCG � Exponential 1
10

� �
Estimated GTR rate matrix entry CG.

qCT � Exponential 1
10

� �
Estimated GTR rate matrix entry CT.

qGT � Exponential 1
10

� �
Estimated GTR rate matrix entry GT.

kGC � Exponential 1
10

� �
þ 1 Estimated GC coevolution rate.

kAT � Exponential 1
10

� �
þ 1 Estimated AT coevolution rate.

kGT � Exponential 1
10

� �
þ 1 Estimated GT coevolution rate.

S � KH99 Marginalized The secondary structure is drawn from the KH99 SCFG prior.
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pðDjS; bT ; hÞ ¼Y
q	2S

pðDqj q	 ; bT ; hÞf unpaired Y
bq;r2S pðDq;rjcq; r; bT ; hÞf paired

; (8)

where bT is a phylogenetic tree. Felsenstein’s pruning algo-
rithm (Felsenstein 1981) was used to calculate both the un-
paired site likelihoods, pðDqj q	; bT ; hÞ, and the paired site
likelihoods, pðDq;rjcq; r; bT ; hÞ. Paired sites were modeled us-
ing the unconstrained M95 model, whereas unpaired sites
were modeled using the GTRþ C model that is nested
within the unconstrained M95 model.

Prior over RNA Secondary Structures
Equation (8) assumes that the secondary structure S is
known a priori, either through experimental or computa-
tional methods of structure prediction. However, it also pos-
sible to treat the secondary structure as unknown, by placing
a prior probability distribution, pðSÞ, over secondary struc-
tures and marginalizing S.

One way of introducing a prior over secondary structures
is by using a Stochastic Context Free Grammar (SCFG).
A SCFG is probabilistic extension of a context-free grammar
(CFG). A CFG is a type of grammar that defines a set of rules
for generating all possible strings in a given formal language.
A SCFG extends this notion by assigning probabilities to each
possible string in the given language. RNA SCFGs are SCFGs
that give probability distributions over strings of base-paired

and unpaired nucleotides representing RNA secondary struc-
tures (Anderson 2014).

The KH99 Grammar
We chose the KH99 SCFG (Knudsen and Hein 1999) as a prior
over secondary structures. The rules and associated probabil-
ities for this SCFG are given as follows:

GKH99 ¼

S ! • or LS or ðFÞ

0:118 0:869 0:014

L ! • or ðFÞ

0:895 0:105

F ! ðFÞ or LS

0:788 0:212:

(9)

Note that S is the start symbol.
The KH99 assigns probabilities to all strings of a specified

length that can be written in dot-bracket notation, with at
least two unpaired nucleotides separating every base-pair.

Structure-Integrated Likelihood
Using Bayes’ rule, the probability of a secondary structure, S,
conditional on the data,D, and phylogenetic parameters, h, is
given by:

pðSjD; hÞ ¼ pðDjS; hÞpðSÞ
pSðDjhÞ ¼ pðDjS; hÞpðSÞP

S pðDjS;hÞpðSÞ:

(10)

We take particular note of the structure-integrated likeli-
hood term in the denominator of (10):

pSðDjhÞ ¼
X
S

pðDjS; hÞpðSÞ: (11)

This term requires summing over all possible secondary
structures and is not a constant that can be ignored due it is
dependence on h. This number grows exponentially with the
length of the alignment L. Fortunately, there exists an OðL3Þ
polynomial-time algorithm, the inside algorithm (Lari and
Young 1991), for summing the probabilities of all derivations
of an SCFG (all valid secondary structures in the case of RNA
SCFG). By analogy to the forward algorithm for HMMs, the
inside algorithm allows the structure-integrated likelihood, pS
ðDjhÞ (the analogue of the forward likelihood for HMMs), to
be efficiently computed. The structure-integrated likelihood is
given by element I(S, 1, L) of the inside probability matrix,
where S is the start symbol of the KH99 grammar.

