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Abstract: Different group of alkaloids are produced during the symbiotic development of fungal
endophytes of the genus Epichloë in grass. The structure and toxicity of the compounds vary
considerably in mammalian herbivores and in crop pests. Alkaloids of the indole-diterpene group, of
which lolitrem B is the most toxic, were first characterized in endophyte-infected perennial ryegrass,
and are responsible for “ryegrass staggers.” Ergot alkaloids, of which ergovaline is the most abundant
ergopeptide alkaloid produced, are also found in ryegrass, but generally at a lower rate than lolitrem
B. Other alkaloids such as lolines and peramine are toxic for crop pests but have weak toxicological
properties in mammals. The purpose of this review is to present indole-diterpene alkaloids produced
in endophyte infected ryegrass from the first characterization of ryegrass staggers to the determination
of the toxicokinetics of lolitrem B and of their mechanism of action in mammals, focusing on the
different factors that could explain the worldwide distribution of the disease. Other indole diterpene
alkaloids than lolitrem B that can be found in Epichloë infected ryegrass, and their tremorgenic
properties, are presented in the last section of this review.
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1. Introduction

The symbiotic development of fungal endophytes of the genus Epichloë in grass results in the
production of different groups of alkaloids (Figure 1) whose profile of production in plants explains
signs of toxicity. Lolitrem B was recognized as the main indole-diterpene alkaloid produced in
Lolium perenne (perennial ryegrass) infected by E. festucae var. lolii (Neotyphodium lolii), responsible
for “ryegrass staggers” in livestock [1,2]. Other indole-diterpene alkaloids have been characterized
in endophyte infected ryegrass, but differ from lolitrem B in their tremorgenic properties [3]. Ergot
alkaloids have been found in L. perenne, in L. arundinaceum (tall fescue), and in other grasses [4,5].
Ergovaline has been recognized as the most abundant and the most toxic ergopeptide alkaloid
produced in E. coenophiala-infected tall fescue, and is responsible for fescue toxicosis in livestock [5].
By contrast, in E. festucae var. lolii-infected perennial ryegrass, the signs of ergot alkaloid toxicity are
often masked by tetanic spams and staggers, which are linked to the ingestion of lolitrem B [6]. Other
alkaloids produced in endophyte-infected perennial ryegrass include lolines, of which N-formylloline
is the most abundant, and peramine, which is well tolerated by livestock but toxic for crop pests [6,7].

Because the alkaloids produced by the fungal endophyte are responsible for serious diseases and
economic losses in livestock, a simple solution to avoid toxicity could be to eliminate the endophyte
from the grass. However, alkaloids are also toxic for insects and nematodes and the cultivars that
are free of endophytes are more sensitive to crop pests than the corresponding endophyte-infected
cultivars. So, most recent research and development on endophyte-infected grasses has focused on the
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selection of Epichloë strains that are unable to produce the alkaloids that are highly toxic in livestock,
i.e., ergovaline and lolitrem B, but still able to produce the alkaloids that are toxic for insects and
nematodes [6]. On the other hand, non-selected endophytes (also known as “wild” endophytes)
are still present in grasses in several countries, and questions persist concerning the production of
alkaloids in plants and their toxicity in livestock. The purpose of this review is to present the indole
diterpene alkaloids that are produced by endophytic fungi of the genus Epichloë and their toxic effects
in livestock, focusing on lolitrem B and on the factors responsible for variations in its level in grasses
and in its toxicity in livestock.
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Figure 1. Main alkaloids produced by Epichloë in perennial ryegrass.

