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Since the identification and cloning of the major
cannabinoid receptor expressed in the brain almost
25 years ago research has highlighted the potential of drugs
that target the endocannabinoid system for treating
addiction. The endocannabinoids, anandamide and
2-arachidonoyl glycerol, are lipid-derived metabolites found
in abundance in the basal ganglia and other brain areas
innervated by the mesocorticolimbic dopamine systems.
Cannabinoid CB1 receptor antagonists/inverse agonists
reduce reinstatement of responding for cocaine, alcohol and
opiates in rodents. However, compounds acting on the
endocannabinoid system may have broader application in
treating drug addiction by ameliorating associated traits and
symptoms such as impulsivity and anxiety that perpetuate
drug use and interfere with rehabilitation. As a trait,
impulsivity is known to predispose to addiction and
facilitate the emergence of addiction to stimulant drugs. In
contrast, anxiety and elevated stress responses accompany
extended drug use and may underlie the persistence of drug
intake in dependent individuals. In this article we integrate
and discuss recent findings in rodents showing selective
pharmacological modulation of impulsivity and anxiety by

cannabinoid agents. We highlight the potential of selective
inhibitors of endocannabinoid metabolism, directed at fatty
acid amide hydrolase and monoacylglycerol lipase, to
reduce anxiety and stress responses, and discuss novel
mechanisms underlying the modulation of the
endocannabinoid system, including the attenuation of
impulsivity, anxiety, and drug reward by selective CB2
receptor agonists. Behavioural Pharmacology 26:59–72
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Introduction
Drug addiction is a chronic, relapsing brain disorder

characterized by compulsive drug seeking and repeated

bouts of binge intoxication and withdrawal. Research

over a number of decades has defined the principal

pharmacological mechanisms underlying the primary

reinforcing effects of many substances abused by people,

which directly or indirectly activate the mesolimbic

dopamine (DA) system (Di Chiara and Imperato, 1988;

Nestler, 2005). Yet fundamental questions remain,

including especially how drugs come to dominate beha-

viour so powerfully and why addiction afflicts only a small

subset of all users. A common framework to address these

questions rests on the principle that addiction is a pro-

gressive disorder involving a series of transitions from (i)

initial drug contact and experimentation, (ii) recreational

and mostly occasional use, (iii) a preoccupation to use

drugs more regularly and (iv) consumption levels that

ultimately lead to harm and are life threatening (Everitt

and Robbins, 2005; Belin et al., 2009, 2013; Koob and

Volkow, 2010). Diagnostic criteria of addiction or

substance use disorder, based on the Diagnostic and
Statistical Manual of Mental Disorders, 5th ed. (DSM-5;

American Psychiatric Association), include taking sub-

stances in larger amounts than originally intended, a

persistent desire to cut down or moderate drug use,

longer periods of time using the drug or recovering from

its effects, and intense craving. Neurally, the develop-

ment of addiction is hypothesized to align with the

emergence of drug seeking habits controlled by dopa-

minergic mechanisms in the dorsal striatum and a shift

away from prefrontal cortical control mechanisms

(Jentsch and Taylor 1999; Everitt and Robbins, 2005;

Kalivas and Volkow, 2005; Belin et al., 2013).

Although a distinguishing feature of addiction is a per-

sistent underlying change in the brain reward and stress

systems, caused by protracted drug use (Kalivas and

Volkow, 2005; Nestler, 2005; Koob and Volkow, 2010),

the path to addiction for some may be predestined by

underlying impairments in self-control (Wills et al., 1994;
Verdejo-García et al., 2008; Van den Heuvel et al., 2009).
Indeed, increasing evidence suggests that certain per-

sonality traits, including the seeking out of intense forms

of sensation, novelty, and impulsivity may predispose

to addiction (Sher et al., 2000; Adams et al., 2003;
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Verdejo-García et al., 2008). Moreover, prospective stu-

dies in adolescents unambiguously demonstrate that

impulsivity precedes the onset of drug use and possibly

the development of addiction (Nigg et al., 2006; Wong

et al., 2006), consistent with analogous research in rodents

(Belin et al., 2008; Diergaarde et al., 2008; Economidou

et al., 2009; Dalley et al., 2007).

A complementary view, the opponent process theory,

focuses on progressive drug-induced changes in the

hedonic state of addicts (Koob and Le Moal, 1997). It is

derived from the concept of homoeostasis, the capacity of

an organism to maintain a constant internal environment

despite change, and allostasis, where prolonged contact

with salient stimuli results in adaptations at pathological

set-points. According to this theory addicts take drugs

because they are initially reinforcing. However, with

more protracted drug use not only does this driving

mechanism diminish, a concomitant increase in the

activity of anxiety-related and stress-related circuits

ensues. At this point drug use is driven by compulsive

behaviour and attempts to avoid the aversive reactions

associated with its withdrawal. This hypothesis, there-

fore, emphasizes changes in emotional states, in line with

the view that anxiety and stress contribute to the main-

tenance of addiction (Cleck and Blendy, 2008; Kessler

et al., 2010). The growth of the opponent process gov-

erning negative reinforcement involves reductions in

DA, gamma-amino-butyric acid (GABA) and endogenous

opioid neurotransmission together with facilitated nora-

drenaline (NA) and corticotrophin-releasing factor activ-

ity. Key structures mediating this altered motivational

state include the central amygdala and bed nucleus of the

stria terminalis (Koob, 2013).