Likewise, by analogy to the backward algorithm for HMMs,
there exists an “outside algorithm,” which together with the
inside probabilities allows the posterior marginals of the hid-
den variables to be computed (in the case of an RNA SCFG,

A

B

D

E F

C

FIG. 6. Examples of secondary structure representations. Above (A) is
a dot bracket representation of a secondary structure, and the cor-
responding VARNA and circular visualizations (B and C, respectively)
produced by VARNA Darty et al. (2009). Below (D) is an extended dot
bracket notation format with an additional bracket type, <>, that
allows a pseudoknotted structure to be represented unambiguously.
(E) and (F) are the corresponding VARNA visualizations for (D). Note
how the overlapping bonds in the circular visualization (F) demon-
strate that the secondary structure is pseudoknotted.
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these are the positional emission probabilities of base-pair
and unpaired terminal symbols—see supplementary section
1.5, Supplementary Material online).

Parallelization of the Inside and Outside Algorithms
Supplementary algorithm’s S1 and S2 in Supplementary
Material online provide pseudocode for iterative implemen-
tations of the inside and outside algorithms for SCFGs in
double emission normal form, respectively.

Figure 7 illustrates the calculation of the inside probability
matrix, showing the order in which elements are computed
and the data dependencies required to compute a particular
element. Using these patterns, Sükösd et al. (2011) developed
a strategy for CPU parallelism, whereby blocks of elements
running diagonally along the inside matrix can be computed
in parallel, as they do not have data dependencies. We imple-
mented a similar scheme for the CUDA GPU architecture,
whereby instead of blocks, each element along a diagonal is
computed in parallel. This can be done because each element
along a diagonal is independent of all other elements on the
same diagonal. For large alignments (L> 1,000), this implies
thousands of computational threads executing the same set
of instructions in parallel, but on different data (different
elements of a particular diagonal), this is known as SIMD
(Single Instruction Multiple Data) parallelism and is the re-
gime of parallelism for which GPU architectures are tailored.
As far as we are aware, this is the first GPU implementation of
the inside and outside algorithms.

Paired Site Likelihoods
Because the inside and outside algorithms consider every
possible base-pairing they require a matrix B of paired site
likelihoods. Each element Bqr of B corresponds to a paired site
likelihood pðDq;rjcq; r; bT ; hÞ for a pair of sites, q and r, in the
alignment D, which can be calculated using Felsenstein’s
peeling algorithm. Since the diagonal of B is ignored and

Bqr ¼ Brq (i.e., B is symmetric),
L

2

 !
paired site likelihoods

need to be calculated. Although the number of computa-
tional steps is only OðL2Þ in the alignment length L, com-
pared with OðL3Þ for the inside and outside algorithms, the
amount of time per computational step for computing the
paired site likelihoods is substantially higher due the use of
Felsenstein’s algorithm. To ameliorate this bottleneck, we use
the partial site caching strategy of Pond and Muse (2004) to
reduce the number of likelihood calculations required and
developed a CUDA GPU implementation.

Note that the inside and outside algorithms also require a
vector, S, of length of L single site likelihoods, where each
element corresponds to pðDqj q	 ; bT ; hÞ. However, this is
fast to compute compared with the matrix B.

Sampling Secondary Structure Configurations
The inside probability matrix can be used to sample second-
ary structure configurations from the distribution:

~S � pðSjD; hÞ: (12)

Sampling terminal strings (secondary structures in our
case) using an SCFG is analogous to sampling hidden state
sequences using the forward-filtering backward-sampling al-
gorithm for HMMs (Frühwirth-Schnatter 1994). An algorith-
mic description for sampling secondary structures from an
RNA SCFG is given in supplementary methods section 1.4,
Supplementary Material online.

Bayesian Posterior Inference
The posterior distribution of the continuous-parameters, h,
conditional on the data D and a secondary structure S can
be sampled using the Metropolis–Hastings algorithm and the
relationship given by Bayes’ formula:

pðhjD;SÞ / pðDjS; hÞpðhÞ; (13)

where the likelihood term, pðDjS; hÞ, is given by (8) and pðhÞ
is the prior.