2. Ryegrass Staggers, from Its First Characterization to the Discovery of Lolitrem B

The first description of muscular incoordination in cattle and horses grazing on ryegrass was
made in New Zealand in 1906. Because the disease was observed when seeds were formed, the
sclerotia of Claviceps purpurea were considered to be causative agents until the 1950s. During the
same period, a fungus was found to infect L. perenne seeds in different countries [8]. The fungus was
called “endophyte” because the mycelium developed inside the plant cells and invaded the whole
plant except the roots. It was seed transmitted, but apparently not transmitted by the pollen [9].
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In 1935, a review on “staggers” in livestock pointed to the different etiology of the syndrome: a
metabolic origin of the signs in cows after parturition, a sclerotia origin in some cases of Paspalum
staggers, whereas there was some doubt about the sclerotia origin in at least some cases of ryegrass
staggers, especially because the disease occurred when the grass was particularly short, after a period
of dryness, in the absence of seeding [10]. However, feeding endophyte-infected seeds to mice, rat,
chickens, and sheep failed to reveal deleterious effects, and the toxicity of the fungal endophyte
remained unheeded for several years [11]. Although the etiologic agent of ryegrass staggers was
unknown, it was clear that the disease occurred in sheep grazing extremely short grass [12], but
experimental reproduction of the disease by feeding sheep with ergots of C. purpurea failed to produce
symptoms of ryegrass staggers [13]. By contrast, staggers were experimentally produced in sheep
grazing the base of the ryegrass plant, whereas no signs were observed in sheep that were prevented
from grazing this part of the plant [14]. Penitrem A, verruculogen, fumitremorgin B, and paxilline,
which are tremorgenic mycotoxins of different fungal origin, were suspected to be the causative
agent of ryegrass staggers [15]. It was hypothesized that mycotoxins are produced in the soil by
saprophytic fungi, then translocated to the plant via the ryegrass roots [16]. In 1981, a feeding trial
conducted to compare the rate and severity of staggers in sheep with the rate of endophyte infection of
ryegrass definitively confirmed the implication of the endophyte [1]. Lolitrem A and B were the main
mycotoxins isolated in endophyte-infected perennial ryegrass [2], whereas feeding sheep with seeds
that contained lolitrems made it possible to reproduce ryegrass staggers [17]. Consequently, lolitrem
B produced by E. festucae var. lolii during its symbiotic development in L. perenne was considered to
be responsible for ryegrass staggers. The toxic threshold was established as being between 1800 and
2000 µg lolitrem B/kg feed in cattle and sheep [18]. However, although other alkaloids than lolitrem B
can be produced by Epichloë in endophyte-infected ryegrass, little is known about their effects during
concomitant exposure to lolitrem B. This was the case for ergot alkaloids and ergovaline, for which
signs of toxicity are rarely reported in livestock fed endophyte-infected ryegrass, whereas they are
the main alkaloids involved in the toxicity of endophyte-infected tall fescue [6]. This difference was
linked to the profile of alkaloid production by Epichloë in the infected plant [5]. The concentration of
lolitrem B is usually 5 to 10 fold higher than ergovaline in endophyte-infected ryegrass [19–23], so
most studies focused on lolitrem B, and little information was available on ergovaline in these plants.
In New Zealand in particular, most of the toxicity of ergot alkaloids in endophyte-infected perennial
ryegrass remained unknown until the development of a novel endophyte (known as “endosafe”) that
was unable to produce lolitrem B [6]. Interestingly, various studies conducted in lambs and in lactating
ewes also suggested that the toxic threshold of ergovaline was lower in endophyte-infected ryegrass
than in endophyte-infected tall fescue [24–26]. By contrast, a synergistic effect between ergotamine
and lolitrem B was observed in smooth muscle contractile tension in longitudinal preparation of the
distal colon in sheep [27]. It was suggested that this effect could contribute to the more prevalent rate
of noninfectious diarrhea, observed in sheep grazing endophyte-infected pastures [27]. Interaction
between lolitrem B and ergovaline could also contribute to decreases in milk production observed in
dairy cows grazing on endophyte-infected ryegrass [28–31]. In the same way, little is known about the
production and toxicity of indole-diterpene alkaloids other than lolitrem B, including the intermediate
metabolites of its synthesis by Epichloë.