Despite considerable research investment a surprisingly

small number of medications have been developed and

approved for the treatment of addiction (Xi, 2011; Pierce

et al., 2012). This deficiency may reflect in part the

dominance over many years of DA-based theories, which

although intuitively attractive have led to no major

breakthroughs in treatment. An alternative approach is to

treat underlying traits that predispose and are often

comorbid with addiction, notably as discussed above

impulsivity and anxiety. Understanding the biological

mechanisms of these addiction-linked behavioural traits

may provide new targets for pharmacological intervention

in addiction. In this article we review putative applica-

tions of drugs targeting the endocannabinoid system in

ameliorating impulsivity and anxiety.

Endocannabinoids are lipid-derived substances found

mainly in the DA-rich basal ganglia, which play a major

role in regulating synaptic function and plasticity in the

striatum (Lovinger and Mathur, 2012). Cannabinoid

receptors in the brain mediate the effects of cannabis (or

marijuana), a widely abused drug that carries significant

adverse health effects, especially among young people

(Volkow et al., 2014). Nevertheless, considerable work,

reviewed below, suggests that pharmacological modula-

tion of the endocannabinoid system can moderate high

levels of anxiety and impulsivity and attenuate the

reinstatement of drug seeking. We first review the

defining features and neural substrates of impulsivity and

anxiety before considering how these addiction-relevant

traits can be selectively modulated by compounds that

facilitate or suppress the function of the endocannabinoid

system. Finally, we discuss the implications of this

research for the treatment of drug addiction.

Impulsivity and addiction
Impulsivity is a heterogeneous construct defining beha-

viours that are premature, poorly planned, inappropriate,

risky and poorly inhibited (Monterosso and Ainslie, 1999;

Evenden, 1999b). Although it can be advantageous to

take risks in certain circumstances, when excessively

and inappropriately expressed, impulsiveness can lead to

suboptimal outcomes (Dickman, 1990). Moreover,

impulsivity has been suggested to contribute to specific

disorders such as addiction, attention deficit hyperactivity

disorder, obsessive–compulsive disorder, bipolar dis-

order, aggression, self-harm and suicidality (Moeller et al.,
2001; Skegg, 2005; Hawton and van Heeringen, 2009;

Coccaro et al., 2011; Bari and Robbins, 2013). As a result,

therefore, there has been a growing interest in investi-

gating the biological mechanisms of impulsivity to facil-

itate the development of new therapies for a range of

neuropsychiatric disorders (Jupp and Dalley, 2014).

Different classifications have been proposed to define

impulsivity, which can be deconstructed in several ways

(Evenden, 1999b). In its simplest forms, impulsivity can

be divided into (i) impulsive action, involving impaired

motor inhibition, and (ii) impulsive choice, defined by

the abnormal preference for small immediate or likely

rewards versus larger-magnitude but delayed or uncertain

rewards (Pattij and Vanderschuren, 2008; Dalley and

Roiser, 2012). On the basis of this dichotomy a variety of

tests have been developed for studying impulsivity in

humans and laboratory animals (Winstanley, 2011; Jupp

et al., 2013). Impulsive action can be assessed as

responses that are premature, mistimed or difficult to

suppress. Some of the main paradigms are the 5-choice

serial reaction time task (5-CSRTT) and its analogues

(Robbins, 2002; Voon et al., 2014), the stop-signal reac-

tion time task (Eagle et al., 2008), the go/no go task

(Harrison et al., 1999) and differential reinforcement of

low rates of responding (Evenden, 1999a). Impulsive

choice can be assessed by tasks that measure aversion for

delayed rewards and are often referred to as delay dis-

counting procedures (Monterosso and Ainslie, 1999; Bari

and Robbins, 2013).

Neurally, impulsivity depends on subregions of the pre-

frontal cortex (PFC), basal ganglia (particularly the ven-

tral region of the striatum), hippocampus, and modulation
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by serotonin (5-HT), DA and NA (Evenden, 1999a,

1999b; Cardinal et al., 2004; Pattij and Vanderschuren,

2008; Dalley et al., 2011; Dalley and Roiser, 2012). In

humans, the delineation of substrates underlying impul-

sivity has relied on neuroimaging and psychological

analysis in healthy individuals and patients with brain

damage or psychiatric disorders such as attention deficit

hyperactivity disorder (Castellanos et al., 2006; Garavan

and Hester, 2007). In experimental animals, considerable

research has shown that distinct corticostriatal ‘loops’

underlie several distinct forms of impulsivity (Winstanley,

2011), including the proposed subdivision of waiting

versus stopping impulsivity (Dalley et al., 2011). Work

over many years has established that impulsivity, in its

many forms, is sensitive to modulation by drugs that affect

monoaminergic transmission, including psychostimulant

drugs (Pattij and Vanderschuren, 2008) and drugs that

block the reuptake of catecholamines in the brain such as

atomoxetine (Economidou et al., 2012; Ansquer et al.,
2014; Feldman and Reiff, 2014). Increasingly, however,

current research has shifted to new targets that offer

putative explanatory mechanisms, including evident

GABA-ergic dysfunction in the nucleus accumbens core

of trait impulsive rats (Caprioli et al., 2014) and pharma-

cological agents that reduce both impulsivity and

addiction-like behaviours in animal models (Jupp and

Dalley, 2014). This research has revealed several pro-

mising lead compounds targeting cholinergic, glutama-

tergic and opioid-ergic transmission, in addition to

continued interest in the endocannabinoid system (Pattij

and Vanderschuren, 2008).

