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ABSTRACT: A metabolic system is composed of inherently
interconnected metabolic precursors, intermediates, and
products. The analysis of untargeted metabolomics data has
conventionally been performed through the use of comparative
statistics or multivariate statistical analysis-based approaches;
however, each falls short in representing the related nature of
metabolic perturbations. Herein, we describe a complementary
method for the analysis of large metabolite inventories using a
data-driven approach based upon a self-organizing map
algorithm. This workflow allows for the unsupervised
clustering, and subsequent prioritization of, correlated features through Gestalt comparisons of metabolic heat maps. We
describe this methodology in detail, including a comparison to conventional metabolomics approaches, and demonstrate the
application of this method to the analysis of the metabolic repercussions of prolonged cocaine exposure in rat sera profiles.

Genomic and transcriptomic measurements provide
information that describes the capacity of a biological

system to support specific phenotypes and functions, or the
biological potential. Complementary, comprehensive end point
molecular analyses, e.g., metabolomics and proteomics, provide
information regarding the actual phenotype or functions of the
system.1 Both classes of measurements can reveal the
underlying complex nonlinear and time-dependent interactions
upon which biological systems depend. Accepted multivariate
statistical techniques such as principal component analysis
(PCA) and orthogonal partial least-squares-discriminant
analysis (OPLS-DA) can be used to identify statistical
correlations in data, but they are as yet inadequate to elucidate
complex interactions in high-dimensional data sets. We
demonstrate here the utility of self-organizing maps (SOM)
when applied to untargeted metabolomics studies, and how
these maps relate to other common analysis techniques. The
strength of SOM strategies is the ability to “[convert] complex,
nonlinear statistical relationships between high-dimensional
data into simple geometric relationships...”.2 Essentially, these
techniques distill multivariate data into an accessible, visually
interpretable format, while capturing inherent relationships
among variables. Self-organizing maps have been used in
diverse fields; these include the analysis of meteorological
climate change,3 document text clustering,4 cattle manage-
ment,5 crowd dynamics,6 and gene expression dynamics.7

Research endeavors in metabolomics seek to interrogate the
global metabolite profile of a biological system of interest, with

the intent of gaining insight into the system phenotype, or
alternatively, how the system is interacting with the
surrounding environment.8 In metabolomics studies, the
complexity of metabolic profiles is often simplified to a
fundamental comparison of large inventories of key, phenotypi-
cally descriptive small molecules that distinguish between
differing physiological states of interest at a single time point
(e.g., “normal” vs “diseased”). Differences in the relative
concentrations in these metabolite inventories are then used
to infer metabolic perturbations. Multivariate statistical analysis
(MVSA) methods are used frequently to reduce large
dimensional datasets which commonly result from mass
spectrometry (MS)-based metabolomics experiments into
relevant features (i.e., up- and down-regulated metabolites),9

with a feature defined as any detected monoisotopic molecular
species with a discrete retention time and mass-to-charge
ratio.10 The widespread application of MVSA to metabolomic
studies provides a means of visualizing sample groupings and
determining significant metabolite contributions through
loadings plot interpretation. Clustering-based approaches
deliver data organization based upon internal correlations,
though interpretability of large cluster trees is time-consuming.
Other metabolomic-based workflows utilize a univariate
statistical approach and consider fold-change differences in

Received: March 25, 2014
Accepted: May 23, 2014
Published: May 23, 2014

Article

pubs.acs.org/ac

© 2014 American Chemical Society 6563 dx.doi.org/10.1021/ac5010794 | Anal. Chem. 2014, 86, 6563−6571

Terms of Use

pubs.acs.org/ac
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


molecular features.11 Thus, the interrelated nature of the
metabolic fluctuations and underlying feature patterns arising
from differing physiological states are often difficult to discern
or are ignored in conventional feature prioritization workflows.
In this report, we demonstrate a SOM workflow to visualize

metabolic phenotype and feature patterns in sera from rat
models of cocaine addiction. This advances conventional
metabolomics approaches by using SOM techniques, previously
developed for gene expression analyses,7 and adapts them for
untargeted metabolic profiling. The present workflow uses
SOM-based methods to cluster and prioritize analytes of
interest by similar expression profiles, in addition to data
visualization as previously demonstrated.12,13 Our SOM
approach groups features that are annotated by both retention
time and mass-to-charge ratio based upon similarities in signal
intensity profiles across biological sample sets. The grouping
procedure is performed in an iterative manner for a defined
training period and metabolites are clustered based upon
underlying trends in the metabolic inventories to create the
SOM. These maps are then averaged across experimental
groups and compared to provide a heat map of up- and down-
regulated metabolites as a function of experimental group. This
added dimension of feature−feature correlation provides
valuable insight into recognizing experimental subpopulations
and relevant biomolecules, as well as allowing for the removal
of biologically insignificant background features.
We have termed this workflow, which consists of studying