3. Lolitrem B, a Tremorgenic Mycotoxin

Signs of staggers are commonly observed in animals fed with mycotoxins such as paspalitrem,
paxilline, penitrem, aflatrem, verruculogen, fumitremorgin, janthitrem, and lolitrem (Figure 2).
Paspalitrems are produced by different species of the genus Claviceps that parasitize the seeds of
Paspalum grasses, Bermuda grass, and other grasses [32]. Paxilline, penitrem, aflatrem, verruculogen,
fumitremorgin, and janthithrem are produced by fungi of the genera Aspergillus or Penicillium, most of
which are saprophytic in cereals and plants during storage, and some are also phytopathogenic [33].
Paxilline, epoxy-janthitrem, and lolitrem are produced by endophytic fungi of the genus Epichloë
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during their symbiotic development in some grasses [34]. Although these compounds are of different
fungal origin, several studies were conducted to compare their mechanism of action in the course of
elucidation of lolitrem B mechanism of action. Both the toxicokinetic and pharmacological properties
of tremorgenic mycotoxins can vary in terms of the location (peripheral vs. central), nature (excitatory
vs. inhibitory), and severity (amplitude, duration) of the effects.Toxins 2016, 8, 47  4 of 15 
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Figure 2. Structures of some tremorgenic mycotoxins.

3.1. From Staggers to BK-Channels

The term “staggers” is used to describe a variety of diseases in livestock whose etiology can differ
considerably, ryegrass ingestion being only one possible disease etiology [10]. Staggers themselves
vary in both morbidity and severity during the course of ryegrass toxicity. From 5% to 75% of the
animals in the same herd are affected, and signs vary from slight trembling of the neck after hard
exercise to severe tetanic spasm and collapse, a system of scoring being used to assess the severity
of the disease [12,14,35]. Until the discovery of lolitrems in 1981, several tremorgenic mycotoxins
were suspected to be the causative agent of ryegrass staggers [2,15] and various in vivo and ex vivo
experiments were conducted to understand their mechanism of action.

Studies using sheep and rat synaptosomes revealed that verruculogen and penitrem A act
by interfering with the release of amino acid neurotransmitters. The tremors could be due to
anomalous release of both excitatory and inhibitory transmitters at central and peripheral synapses,
leading to loss of coordination of the neural mechanisms that control muscle action [36]. Enhanced
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unstimulated release of the excitatory amino acid neurotransmitters aspartic acid and glutamic acid
was measured in cerebrocortical synaptosomes prepared from sheep showing severe symptoms of
ryegrass staggers [37]. Studies in rat brain membranes revealed that the four tremorgenic mycotoxins
tested (aflatrem, paspalinine, paxilline, and verruculogen) inhibited GABA-induced 38CI´ influx
into rat brain microsacs, while a non-tremorgenic mycotoxin, verruculotoxin, had no effect [38].
It was suggested that the relatively nonpolar properties of these mycotoxins enable them to pass the
blood-brain barrier and gain rapid access to many of the synapses present in the brain, where they
have a central effect [36].

A bioassay was developed in mice to assess the tremorgenic properties of mycotoxins [39]. After
intraperitoneal administration, lolitrem B was responsible for tremors whose onset was slower but
lasted longer than those caused by aflatrem [40]. Lolitrem B also had a much longer and more potent
tremorgenic effect than paxilline [41]. Electromyographic activity of skeletal muscle recorded in sheep
receiving different levels of penitrem, paxilline, and lolitrem B revealed that the excitatory properties
of all the compounds agree with the previously observed effect [42].

The effects of tremorgenic mycotoxins were also investigated on smooth muscles, but were more
difficult to interpret. Verruculogen, penitrem B, and paxilline enhanced the electrically-stimulated
contractions of guinea pig ileum but did not influence the contractions caused by exogenous
acetylcholine, suggesting that these compounds enhance the release of acetylcholine [43]. Penitrem,
paxilline, and lolitrem B induced variable responses of the smooth muscle of the reticulorumen,
abomasum, and duodenum in sheep [44]. An inhibitory effect on the abomasum was observed
whereas both excitatory and inhibitory effects were observed on the duodenum [42]. By contrast, an
excitatory effect, which was partially blocked by atropine, was observed on the reticulorumen [45].
The different responses of the gastro-intestinal tract to lolitrem B in sheep could be partly explained by
interference in the release of acetylcholine by the parasympathetic nerve, which is required for the
cyclical contractions of the reticulorumen, but does not occur in the abomasum and duodenum [46].