We can also treat the secondary structure as unknown and
assume a RNA SCFG prior, p(S), over secondary structures.

FIG. 7. Illustrations of the inside algorithm showing CPU and GPU
parallelism schemes. The light to dark blue gradient starting at the
central diagonal and finishing in the top right-hand corner indicates
the order in which each diagonal is computed. The light red elements
indicate the data dependencies required to compute the single bright
red entry of the inside matrix. The lower half of each matrix with each
cell crossed out is not computed and can be ignored. Note that the
top-right element corresponds to the structure-integrated likelihood
term and is therefore always the last element to be calculated, as it
depends on all other elements having been computed first.
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This can be achieved by using the structure-integrated likeli-
hood, pSðDjhÞ, when inferring h:

pðhjDÞ / pSðDjhÞpðhÞ: (14)

However, note that the structure-integrated likelihood
term is computed every time a new set of parameters is
proposed. As mentioned previously, this requires computing
a matrix B of paired site likelihoods (requiring OðL2Þ com-
putational steps) and calculating the final structure-
integrated likelihood term using the inside algorithm (requir-
ingOðL3Þ computational steps). Therefore, gathering enough
samples to ensure an adequate sample size will be relatively
slow. However, given that we can sample the conditional
distribution, pðSjD; hÞ, using the sampling procedure out-
lined in “Sampling Secondary Structure Configurations” sec-
tion, this leads to a potentially more efficient Metropolis-
within-Gibbs approach. This approach works by alternatively
sampling from the full conditional distribution:

SðkÞ � pðSjD; hðkÞÞ (15)

using the sampling procedure outlined in “Sampling
Secondary Structure Configurations” section and

hðkþ1Þ � pðhjD;SðkÞÞ (16)

using the Metropolis–Hastings algorithm. Although the
Gibbs sampling step (15) still requires computing a matrix
B of paired site likelihoods and running the inside algorithm,
the Metropolis–Hastings step (16) only requires OðLÞ oper-
ations and can be repeated for multiple iterations following
the Gibbs sampling step. In our implementation, we repeat
the Metropolis–Hastings step 50 times following the Gibbs
sampling step. Together these give a Markov Chain Monte
Carlo algorithm whose stationary distribution, pðS; hjDÞ,
and associated marginals, pðSjDÞ and pðhjDÞ, are the dis-
tributions of interest.

Maximum Likelihood Inference
The COBYLA optimization algorithm (Powell 1994) in the
NLOpt library (Johnson 2014) was used to find the maximum
likelihood (ML) parameters via the structure-integrated like-
lihood (11). Note that when doing so the priors over the
continuous parameters were either ignored and estimated
using ML, or the priors were used and the parameters were
fully marginalized (as specified in the Priors section).

Likelihood Ratio Tests
To test whether the unconstrained model (GU/GT� 1) was
favored over a GU/GT neutral model (GU/GT: ¼ 1) for a
particular data set, likelihood ratio tests (LRTs) were per-
formed (table 1 in Results section).

Unfortunately, these LRTs are not entirely valid, because
GU/GT� 1 represents a boundary condition (Self and Liang
1987). The use of a standard LRT with such a boundary con-
dition reduces the probability of rejecting the null hypothesis
(GU/GT � 1). However, we still report the results of these
tests because they remain useful in the case of rejection of the
null-hypothesis (the test is conservative).

To address this, we performed a bootstrap likelihood ratio test
for several data sets. Due to computational limitations, this was
only done for 9 out of the 15 recombination-analyzed data sets in
table 1. We followed the bootstrapping procedure detailed in
Tekle et al. (2016), which was briefly as follows for a given data set:

(1) Obtain separate maximum likelihood estimates of the
GU/GT neutral (null) model and the unconstrained
(alternative) model for the real data set. Calculate
the log-likelihood difference.

(2) Simulate 20 new data sets of the same size length, and
pattern of gaps using the maximum likelihood param-
eters estimated under the null model.

(3) For each simulated data set, re-estimate the maximum
likelihood parameters under the GU/GT neutral (null)
model and the unconstrained (alternative) model.
Calculate the log-likelihood difference for each of the
20 simulated data sets.