MS-based metabolic profiles using SOMs, Molecular Ex-
pression Dynamics Investigator (MEDI). This manuscript

describes the MEDI workflow method in detail, and
subsequently applies MEDI to determine the effects of long-
term cocaine exposure upon the serum metabolic profile of rat
populations. Currently, we display the application of SOMs to a
mass spectrometry-based metabolomic analysis of sera samples
from cocaine-naıv̈e rats and behaviorally distinct cocaine-
exposed rat models (behaviorally “nonaddicted” and “ad-
dicted”).14 Although cocaine and cocaine metabolites are
cleared from the animal in 2−4 days, the present workflow
using MEDI can distinguish between the metabolite inventories
from sera harvested from cocaine-naıv̈e and cocaine-experi-
enced rats two weeks after the last administration of cocaine.

■ EXPERIMENTAL SECTION

An overview of the rat cocaine addiction behavioral protocol,
data acquisition, and processing methods can be found in
Figure 1, with representative data shown in Figure 2. These will
be described in greater detail in the Results and Discussion
section.

Rat Cocaine Addiction Behavioral Model. Addiction
models were prepared using a long-access self-administration
protocol.14−16 Briefly, rats were trained to press a lever to
receive an infusion of cocaine (0.8 mg/kg/infusion), receiving
one drug infusion for each lever press. They were placed in the
operant chambers and allowed to self-administer cocaine for 6
h per day, or until they received 50 infusions per day, whichever
came first. This behavior was subsequently extinguished
through the replacement of cocaine injections with saline

Figure 1. Self-administration experimental design and data acquisition, processing, and interpretation workflow. (a) The experimental design for self-
administration is shown. All rats are first subjected to a behavioral conditioning phase, during which they are trained to self-administer cocaine
through operant conditioning. An extinction phase follows, with the intent of extinguishing cocaine-seeking behavior. Subsequently a reinstatement
injection is given, and the drug-seeking behavior of the rat then classifies the level of addiction. Time scales are shown below. (b) The complete
analytical process for data acquisition, processing, and interrogation is shown. Each step is described in detail in the text.
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injections. Extinction was performed for 8 days, at which point
the animals performed minimal lever presses. Addiction
classification was determined using a drug-induced reinstate-
ment test. Briefly, a priming injection of 10 mg/kg cocaine was
delivered intraperitoneally, and the rats were allowed to again
lever press for saline. Rats that obtained 50 saline injections
after the cocaine injection were labeled “addicted,” while those
that performed less than 50 injections (most of which
performed less than 20 injections) were labeled “nonaddicted.”
Upon completion of the behavioral study, rats were sacrificed
and their blood frozen at −80 °C before being used for
analyses. Aliquots were transported on dry ice from Duke
University (Durham, NC) to Vanderbilt University (Nashville,
TN) and subsequently stored at −80 °C prior to mass
spectrometry analysis. In total, three naıv̈e biological samples,
four nonaddicted biological samples, and two addicted
biological samples were produced for subsequent analyses.
Rat Serum Sample Preparation for Analysis. Frozen

whole blood samples from addicted, nonaddicted, and naıv̈e
rats were thawed at 4 °C, and then centrifuged at 14 000 rpm
for 2 min. 60 μL of serum was removed and metabolites were
isolated by precipitating the proteins with 3:1 v:v cold methanol
kept on dry ice. Samples were vortexed for 10 s and centrifuged
at 14 000 rpm for 10 min at 4 °C. 150 uL of supernatant was
extracted and dried down in a SpeedVac, after which the
samples were reconstituted in 100 uL of mobile phase A.
Liquid Chromatography-Ion Mobility-Mass Spectrom-