Sarcolemmal membrane vesicles of bovine aortic smooth muscle were used to compare
the properties of lolitrem B and paspalicine, a non-tremorgenic analog of paspalinine that is
dehydroxylated [47]. Because both compounds blocked large conductance calcium-activated potassium
channels (BK channels), it was concluded that although some of the pharmacological properties of
lolitrem B can be explained by inhibition of BK channels, tremorgenicity may not be related to this
mechanism of action [47]. Twenty years after the first discovery of lolitrem B, toxic thresholds have
been established for the occurrence of staggers [18], but its pharmacological mechanism of action
remains unclear as both peripheral and central effects are suspected.

Knowledge of the mechanism of action of lolitrem B at the pharmacological level advanced
considerably when paxilline and lolitrem B toxicity were compared in wild mice and in knock-out
mice deficient in BK channels (Kcnma1). BK channels are expressed in cell membranes of all the tissues
where they enable outflow of K+, which is responsible for hyperpolarization of the cells and a reduction
in cellular activity [48]. The fact that tremors occurred in wild mice but not in the mice lacking Kcnma1
demonstrated the important role of BK channels in rye grass staggers. The observation that known
lethal doses of lolitrem B in the wild-type mice had no effect in knock-out mice also suggested that
inhibition of BK channels by lolitrem B is probably the only mechanism of action involved in the
acute toxicity of lolitrem B [49]. Relationship structure activities were performed on BK channels,
making it possible to compare different structurally-related lolitrems [50]. This confirmed that only a
small change in structure modifies the binding properties of the toxins, as previously observed for
tremorgenicity in the mouse bioassay [51]. Comparison of paxilline and lolitrem B also revealed that
lolitrem B is more potent than paxilline at inhibiting BK channels in vitro and that inhibition cannot be
reversed by washing [52]. This result is in agreement with previous observations in in vivo studies in
mouse, in which lolitrem B had a much longer and more potent effect on motor function than paxilline,
whereas paxilline caused a more rapid onset of tremor, but tremors lasted for a shorter period than
those caused by lolitrem B [41].
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3.2. Toxicokinetics

Both central and peripheral effects of lolitrem B could contribute to toxicity; however, because
lolitrem B is insoluble in aqueous media, it is difficult to obtain, and relatively little is known about its
toxicokinetics. All the studies performed after oral dosing of lolitrem B revealed very low absorption
of the toxin [31,53]. No study has reported lolitrem B concentrations in the brain, but 14C-labeled
paxilline injected intraperitoneally in the mouse showed that the toxin was present in the brain but
at extremely low concentrations [41]. After high doses of lolitrem B intravenously administered in
sheep (75 µg/kg BW), the concentration of lolitrem B in serum decreased rapidly, whereas tremors
continued for 16 hours post dosing [41]. Rapid elimination of lolitrem B from serum was confirmed in
intravenously dosed (23 µg/kg BW) lactating goats, and a half-life of 14 min was calculated [53]. Both
the rapid elimination of the toxin from serum and the time at which tremors occurred after IV dosing
suggest that lolitrem B may be stored in a specific compartment of the body, then progressively released
into the blood at very low levels for transport to the brain. This hypothesis was strengthened by
analysis of lolitrem B levels in body fluids and tissues. In goats, lolitrem B was present in milk for 32 h
after the intravenous injection (one dose of 23 µg/kg BW) with an excretion rate of 3%. This result was
confirmed after oral dosing (one dose of 100 µg/kg BW) in lactating goats: the duration of elimination
in milk was 75 h and the excretion rate of the administered dose was 0.19% [53]. A similar result
was observed in dairy cows after prolonged exposure to the toxin, when only 0.23% of the lolitrem B
consumed was excreted into the milk [31].