(4) Obtain an estimate of P-value by calculating the posi-
tion of the log-likelihood difference for the real data set
compared with the log-likelihood differences for the
simulated data sets.

In addition, due to computational-time constraints, we
were also limited to 20 bootstrap simulation in each instance.
This implies that a significance threshold of P � 0:05 was
used when doing so.

Data Sets
Data Set Construction
Three classes of data sets were analyzed. The first class of data
sets consisted of noncoding RNA alignments obtained from
version 14.1 of the RFAM database (Burge et al. 2013). We
downloaded all 99 RFAM data sets that had an associated
consensus secondary structure based on an experimental
RNA structure determination. These consensus secondary
structures were only used for benchmarks of secondary struc-
ture prediction and were not conditioned on during the in-
ference of coevolution rate parameters. RFAM data sets are
denoted with “RF” prefix in their name.

The second and third classes of data sets analyzed, con-
sisted of the complete genomes of single-stranded RNA and
single-stranded DNA viruses, respectively, obtained from the
NCBI nucleotide database (Acland et al. 2014) and aligned
using MUSCLE (Edgar 2004). Typically, these data sets did not
have associated consensus secondary structures.

A summary of each data set is listed in supplementary
table S1, Supplementary Material online. All data sets (align-
ment and inferred phylogenetic trees) used in this study are
available for download from our GitHubrepository.

Phylogenetic Inference
Phylogenetic trees were estimated using FastTree (Price et al.
2010) under a GTRþCAT model.

Recombination Analysis
About 15 data sets were analyzed for evidence of recombi-
nation (those in table 1 and fig. 4) using RDP version 4.97

Golden et al. . doi:10.1093/molbev/msz243 MBE

590

Deleted Text: 2.11 
Deleted Text: 2.11 
Deleted Text: -
Deleted Text: Whilst
Deleted Text: -
Deleted Text: -
Deleted Text: 2.13 
Deleted Text: l
Deleted Text: i
Deleted Text: s
Deleted Text: 2.14 
Deleted Text: r
Deleted Text: t
Deleted Text: u
Deleted Text: the 
Deleted Text: s
Deleted Text: e
Deleted Text: -
Deleted Text:  
Deleted Text: to
Deleted Text: Also 
Deleted Text: also 
Deleted Text: 2.15 
Deleted Text: c
Deleted Text: s
Deleted Text: -
Deleted Text: 2
Deleted Text: s
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz243#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz243#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz243#supplementary-data
Deleted Text: i
Deleted Text: a
Deleted Text: s


(Martin et al. 2015) with default settings. Regions of sequen-
ces that were detected as recombinant were separated out
using RDP’s “Save distributed alignment” option. This option
generates expanded alignments with the same sequence con-
tent, while reducing the impact of recombination.

Failing to account for recombination can invalidate the
assumption of a single phylogenetic tree representing the
data. This may impact downstream analyses, particularly in
the context of base-pairing coevolution, where rate estimates
are based on pairs of nucleotides sites that may not share the
same tree. Failing to account for recombination may bias
parameter estimates.

It should be noted that when using RDP’s default options,
there are likely to be some false positive recombination
events. This is not completely undesirable because using these
more relaxed settings will capture most of the true positive
recombination events that are likely to bias our estimates.
Unnecessarily, accounting for false positive recombination
events is not expected to bias our estimates.

Site Permutations
To test whether secondary structure dependencies present in
real data sets influence model fit, each alignment was taken
and its sites randomly permuted. Two such nucleotide col-
umn permuted data sets (p1 and p2) were generated for each
real data set. ML estimation using the structure-integrated
likelihood was used to fit the parameters of each permuted
data set under the unconstrained model and the secondary
structure information entropy was calculated (see supple-
mentary section 1.7, Supplementary Material online, for a
description of how this was calculated).

Software Availability
Julia code (compatible with Windows and Linux) is available
at: https://github.com/michaelgoldendev/MESSI.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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