etry Analysis. UPLC-IM-MS and UPLC-IM-MSE analyses
were performed on a SYNAPT G2 HDMS (Waters, Milford,
MA) mass spectrometer equipped with a nanoAcquity UPLC
and autosampler (Waters, Milford, MA). Metabolites were
separated on a 75 μm × 100 mm HSS C18 (1.7 μm particle
size) column and 180 μm × 20 mm HSS C18 (5 μm particle
size) trap column. Column temperature was maintained at 45
°C to minimize chromatographic drift, and the autoinjector
sample tray held at 4 °C to minimize sample degradation. A
double-loop injection volume of 10 μL was injected in a 5 μL
loop. Chromatographic separations were performed by using a
20 min method at a flow rate of 450 nL/min using a gradient
mixer of 0.1% formic acid in H2O (mobile phase A) and 0.1%
formic acid in ACN (mobile phase B). Briefly, a 3 min wash
period at a flow rate of 15 μL/min was performed, during
which the eluent was diverted to waste prior to analytical
separation. Following removal of residual salts and trapping of

analytes on the trap column, flow was redirected to flow
through the analytical column with an initial 99% mobile phase
A for 0.5 min. Mobile phase B was increased to 60% over 6.5
min and up to 99% in 4 min, and then held at 99% for 3 min.
The column was re-equilibrated to 99% mobile phase A over
0.5 min and held for 5.5 min after each run. All analytes were
analyzed using positive mode nanoelectrospray ionization.
Typical parameters include a capillary voltage of 3.5 kV,
sampling cone setting of 25.0 and extraction cone setting of 4.0,
source temperature of 80 °C, desolvation gas (N2) flow of 600
L/h, and a cone gas flow of 20 L/h. Data were acquired in MSE

mode, which acquires both a low-energy spectrum and a high-
energy spectrum. Collision-induced dissociation (CID) was
performed post mobility separation with a ramped energy
profile from 20 V to 60 V in the high CID acquisition.
Traveling wave velocity was held constant at 550 m/s and a
height of 40.0 V. Data were acquired at a sampling rate of 2 Hz
over the mass range 50−1400 m/z. Sodium formate (10 μg/
mL) in 90:10 propan-2-ol:water (v:v) was used to calibrate over
this range with <1 ppm mass accuracy. Leucine enkephalin in
50:50 H2O:ACN with 0.1% formic acid (v:v) was used as a lock
mass compound (accurate mass 556.2771 Da) at a flow rate of
0.6 μL/min and a concentration of 2 ng/mL every 10 s. Data
acquisition was performed from 0 to 20 min of the liquid
chromatography separation. Triplicate technical analysis was
performed in a randomized fashion, with quality control
samples analyzed every five injections. Quality control samples
contained equal volume aliquots of each sample mixed
together.

Data Processing and Multivariate Statistical Analysis.
Data were mass-corrected post-acquisition and centroided.
Peaks were deisotoped and normalized using MarkerLynx data
processing software (Waters, Milford, MA). Peak-picking using
chromatographic profiles was also performed using Marker-
Lynx. Peak detection was performed on low-energy data across
the mass range of 50−2000 Da with retention times between 1
min and 20 min with peak widths ≤30 s (no applied
smoothing), intensity threshold of 1000, mass window of
0.03 Da and retention time window of 0.1 min. Data were
deisotoped and areas normalized to 10 000 counts per sample.
Multivariate statistical analyses were performed using

Umetrics extended statistics software EZinfo version 2.0.0.0
(Waters, Milford, MA). Principal component analysis (PCA)
and orthogonal partial least-squares-discriminate analysis
(OPLS-DA) were performed on all data acquired and pareto
scaled.

Molecular Expression Dynamics Investigator Param-
eters. After initial peak filtering, detecting, aligning, and
normalizing, features were exported in a tab-delimited file
congruent with GEDI (format may be found at http://apps.
childrenshospital.org/clinical/research/ingber/GEDI/
gedihome.htm). The minimum system requirements necessary
include a video display capable of displaying at least 1024 × 768
pixels and the latest version of Java (Sun Microsystems, Inc.). A
50 × 51 grid was defined and trained using 80 first-phase and
160 second-phase iterations. A neighborhood radius of 4.0 was
used during the first phase, and 1.0 during the second phase.
The learning factor was 0.5 for the first phase and 0.05 for the
second phase. The neighborhood block sizes applied for the
first and second phases were 4 and 2, respectively. A conscience
of 3.0 was used for both phases. A random seed value of 1 was
used, and Euclidean distance was applied for the distance
metric. A linear initialization method was applied. Samples were