Because lolitrem B is very soluble in organic solvents and in lipid media, it was hypothesized
that it could be stored in fat storage [41]. High levels of lolitrem B in fat were confirmed in all the
experiments in which lolitrem B was measured, in both cattle and sheep, and in both growing and
lactating animals [25,31,54–56]. When sheep grazed for a prolonged period in pastures that contained
lolitrem B, the toxin concentration in the fat rapidly increased with an increase in the concentration in
the pasture, and decreased with a decrease in the concentrations in the pasture [55]. This last result
suggested that, rather than accumulating, the quantities in the fat respond rapidly to the amounts
being consumed by the animals [55].

Both the time at which tremors are observed after IV dosing and the lipophilic nature of lolitrem B
suggest that the toxin may be metabolized. However, very little is known about the biotransformation
of lolitrem B or the interactions between the toxin and drug-metabolizing enzymes. A study conducted
in lactating ewes fed with endophyte-infected perennial ryegrass hay containing lolitrem B and
ergovaline revealed slight effects on the activities of some drug-metabolizing enzymes [25]. These
results were difficult to interpret because feeding endophyte-infected tall fescue hay that contained
ergovaline alone changed some drug metabolizing enzymes activities in this species at lower levels of
exposure [24]. However, comparison of the results obtained in the two studies suggests that interaction
between lolitrem B and ergovaline may affect the activities of drug-metabolizing enzymes [24,25].
Alternatively, the importance of cytochrome P450 in the biosynthesis of lolitrem B, and the role of the
transformations catalyzed by these enzymes on the biological activity of the toxins are notable [57,58].

4. Lolitrem B in Plants and Ryegrass Staggers

4.1. Worldwide Distribution of the Disease

Whereas infection of L. perenne by E. festucae var. lolii is reported worldwide, most outbreaks of
ryegrass staggers have been reported in Australia and New Zealand [59]. By contrast, only sporadic
atypical cases are observed in Europe and America. Most cases reported in Europe involved one
animal or a limited number of animals after consumption of hay. The disease has been diagnosed
in horses, bulls cattle, dairy cows, and sheep following observation of the typical clinical signs of
staggers [23,60–63]. The diagnosis was confirmed by demonstrating high lolitrem B concentrations in
the suspect hay. Along the northern coast of California, some cases of staggers have been diagnosed
in sheep and cattle with a history of ingestion of perennial ryegrass [64]. Staggers was also observed
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in Japan in cattle and horses fed with ryegrass straw imported from Oregon [65]. In South America,
a typical outbreak of ryegrass staggers was observed in Argentina in about 50% of the heifers of a
herd of 560 animals after grazing 26 days in a paddock of pure L. perenne. Microscopic examination of
plants confirmed the presence of an endophytic fungus [66].

Several studies conducted in Australia and New Zealand have demonstrated that the rate of
infestation of ryegrass generally correlates with the frequency and severity of staggers [59,67–69].
A high rate of endophyte infection in perennial ryegrass was selected by plant breeders because
it enhances growth and persistence of ryegrass in the pasture. For example, in New Zealand,
improved persistence of endophyte-infected ryegrass has been associated with improved resistance
to the Argentine stem weevil (Listronotis bonariensis) [70]. Resistance to other pests has been
demonstrated [71–73]. In Europe, the rate of Epichloë infestation of perennial ryegrass varies
considerably, depending on the country and the geographical location of the plants concerned [74–79].
A relatively lower rate of infestation in Europe compared with Australasia could partly explain the
lower prevalence of staggers, but the rate of infestation alone was probably not sufficient to explain all
the differences. The genetics of the endophytes and other factors that change the level of lolitrem B in
plant may contribute to differences in the prevalence of ryegrass staggers worldwide.