Impulsivity is a widely recognized risk marker for

addiction (Perry and Carroll, 2008; Verdejo-García et al.,
2008; de Wit, 2009) predicting the onset and escalation of

drug use (Diergaarde et al., 2008; Zernicke et al., 2010;
Dalley et al., 2011), rates of relapse (Economidou et al.,
2009; Ersche et al., 2010), and the development of com-

pulsive drug-taking (Belin et al., 2008). It is widely

recognized that impulsive choice for immediate rewards

is present in opiate addicts (Kirby and Petry, 2004),

alcoholics (Vuchinich and Simpson, 1998) and stimulant

abusers (Kirby and Petry, 2004; Monterosso et al., 2007).
Other forms of impulsivity, including impulsive action, as

assessed with such tasks as the stop-signal reaction time

task and go/no go, are evident in alcoholics (Noël et al.,
2007), and abusers of cocaine (Fillmore and Rush, 2002;

Hester and Garavan, 2004) and methamphetamine

(Monterosso et al., 2005). On the basis of the research in

experimental animals different subtypes of impulsivity

appear to affect distinct stages of drug addiction. Thus,

increased impulsive action on the 5-CSRTT was found

to predict an increased motivation to initiate and main-

tain nicotine self-administration, whereas impulsive

choice on a delay discounting procedure predicted

impaired inhibition of drug seeking and an higher prob-

ability for relapse (Diergaarde et al., 2008).

Impulsivity may also arise, in turn, as a consequence of

chronic drug abuse through perturbation of prefrontal

cortical control over basal ganglia function (Jentsch and

Taylor 1999). As a result impulsivity has been hypothe-

sized to facilitate the shift in behavioural control over

drug-taking from the PFC to the striatum, as well as

promoting a maladaptive ventral to dorsal striatal transi-

tion in the control over drug seeking (Everitt and

Robbins, 2005). Elucidating the molecular mechanisms

underlying the transitions from initial drug use to habi-

tual and eventual compulsive drug taking remains an area

of intensive research activity (Belin et al., 2013; Everitt,
2014).

Anxiety and addiction
Anxiety is postulated to contribute to an evolutionary

preserved repertory that prepares and optimizes beha-

vioural and physiological defensive responses for

approaching, confronting, avoiding or escaping innate or

learnt threatening stimuli (Canteras et al., 2010).

However, excessive levels of anxiety may impair perfor-

mance and lead to suboptimal behavioural responses and

ultimately to psychiatric disorders including generalized

anxiety disorder, panic disorder, post-traumatic stress

disorder and obsessive–compulsive disorder. Such dis-

orders are highly prevalent and have significant indivi-

dual and social impacts (Kessler et al., 2010).

Anxiety is often assessed as a subjective state in humans

in conjunction with objective measures of autonomic

function (Canteras et al., 2010). In laboratory rodents,

anxiety-like responses can be quantified by measuring

avoidance or escape responses to innate or conditioned

aversive stimuli. Typical tests include the elevated mazes

and the light–dark shuttle box, which assess ethological

aspects of fear, in addition to tests of conditioned aversive

responses to cues and contexts previously paired with

noxious stimuli (Cryan and Sweeney, 2011; Blanchard

et al., 2013). The neuroanatomical substrates of anxiety-

related behaviours have been extensively investigated

and include the amygdala-ventral striatal interactions

underlying cue-conditioned fear, the hippocampal-

dependent processing of contextual fear, the medial

hypothalamic nuclei and the periaqueductal grey

underlying escape behaviour, and the PFC in stress and

extinction of conditioned aversive responses (Canteras

et al., 2010). A number of neurotransmitters modulate

anxiety-related responses, including GABA and the

monoamines 5-HT and NA, which are the major targets

for currently available anxiolytic drugs, as well as gluta-

mate, DA and the endocannabinoids (Griebel and

Holmes, 2013).

Anxiety and exaggerated stress-related responses are

known to predispose to drug use (Cleck and Blendy,

2008; Kessler et al., 2010) whilst facilitating the acquisi-

tion of stimulant drug self-administration (Piazza and Le

Moal, 1998). Furthermore, the interruption of chronic
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drug consumption results in the emergence of negative

emotional states that lie at the core of the motivational

withdrawal/abstinence syndrome, one of the major cata-

lysts for relapse and persistent drug-taking behaviour

(Koob and Le Moal, 1997, 2008). This shift in motiva-

tional state is a putative consequence of neural adapta-

tions resulting from chronic drug exposure and involves,

in particular, the recruitment of locus coeruleus nora-

drenergic neurons and corticotrophin-releasing factor in

the central nucleus of the amygdala and the bed nucleus

of the stria terminalis (Koob, 2008). Thus, the anxiety

and stress systems of the brain have a major impact on the

escalation and persistence of drug abuse. In experimental

animals, trait anxiety-like behaviour predicts the escala-

tion of intravenous cocaine self-administration, but

not an increased propensity to acquire cocaine self-

administration (Dilleen et al., 2012), indicating that high

anxiety may be a predisposing endophenotype under-

lying the loss-of-control over cocaine intake. These data

further suggest that the mechanisms underlying the

initiation of drug use are not necessarily the same as

those contributing to the development of addiction.

Anxiety also correlates with vulnerability to alcohol

intake. Thus, a high comorbidity between anxiety dis-

orders and alcohol abuse has been reported; this has led

to the tension-reduction hypothesis, which posits that

anxious or stressed individuals tend to consume more

alcohol to alleviate anxiety (Cappell and Herman, 1972;

Pohorecky, 1981; Young et al., 1990). Accordingly,

experimental studies in rats show that higher levels of

anxiety-like behaviour in the elevated plus maze predicts

higher alcohol intake and escalation of intake in volun-

tary drinking procedures compared with low-anxious

animals (Spanagel et al., 1995; Hayton et al., 2012).

Such findings accord with the notion that many drugs

may be used to self-medicate high levels of anxiety and

other negative emotional states (Khantzian, 1985).