4.2. Lolitrem B Biosynthesis

Since lolitrem B was recognized as the main toxin responsible for staggers in endophyte-infected
ryegrass, several studies have been conducted to determine the genetic factors responsible for its
synthesis. Although a large number of endophyte strains have been identified in plants, perennial
ryegrass has been found to be the host of a limited number of distinct endophyte taxa [80,81]. Genetic
analysis of E. festucae var. lolii strains demonstrated that some strains synthesize ergovaline alone, and
others synthesize lolitrem B alone, but most produce variable concentrations of both toxins [82,83].
Analysis of the genetic factors required for the production of lolitrem B revealed that 10 different
genes are present in a complex locus (ltm) organized in three clusters interspersed with transposon
relics [83,84]. Paspaline was proposed as the intermediate metabolite forming the structural backbone
required for the production of more complex compounds such as lolitrems and terpendoles [58,80].
The different metabolites produced during lolitrem B synthesis and their properties with respect to
staggers are reviewed in the following paragraph. Although it is clear that the lack of a gene involved
in the synthesis of lolitrem B makes it possible to predict the lack of its synthesis and its absence in
plants, the presence of ltm genes does not make it possible to predict their level of expression or the
level of lolitrem B in pastures. Indeed, comparisons of lolitrem B concentrations in the whole plant
revealed major variations depending on which part of the plant was analyzed and on the location of the
study. Field studies in Australia revealed concentrations of lolitrem B ranging from 0 to 4.44 mg/kg
in perennial ryegrass, and of more than 1.8 mg/kg in 37% of pastures [85]. Other studies of the
straw of endophyte-infected perennial ryegrass in Oregon also revealed a wide range of lolitrem B
concentrations, from 0 to more than 5 mg/kg [22].

Selection of E. festucae var. lolii strains in Australasia also revealed marked variations in the
production of alkaloids [6,86]. Whereas wild strains produced lolitrem B, ergovaline, and peramine,
the “endosafe,” “AR1,” and AR37” strains did not produce lolitrem B. Unfortunately, because the
“endosafe” strain still produced ergovaline, unexpected cases of toxicity characterized by intolerance
to heat stress were reported [6,87]. By contrast, the “AR1” strain only produced peramine, which is
not toxic for mammalian herbivores, but this strain provides only moderate protection against crop
pests [55,86,87]. Alkaloids produced by “AR37” are discussed in the following section. In Europe, the
beneficial role of endophyte infection in plant persistence or resistance to stress and invertebrate is less
well understood [88–91]. However, studies on different ecotypes have revealed that the origin/genetics
of the ecotype influence the concentration of lolitrem B in plants [92,93]. Interestingly, comparison
of lolitrem B concentrations in ecotypes in Germany and in New Zealand also revealed that the
environmental conditions of growth (mainly nutrients and climatic factors, also known as abiotic
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factors) that occurred during plant growth have a stronger influence on the concentration of alkaloids
in plants than the origin/genetics of the ecotype [92]. However, little is known about the influence of
abiotic factors on the level of lolitrem B in plants.

4.3. Variations in Concentrations of Lolitrem B in Plants

Environmental conditions can affect the level of alkaloids in plants; differences depend
on plant-endophyte genotype interactions and on the compounds produced [91]. Lolitrem B
concentrations in endophyte-infected perennial ryegrass vary considerably depending on the
ecotype studied but also on the time of year and the location of the study. In Australia and
New Zealand, lolitrem B maxima are reached in March, which corresponds to fall in the northern
hemisphere [85,94,95]. By contrast, in France and Germany, the highest concentrations of lolitrem B
are observed in June to August, with some differences depending on the ecotypes analyzed [92,93,96].
The maxima were seen to range from 2 to 10 mg lolitrem B/kg in the whole plant [22,85,92–96].
Peak concentrations of the other alkaloids produced were generally reached at the same time as the
peak in lolitrem B, although with some differences. The peak ergovaline concentration has generally
been observed in spring during flowering [20,93,94,96–98]. Another ergovaline peak, corresponding
to plant regrowth, has also been reported in the fall, and was sometimes higher than the peak in the
spring, especially in Australasia [20,85,93–98].