Cannabis sativa, cannabinoids and the
endocannabinoid system
Biochemical and neurophysiological processes that

inherent to the endocannabinoid system have been

extensively reviewed elsewhere (Howlett et al., 2002;

Piomelli, 2003; Di Marzo, 2008; Pertwee et al., 2010;

Castillo et al., 2012). Here we provide a brief synopsis of

endocannabinoid pharmacology and its relevance to

impulsivity, anxiety and addiction.

The endocannabinoid system is named after the herb

Cannabis sativa (‘hashish’, ‘marijuana’), which although

widely abused can have beneficial effects in some set-

tings (Zuardi, 2006; Russo, 2007). Its main active con-

stituent Δ9-tetrahydrocannabinol (Δ9-THC) is one of

more than 60 compounds, termed phytocannabinoids,

found in C. sativa (Mechoulam, 1970). The chemical

characterization of this plant and subsequent develop-

ment of synthetic cannabinoids provided the impetus for

the identification and cloning of the major brain expres-

sed cannabinoid-1 (CB1) receptor (Devane et al., 1988;
Matsuda et al., 1990), which is Gi-protein-coupled (Fig. 1)

and densely expressed throughout the brain, particularly

in mesocorticolimbic brain areas (Herkenham et al., 1990,
1991b; Tsou et al., 1998). Soon after the discovery of the

CB1 receptor, the endogenously produced cannabinoid

(endocannabinoid) and arachidonic acid derivative, ara-

chidonoylethanolamide (AEA) was isolated and coined

with the name anandamide after the Sanskrit word for

‘bliss’ (Devane et al., 1992). Subsequently, a second

metabotropic cannabinoid receptor was discovered, the

cannabinoid-2 (CB2) receptor (Munro et al., 1993) as well
as a second endocannabinoid, 2-arachidonoyl glycerol

(2-AG) (Mechoulam et al., 1995). Interestingly, although
CB2 receptors are postulated to be predominately

expressed in the peripheral immune system, with low

expression levels in the brain, CB2 selective compounds

can modulate several centrally mediated processes,

including cocaine reward (Onaivi et al., 2006; Xi et al.,
2011).

The synaptic effects of anandamide are mainly termi-

nated by cellular uptake and hydrolytic catabolism by

fatty acid amide hydrolase (FAAH) (Di Marzo et al., 1994;
Cravatt et al., 1996; Beltramo et al., 1997). By contrast, the
inactivation of 2-AG is mediated by monoacylglycerol

lipase (MAGL) (Dinh et al., 2002). Unlike conventional

neurotransmitters and modulators, endocannabinoids act

as retrograde neural messengers (Wilson and Nicoll,

2002), being synthesized from membrane lipids of post-

synaptic neurons in response to increased neural activity.

Newly synthesized endocannabinoids diffuse across the

synaptic cleft where they activate CB1 receptors located

on presynaptic terminals. The CB1 receptor is coupled to

a myriad of signal transduction mechanisms, initiated by

Gi-protein activation and culminating in the inhibition of

adenylate cyclase, the activation of MAP kinase, inhibi-

tion of calcium influx, and facilitation of potassium efflux.

Collectively, these interactions result in the inhibition of

neuronal activity and neurotransmitter release (Egertova

et al., 1998; Pettit et al., 1998; Kreitzer and Regehr, 2001;

Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001). It

should be noted, however, that CB1 receptor expression

and function is not necessarily exclusively mediated at

presynaptic terminals and that other receptors and

endocannabinoids have been proposed; these include the

transient receptor potential vanilloid type-1 channel

(TRPV1) for which anandamide may act as the main

endogenous agonist (Starowicz et al., 2007) (Fig. 1).

Cannabinoids are known to regulate the activity of a

number of neuroactive substances through effects

mediated presynaptically by CB1 receptors located on

glutamatergic and GABA-ergic nerve terminals (Katona

et al., 1999; Marsicano and Lutz, 1999; Hermann et al.,
2002; Julian et al., 2003; Katona et al., 2006; Haring et al.,
2007). Activation of CB1 receptors inhibits the release of
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glutamate, GABA and acetylcholine in the nucleus

accumbens (Schoffelmeer et al., 2006) where it also sup-

presses excitatory transmission at glutamatergic synapses

(Robbe et al., 2002; Fig. 2). In addition, stimulation of CB1

receptors increases the firing rate of dopaminergic neurons

and facilitates DA release in the nucleus accumbens

through a GABA-ergic disinhibitory mechanism (Chen

et al., 1990; French, 1997; Tanda et al., 1997; Sperlagh et al.,
2009). Endocannabinoids can therefore strongly influence

information processing in the striatum by modulating DA

inputs not only from the ventral tegmental area (Szabo

et al., 2002; Riegel and Lupica, 2004; Melis et al., 2004b)
but also the substantia nigra zona compacta innervating the

dorsal striatum (Melis et al., 2000; Szabo et al., 2000), as well
as excitatatory glutamatergic afferents from the PFC

(Fitzgerald et al., 2012). CB1 receptors are densely located

in the ventral and dorsal striatum (Herkenham et al., 1990,
1991a; Herkenham, 1992; Tsou et al., 1998) where they are
present on medium spiny neurons (Rodriguez et al., 2001;
Pickel et al., 2006) positive for D1 and D2 receptors

(Hermann et al., 2002; Robbe et al., 2002; Monory et al.,
2007; Martin et al., 2008) and glutamatergic terminals

(Fitzgerald et al., 2012). The endocannabinoid hydrolyzing

enzymes, FAAH and MAGL, are also expressed in the

striatum and related projection areas (Egertova et al., 1998).

Thus, endocannabinoids are ideally placed to fine-tune

processing in mesocorticolimbic brain networks by reg-

ulating inhibitory and excitatory synaptic transmission

(Sidhpura and Parsons, 2011; El Khoury et al., 2012).

The endocannabinoid system and impulsivity
An involvement of the endocannabinoid system in

impulsivity has come to light from current research in

humans and experimental animals. In this regard mar-

ijuana users tend to have higher levels of impulsivity than

nondrug abusing controls (Cousijn et al., 2013; Dougherty

et al., 2013). Acute use of this drug induces altered time

perception, psychomotor and cognitive impairment,

reduced inhibitory control, and increased risk-taking

behaviour (Hall and Solowij, 1998; Iversen, 2003;

Murray et al., 2007). Moreover, Δ9-THC administration to

healthy volunteers elicits impulsive responding on the

stop-signal task but has no effect on delay discounting or

go/no-go discriminative performance (McDonald et al.,
2003). The impairing effect of Δ9-THC on stopping

behaviour has been replicated (Ramaekers et al., 2006b;
Van Wel et al., 2013) and is generally consistent with the

disruptive effects of marijuana on tasks requiring motor

inhibition and risk evaluation (Lane et al., 2005;

Ramaekers et al., 2006a; Metrik et al., 2012).

Fig. 1
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A schema of the currently proposed model for endocannabinoid neurotransmission. Anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) are
synthesized and released from postsynaptic membranes to activate Gi-protein-coupled CB1 cannabinoid receptors. This interaction initiates a
cascade of signal transduction mechanisms that include inhibition of adenylate cyclase (AC), activation of MAP kinase (MAPK), inhibition of calcium
influx and facilitation of potassium efflux. AEA also activates transient receptor potential vanilloid type-1 (TRPV1) channels to facilitate calcium influx.
The effects of AEA and 2-AG are terminated by internalization facilitated by a specific membrane transporter (T), followed by hydrolysis by fatty acid
amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively.
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Complementary research in rodents confirms a role of the

endocannabinoid system in specific subtypes of impulsiv-

ity, as summarized in Table 1. Thus, although acute

administration of Δ9-THC was reported not to affect

impulsivity assessed by the 5-CSRTT this substance

decreased impulsivity on a delay discounting task, an effect

that was blocked by the CB1 receptor antagonist/inverse

CB1 receptor agonist, rimonabant (Wiskerke et al., 2011).
In other studies, the synthetic cannabinoid WIN55,212-2

had no effect on impulsivity assessed on a lateralized

reaction time task (Arguello and Jentsch, 2004) or the

5-CSRTT (Pattij et al., 2007). Interestingly, however, this
compound normalized enhanced levels of delay discount-

ing impulsivity in spontaneously hypertensive rats com-

pared with Wistar–Kyoto rats (Adriani et al., 2003). These

rats also exhibit a reduced density of CB1 receptors in the

PFC, suggesting a potential contribution of the endo-

cannabinoid system in this region to the enhanced levels of

impulsivity (Adriani et al., 2003). Anandamide, a non-

selective endogenous ligand exerts a plethora of effects

through multiple mechanisms, including the TRPV1

channel. Systemic administration of this cannabinoid

reduced anticipatory responding (i.e. impulsivity) on the

5-choice task; however this compound also significantly

increased omission errors, possibly reflecting attentional

interference (Panlilio et al., 2009). Intriguingly, these

effects were blocked by the TRPV1 antagonist capsaze-

pine, but not rimonabant. However, the FAAH inhibitor,

URB597, which increases endogenous levels of ananda-

mide, failed to mimic the effects of anandamide (Panlilio

et al., 2009).

To date the majority of studies have focused on the

blockade of the endocannabinoid system in the assess-

ment of impulsivity. Rimonabant has been widely used

for this purpose and has shown to be effective, for

example, in reducing impulsivity on the 5-choice task but

not the delay discounting task (Pattij et al., 2007). This

relatively selective effect on motor impulsivity was later

confirmed and extended to other CB1 receptor antago-

nists (O-2050, SLV330), which unlike rimonabant do not

act as an inverse agonist at the CB1 receptor (De Bruin

Fig. 2
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Brain loci underlying the modulation of dopamine (DA)-mediated neurotransmission by the endocannabinoid system. Endocannabinoids (eCBs) inhibit
local gamma-aminobutyric acid (GABA)-ergic interneurons that synapse on dopaminergic neurons in the ventral tegmental area (VTA) and substantia
nigra (SNc). In the striatum, eCBs inhibit glutamate (Glut) release from afferents arising from different cortical regions (e.g. prefrontal cortex,
amygdala, hippocampus) and indirectly stimulates dopamine release by inhibiting GABA-ergic interneurons.
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et al., 2011; Wiskerke et al., 2011). Both compounds were

also effective in attenuating the effects of amphetamine

on delay discounting and motor impulsivity (Wiskerke

et al., 2011). Subsequently, rimonabant was shown

to antagonize nicotine-induced motor impulsivity

(Wiskerke et al., 2012) and cocaine-induced impulsivity

in a delay discounting task (Hernandez et al., 2014).

Rimonabant has also been investigated in obese Zucker

rats, which show a preference for immediate, small-

magnitude rewards compared with lean rats. Obese rats

also exhibit increased levels of endocannabinoids and

higher CB1 receptor expression in brain regions that

regulate feeding (Boomhower et al., 2013). Consistent

with a role of CB1 receptors in mediating behavioural

choice in the delay discounting paradigm rimonabant

reduced impulsivity in obese Zucker rats but increased

impulsivity in lean rats (Boomhower et al., 2013). Given

the paucity of studies in this field it is difficult to draw

firm conclusions. Nevertheless, CB1 receptor antagonists

appear to reduce impulsivity in a baseline-dependent

manner, particularly when this behaviour is elevated in

various trait models or evoked by psychostimulant drugs.