The distribution of lolitrem B in the plant also varies depending on the part of the plant analyzed
and the stage of maturation of the plant. A study conducted over two years in endophyte-infected
perennial ryegrass in France revealed a concentration of lolitrem B in the base, leaves, and inflorescence
ranging from 0.01 to 3 mg/kg dry matter [96]. Over the study period, the highest concentrations
of lolitrem B were always observed at the fully ripe stage in the inflorescence, followed by the base
of plants, while the leaves contained the lowest levels [96]. Similar results have been observed for
ergovaline. Likewise, lolitrem B but not ergovaline was reported to accumulate in the base of the plant
and in senescent tissues; the distribution of the endophyte did not play a major role in the distribution
of alkaloids in the plant [99,100].

Nitrogen fertilization, temperature and drought are known to influence the level of ergovaline in
endophyte-infected tall fescue [95,101–106]. However less is known about the influence of these factors
on the concentration of lolitrem B in endophyte-infected perennial ryegrass. Data obtained under
controlled conditions revealed that high nitrogen input reduced the levels of endophyte in the plant,
which, in turn, reduced alkaloid content [107,108]. A study conducted in field conditions with nitrogen
fertilization according to the usual recommendations for pasture suggested that nitrogen input had no
effect on the level of lolitrem B in the whole plant, whereas it increased the level of ergovaline [96]. In
the same way, little is known about the influence of drought and rainfall on lolitrem B. An analysis
of the influence of climatic factors on endophyte-infected perennial ryegrass under field conditions
suggested a positive correlation between the cumulative rainfall and the lolitrem B levels in the whole
plant [96]. Outbreaks of perennial ryegrass toxicosis in Australia were also most severe during periods
of high rainfall in spring and summer, but the concentrations of lolitrem B in the whole plant were no
greater than the concentrations recorded earlier in the season [109]. Finally, the stage of maturation of
the plant appears to be the most important non-genetic factor responsible for variations in the level of
lolitrem B in the plant.

5. Indole-Diterpene Alkaloids, Not Only Lolitrem B

Indole-diterpene alkaloids are formed by a cyclic diterpene-derived skeleton and an indole moiety
derived from tryptophan (Figure 3). Different strategies are found in fungal secondary metabolism to
incorporate the indole in the final alkaloid metabolites [110]. By analogy with the known pathways
for paspaline biosynthesis in P. janthinellum and the paxilline biosynthesis in P. paxilli, it is suggested
that the cyclic diterpene skeleton derived from four isoprene units of geranylgeranyl diphosphate
(GGDP), whereas the indole moiety derived from indole-3-gycerophosphate (I3GP) [111]. Paspaline,
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the simplest indole-diterpene alkaloid, is considered as a key intermediate in the biosynthesis of
more complex compounds [58,80]. Paspaline is not tremorgenic. Other indole-diterpenes, such as
paspalinine and paspalitrem, also produced by Claviceps paspalum in Paspalum dilatatum infected seeds,
are responsible for paspalum staggers [112,113]. Paspaline can be oxidized into 13-desoxypaxilline
then to paxilline by monooxygenases of the cytochrome P450 system [80]. Although paxilline
has low tremorgenic properties, few data are available concerning its level in endophyte-infected
ryegrass [114–116]. Oxidation of paspaline can also produce more than a dozen terpendoles, which are
labeled by a different letter (A to M) depending on the number and position of hydroxyl substituents
on the diterpene moiety of the molecule. Not all the terpendoles characterized were found in
endophyte-infected ryegrass and not all the terpendoles found were tremorgenic. Terpendole I was
prenylated and cyclized to form an “I ring” and terpendole C, which was found in endophyte-infected
ryegrass and has tremorgenic properties similar to those of paxilline in the mouse bioassay [116].Toxins 2016, 8, 47  9 of 15 
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Lolitrems can be formed from paspaline and terpendoles and other intermediate metabolites
by adding an “A” and “B” ring to the indole moiety of the molecule at the C20–C21 position [80].
More than a dozen lolitrems have been characterized and labeled by a letter (A to N). They differ by
the presence or absence of an I ring and the number and position of hydroxyl and aryl substituents.
The tremorgenic properties of these compounds vary considerably. Although the relationship structure
activity of the different lolitrems identified is complex, the presence of the I ring appeared to be
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necessary to cause prolonged tremors in the mouse bioassay [116]. For example, lolitrem E has no I
ring and low tremorgenic properties [117]. Comparison of four stereoisomers of lolitrem B (including
lolitrem F, a natural stereoisomer of lolitrem B) also revealed that the stereochemistry of the A/B
ring junction does not influence the tremorgenic properties unless the A ring is oriented toward the
alpha-face, which stops activity [44]. Lolilline, lolitriol, and lolicines are intermediate metabolites
of lolitrems that have an A and B ring on the indole moiety of the molecule but no I ring. These
compounds can be found in endophyte-infected ryegrass, but lolilline and lolitriol did not present
tremorgenic properties [19,116].