Interestingly, the same profile of effects can be achieved

using selective CB2 receptor agonists (e.g. JWH133) in

DBA/2 mice, which express a number of behaviours,

including some that appear to reflect increased impul-

sivity (Navarrete et al., 2012). Notably, DBA/2 mice also

show higher levels of CB2 receptor expression in the

cingulate cortex, nucleus accumbens, and amygdala

compared with a less impulsive mouse strain (Navarrete

et al., 2012).

The studies reviewed above have mainly investigated

the acute effects of cannabinoids on impulsivity. Yet an

important question is whether evident neurocognitive

impairment in adolescent cannabis users (Hester et al.,
2009; Gonzalez et al., 2012; Solowij et al., 2012), including
increased risky and impulsive decision-making (Solowij

et al., 2012), extends well into adulthood. Possibly rele-

vant to this question are data showing that inhibition of

anandamide hydrolysis during adolescence, a manipula-

tion that persistently stimulates endocannabinoid recep-

tors, blocked the expected increase in impulsivity of

adult rats previously deprived of early maternal contact

(Marco et al., 2007). This interesting and potentially

important study merits further research to understand

how the endocannabinoid system influences the devel-

opmental trajectory of inhibitory control circuitry during

adolescence, which also has an impact on social beha-

viours during this period (Trezza and Vanderschuren,

2008; Trezza et al., 2014).

The endocannabinoid system and anxiety
The involvement of the endocannabinoid system in

anxiety has been more extensively investigated than its

role in impulsivity (Viveros et al., 2005; Moreira and Lutz,

2008; Moreira and Wotjak, 2010; Marco et al., 2011).

C. sativa induces a well-described state of relaxation and

reduced anxiety; unfortunately, however, this has not

been easily demonstrated in experimental settings.

Studies administering pure Δ9-THC or synthetic CB1

receptor agonists to laboratory animals report complex

findings, which depend on the dose, route of

Table 1 A summary of the effects of acute pharmacological interventions on the endocannabinoid system on two major subtypes of
impulsivity in experimental animals

Substance (dose) Subjects Impulsive action Impulsive choice References

Cannabinoids
Δ9-THC (0.5, 1, 2a mg/kg) Wistar rats = ↓ Wiskerke et al. (2011)
WIN55,212–2 (2a mg/kg) Wistar–Kyoto rats X = Adriani et al. (2003)

Spontaneously hypertensive rats (highly impulsive) X ↓
WIN55,212–2 (1, 2.5 mg/kg) Long-Evans rats = X Arguello and Jentsch (2004)
WIN55,212–2 (0.3, 1, 3 mg/kg) Wistar rats = = Pattij et al. (2007)

CB1 receptor antagonists/inverse agonists
Rimonabant (0.1, 0.5, 1 mg/kg) Long-Evans rats = X Arguello and Jentsch (2004)
Rimonabant (0.3a, 1a, 3a mg/kg) Wistar rats ↓ = Pattij et al. (2007)
Rimonabant (1a, 3a mg/kg) Wistar rats ↓ = Wiskerke et al. (2011)

↓b ↑c

Rimonabant (1, 3a mg/kg) Wistar rats ↓d X Wiskerke et al. (2012)
= e X

Rimonabant (1a, 3, 10a mg/kg) Lean Zucker rats X ↑ Boomhower et al. (2013)
Obese Zucker rats(highly impulsive) X ↓

Rimonabant (1.5 mg/kg) Long-Evans Rats X ↓f Hernandez et al. (2014)
O-2050 (0.3a, 1a, 3a mg/kg) Wistar rats ↓ = Wiskerke et al. (2011)

↓b ↑c

SLV330 (1, 3a, 10a mg/kg) Wistar rats ↓ X De Bruin et al. (2011)

Modulation of stimulant-induced changes in impulsivity.
↑, increased impulsivity; ↓, decreased impulsivity; = , no effect; X, not investigated; CB1, cannabinoid-1; Δ9-THC, Δ9-tetrahydrocannabinol.
aEffective doses.
bAmphetamine-induced high impulsivity.
cAmphetamine-induced low impulsivity.
dNicotine-induced high impulsivity.
eGBR12909-induced high impulsivity.
fChronic cocaine-induced high impulsivity.
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administration, and animal species used (Viveros et al.,
2005). Also, the effects of CB1 receptor agonists depend

on environmental stress, which may vary between dif-

ferent laboratories. As a general rule, however, low doses

of cannabinoids tend to have anxiolytic effects, whereas

higher doses induce anxiogenic effects (Moreira and

Wotjak, 2010; Marco et al., 2011). Finally, the anxiolytic-

like properties of CB1 receptor agonists are often

restricted by nonspecific motor impairment resulting in

narrow dose–response effects. Despite this complexity,

however, the anxiolytic-like effects of CB1 receptor

agonists can be reliably detected under appropriate doses

and experimental conditions (Moreira and Lutz, 2008).

As an alternative, drugs that increase endogenous levels of

anandamide by inhibiting its neuronal internalization and/

or hydrolysis diminish anxiety-like responses in animals

with a more favourable pharmacological profile compared

with CB1 receptor agonists (Moreira and Wotjak, 2010).

Anandamide is normally produced and released at low

physiological levels but its synthesis and release increases

in response to increased neural activation (Piomelli, 2003).

Interestingly, FAAH inhibitors, which increase ananda-

mide levels, appear to have more consistent effects on

anxiety responses under highly aversive conditions, pre-

sumably because anandamide appears to be recruited as a

protective mechanism in response to stress (Kathuria et al.,
2003; Patel and Hillard, 2006; Naidu et al., 2007; Moreira

et al., 2008). Recent research has revealed that blocking the

degradation of 2-AG may also be a useful approach to

reduce anxiety-like responses (Busquets-Garcia et al.,
2011). Endocannabinoid hydrolysis inhibitors may there-

fore be a promising strategy for developing new anxiolytic

drugs (Batista et al., 2014). Intriguingly, the effect of

MAGL inhibitors appears to be mediated by CB2 rather

than CB1 receptors (Busquets-Garcia et al., 2011) and

confirms recent interest in the CB2 receptor as a target to

modulate aversive responses (Garcia-Gutierrez et al., 2012).
Alternative potential targets include: (i) the TRPV1 chan-

nel, whose function in modulating anxiety seems to be

diametrically opposite to the CB1 receptor (Moreira and

Wotjak, 2010; Moreira et al., 2012b); (ii) dual FAAH and

TRPV1 blockade (Micale et al., 2009) and (iii) site-specific

inhibition of cyclo-oxygenase (Hermanson et al., 2013).

The effects of CB1 receptor antagonists/inverse agonists,

particularly rimonabant and AM251, have been exten-

sively investigated in experimental animals and, in the

case of rimonabant, in humans as well (Bergamaschi et al.,
2014). Most studies demonstrate that these compounds

tend to magnify responses to aversive stimuli in mice and

rats. Thus, in tests used to assess anxiety, they exert

anxiogenic-like effects (Moreira and Wotjak, 2010) and

impair the extinction of conditioned aversive memories

(Marsicano et al., 2002). CB1 receptor blockade also

interferes with stress coping responses and increases the

activation of the neuroendocrine stress axis, with possible

implications for mood regulation in humans (Hill et al.,

2009; Gunduz-Cinar et al., 2013). These preclinical data

have been confirmed in humans treated with rimonabant

for obesity. The clinical efficacy of rimonabant was

similar to other antiobesity drugs, with a modest reduc-

tion in body weight, but unfortunately its use was

accompanied by anxiety, depression and suicidal

thoughts (Moreira and Crippa, 2009). The CB1 receptor

exhibits constitutive activity when expressed in artificial

cell systems, in which rimonabant and other cannabinoid

blockers act as inverse agonists. Thus, neutral antagonists

have been investigated as a safer alternative to reduce

CB1-mediated signalling (McLaughlin, 2012) These

compounds reduce body weight similarly to rimonabant,

without inducing anxiogenic-like effects or reducing

motivation for reward in rats (Sink et al., 2010; Meye et al.,
2013). This research opens the interesting possibility of

dissociating the effects of CB1 receptors on motivation

and aversion based on constitutive receptor activity, with

potential therapeutic implications. A summary of the

predominant effects on anxiety of pharmacological

interventions that target the endocannabinoid system is

shown in Table 2.

The neuroanatomical loci underlying the effects of

cannabinoid-related compounds on anxiety have been

extensively investigated using selective molecular

approaches and intracranial pharmacology. As anticipated

from their behavioural pharmacological profile, cannabi-

noids modulate brain regions involved in generating

defensive responses against stressful and threatening

stimuli, including the medial PFC, amygdala, hippo-

campus and the midbrain periaqueductal grey (Moreira

et al., 2012a). Neurochemically, these effects involve

interactions with various neurotransmitters and neuro-

modulators, including GABA, glutamate, 5-HT and DA

(Marco et al., 2004; Bambico et al., 2010; Terzian et al.,
2011; Rey et al., 2012). Through such mechanisms,

facilitation of the endocannabinoid system leads to a

reduction in aversive responses to both innate and

Table 2 A summary of the effects of genetic and pharmacological
interventions on the endocannabinoid system on anxiety-like
responses

Target
Main effects of pharmacological

activation on anxiety
Main effects of pharmacological or

genetic inhibition on anxiety

CB1 ↓a ↑b,c

CB2 ? ?
TRPV1 ↑ ↓
AT – ↓
FAAH – ↓d

MAGL – ↓

↓, anxiolytic; ↑, anxiogenic; ?, unclear; AT, membrane anandamide transporter;
CB1, cannabinoid type-1 receptor; CB2, cannabinoid type-2 receptor; FAAH,
fatty acid amide hydrolase; MAGL, monoacylglycerol lipase; TRPV1, transient
receptor potential vanilloid type-1 channel.
aTends to be anxiolytic at low doses and anxiogenic at high doses.
bIncrease anxiety particularly under highly aversive environments.
cInverse agonists are more anxiogenic than neutral antagonists.
dAnxiolytic-like effects tent to be more consistent under highly aversive environ-
ment.
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conditioned threatening stimuli whilst facilitating the

extinction of already acquired aversive responses

(Moreira and Wotjak, 2010; Marco et al., 2011).

Implications for addiction
On the basis of the research findings reviewed above

some general conclusions can be made about the putative

efficacy of cannabinoid-based compounds to treat addic-

tion. Impulsivity and anxiety have been extensively

investigated as behavioural endophenotypes in addiction

(Koob and Le Moal, 1997, 2008; Jentsch and Taylor 1999;

Everitt et al., 2008; Dalley et al., 2011; Ersche et al., 2012)
where their causal impacts appear to manifest at quite

distinct stages of the addiction process. Specifically,

whereas impulsivity is widely regarded as an antecedent

behavioural marker involved in the initiation of drug use

and in facilitating the development of stimulant addiction

(Kreek et al., 2005; Belin et al., 2008; Koob and Le Moal,

2008; Dalley et al., 2007) anxiety is considered to have its

greatest impact following protracted drug use where

continued drug intake increasingly comes to depend on

negative reinforcement mechanisms (Koob and Le Moal,

2008). Leaving aside the possibility that the separation

between impulsivity and anxiety, in terms of temporally

distinct risk markers for addiction, could be driven in part

by the class of predominately abused drug (i.e. stimulants

vs. opiates/alcohol) cannabinoid-based treatments may

have utility during both the early and late stages of

addiction. Thus, for example, whereas natural and syn-

thetic cannabinoids reduce inhibitory control and increase

risk-taking behaviour (Tanda et al., 1997; Giuffrida et al.,
1999; Melis et al., 2004a; Lafourcade et al., 2007; Pillolla
et al., 2007; Sperlagh et al., 2009; Chiu et al., 2010), CB1
receptor antagonists generally strengthen impulse control

(Pattij et al., 2007) thereby putatively reducing the

initiation of drug abuse and later emergence of compul-

sive drug intake in vulnerable individuals (Fig. 3).