Janthitrems also have an “A” and “B” ring linked to the indole moiety of the molecule, but at the
C21–C22 position (Figure 2). These compounds were first isolated from Penicillium janthinellum strains
obtained from pastures in which ryegrass staggers have been described [118]. Seven janthitrems were
characterized and labelled by a letter (A to G). They differ in the number and position of hydroxyl and
acetate substitution on the H ring [119]. In contrast to lolitrems, most janthitrems are not epoxidized
at the C11–C12 position, but the epoxidized form of janthitrem G was characterized in perennial
ryegrass infected with E. festucae var. lolii strain AR37 [3]. Epoxy-janthitrems can pass through
the digestive tract of animals and are found as residues in milk and fat [31,55]. Janthitrems and
epoxy-janthitrems have been shown to have tremorgenic properties in the mouse bioassay, but they
are less potent than lolitrem B [55,118]. Interestingly, the protection against pest crops observed in
perennial ryegrass infected with AR37 is close to that observed with “wild” endophytes [73]. So,
despite high concentrations of epoxy-janthitrems found in the fat and milk of animals grazing these
pastures, because the signs of staggers were weak and because the protective effect against crop pests
were high, it was estimated that the ratio of risk to benefit of AR37 was positive in New Zealand [120].

In conclusion, the symbiotic development of Epichloë in perennial ryegrass leads to the production
of different groups of alkaloids. Among them, lolitrem B has been shown to be the most toxic alkaloid
of the indole diterpene group, responsible for ryegrass staggers, probably because of its binding to
the BK channels. A correlation between the rate of infestation and occurrence of the disease has
been observed in Australasia, but high rates of endophyte infection of perennial ryegrass with high
concentrations of lolitrem B in plants have also been observed worldwide, with only a few atypical
cases of staggers outside Australasia. Several factors could explain these differences, such as the use
of perennial ryegrass as a monocrop in Australasia and the livestock raising practices. Indeed, the
level of lolitrem B in grass varies considerably depending on the stage of maturity of the plant, hence
the risk of toxicity varies with the period of the year and the part of the plant consumed. Due to the
severity of ryegrass staggers and the high prevalence of crop pests in Australasia, most research has
focused on the selection of Epichloë unable to produce toxic alkaloids for mammalian herbivores but
still able to produce alkaloids that are toxic for insects and nematodes. This target was difficult to
achieve. Among the Epichloë strains studied, the strains unable to produce lolitrem B and ergovaline
but able to produce high levels of epoxy-janthitrems appear to be a good compromise between the risk
of staggers in livestock and the need for effective crop pests control in Australasia. Although other
indole diterpene alkaloids besides lolitrems and janthitrems were produced by Epichloë and have toxic
properties, little is known about their level in plants.
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