Notably, CB1 receptor antagonists attenuate several

drug-evoked/motivated behaviours, including sensitiza-

tion, self-administration and reinstatement (De Vries

et al., 2001; Gerdeman et al., 2008; Xi et al., 2008).

Likewise, CB1 receptor antagonists block the acquisition

and expression of nicotine-induced conditioned place

preference in rats and mice (Le Foll and Goldberg, 2004;

Merritt et al., 2008) and reduce self-administration of this

drug (Cohen et al., 2002; Shoaib, 2008). CB1 receptor

antagonists also reduce opioid and alcohol intake.

Indeed, there is evidence for functional interactions

between the endogenous cannabinoid and opioid sys-

tems. Thus, CB1 receptor antagonists and genetic dele-

tion of the CB1 receptor impair conditioned place

preference and self-administration of morphine and her-

oin (Navarro et al., 2001; De Vries et al., 2003; Solinas
et al., 2003). Moreover, CB1 receptor antagonists reduce

ethanol consumption and conditioned place preference

(Arnone et al., 1997; Wang et al., 2003; Economidou et al.,

2006). In addition, CB1 receptor knock-out mice show

reduced responses to alcohol (Houchi et al., 2005; Thanos

et al., 2005).

There is thus substantial evidence that CB1 receptor

antagonists reduce responses to drugs of various classes,

including cocaine, nicotine, opioids and alcohol (for a

detailed review, see Serrano and Parsons, 2011). It should

be noted, however, that CB1 receptor antagonists can

augment the consequences of aversive stimuli, as dis-

cussed above, and may therefore be more appropriate as

therapeutic agents for individuals in which impulsivity,

rather than anxiety, is the driving endophenotype in

addiction. In this regard, neutral antagonists, lacking

inverse agonistic actions, might represent a superior

approach, as discussed above. In addition, interventions

targeting the CB2 receptor may have utility since selec-

tive CB2 receptor agonists reduce impulsivity (Navarrete

et al., 2012), as well as the primary reinforcing actions of

cocaine, effects that are presumed to depend on the

mesocorticolimbic dopaminergic systems (Xi et al., 2011).
Furthermore, pharmacological blockade or genetic dele-

tion of this receptor reduces nicotine-induced condi-

tioned place preference and self-administration in mice

(Navarrete et al., 2013). CB2 receptor knock-out mice also

exhibit increased responses to ethanol in both condi-

tioned place preference and self-administration para-

digms (Ortega-Álvaro et al., 2013). However, the precise

mechanism through which CB2 receptors modulate drug-

motivated behaviours requires further elucidation.

Therapies targeting the endocannabinoid system may be

useful adjuncts to treat anxiety and elevated stress asso-

ciated with chronic addiction (Fig. 3). As reviewed above,

much research suggests that the endocannabinoid system

functions as a protective mechanism against diverse

forms of aversive stimuli and is a key modulator of

anxiety, stress and depression (Hill et al., 2009; Moreira

and Wotjak, 2010; Gunduz-Cinar et al., 2013). Natural

and synthetic CB1 receptor agonists can attenuate

anxiety-like behaviour at specific doses but with ancillary

effects on motor and mnemonic functions and with

attendant psychotomimetic effects, these compounds do

not represent an attractive approach to treat addiction.

Indeed, CB1 receptor stimulation can facilitate drug-

induced and cue-induced relapse, possibly by indirectly

stimulating the dopaminergic mesocorticolimbic path-

ways (Fattore et al., 2007). As an alternative, the CB2

receptor has emerged as a potential target for alleviating

anxiety (Garcia-Gutierrez et al., 2012) and reportedly

reducing impulsivity in rodents (Navarrete et al., 2012).
In addition, FAAH inhibitors selectively enhance the

‘on-demand’ actions of anandamide and attenuate anxi-

ety and stress responses (Moreira et al., 2012b). Thus,

FAAH, and possibly MAGL inhibitors as well, may be

useful therapies to alleviate withdrawal symptoms that

trigger relapse and perpetuate drug use (Panlilio et al.,
2013).
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Conclusion

The research findings reviewed in this article indicate

that pharmacological interventions that selectively target

the endocannabinoid system can moderate the expres-

sion of impulsivity and anxiety, two behavioural endo-

phenotypes that predispose to the development of drug

addiction. The effects of such agents are mediated within

the basal ganglia, including especially the striatum and

limbic afferents to this region from the PFC, hippo-

campus and amygdala. Although this field is still rela-

tively nascent, findings to date suggest several promising

leads for research, not least the delineation of specific

functions and molecular targets of anandamide and 2-AG,

and the clear value of additional studies to define the

neuropsychopharmacology of selective CB2 receptor

agonists, which show promise as novel therapies in

addiction. Such research may reveal novel mechanisms

underlying the aetiology of predisposing behavioural

endophenotypes in addiction, thereby enabling the

development of new therapies to facilitate abstinence

and rehabilitation.
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