Figure 2. Representative MEDI heat maps indicating relative analyte
intensity. For each of the two behavioral groups of cocaine use
(addicted and nonaddicted) and cocaine-naıv̈e rat sera metabolomes,
corresponding average MEDI heat maps are presented. The static
metabolite phenotypes displayed through self-organizing maps indicate
gross differences between each group. (Maps represent averages of
technical triplicates for three naıv̈e biological samples, four non-
addicted biological samples, and two addicted biological samples,
respectively.)
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averaged across technical and biological replicates, and
subtracted across experimental groups within the Gene
Expression Dynamics Inspector (GEDI) software. GEDI
maps were exported through the software, in addition to
“Gene Assignment Lists,” which indicate node location of
features, and “Map Centroids,” which were used for the
generation of intensity values for regions of interest.
Statistical Analysis of Regions in Molecular Expres-

sion Dynamics Investigator Heat Maps. The cocaine-
experienced MEDI self-organized heat map (Figure 3c) shows
the summed ion signal intensities for specific regions across
sample types (cocaine-naıv̈e, cocaine-addicted, and cocaine-
nonaddicted). This MEDI heat map has allowed us to quantify
and determine the statistically significant regions, labeled a-f,
using a one-way ANOVA test among sample types. A one-way
ANOVA compares the effect of cocaine use using the grouped
“neighborhoods” of signal ion intensities for nonaddicted,
addicted, experienced (average of nonaddicted and addicted
samples) and naıv̈e rats. We observed a significant effect (p <
0.01) based on cocaine exposure for all regions, and for those
regions with unequal variance between groups, a Kruskal−
Wallis one-way ANOVA was conducted (regions a, d, e, and f)

[a: H(3,37 ) = 22.03, p < 0.0001; b: F(3,37) = 4.99, p = 0.0052;
c: H(3,37) = 21.83, p < 0.0001; d: F(3, 37) = 7.24, p = 0.0006;
e: H(3,37) = 18.9, p = 0.0003; f: H(3,37) = 25.6, p < 0.0001],
indicating that post hoc comparisons were appropriate. Post hoc
comparisons using a Bonferroni−Holm’s test show statistically
significant differences (p ≤ 0.01) for all regions (a−f) when
comparing cocaine-experienced, cocaine-addicted, cocaine-non-
addicted, and cocaine-naıv̈e sample types. In addition, region f
showed a statistically significant difference (p < 0.01) between
addicted and nonaddicted rat models (see f in Figure 4).
Region c, however, does not show a statistically significant
difference (p = 0.06) between nonaddicted and addicted
sample groups, which indicates that there are neighborhoods
that further discriminate cocaine-nonaddicted and cocaine-
addicted models.

Feature Identification. Putative identifications were
performed using the monoisotopic accurate mass and raw
data to determine molecular ion type. Monoisotopic masses
were searched against the Human Metabolome Database
(HMDB),17,18 METLIN,19 and LIPID MAPS20 databases for
putative identifications, with a mass tolerance of 0.01 Da. When
possible, fragmentation data were used to support identifica-

Figure 3. Rat sera metabolome depictions for cocaine-experienced versus naıv̈e classes. (a) Principal component analysis (PCA) of cocaine-
experienced (block markers) rat sera metabolomes plotted with cocaine-naıv̈e (diamond markers). Behavioral subclasses are indicated by color. (b)
S-plot comparing cocaine-experienced (−1) to cocaine-naıv̈e (+1) metabolomes. (Marker color corresponds to the boxes in panel c (inset shows a
magnified subimage).) (c) Differential MEDI heat map of average cocaine-experienced metabolic profiles with average cocaine-naıv̈e profiles
subtracted. Boxed-in regions are then delineated in panel (d), which is an annotated representative UPLC-MS heat map marking feature location on
the cocaine-experienced UPLC-MS plot. The colored dots correspond to the different feature islands in panel c [Box dimensions: a (39,38:50,51); b
(46,33:50,37); c (28,34:38,46); d (39,28:45,36); e (36,20:42,27); f (46,20:50,32)]. (Analysis contains technical triplicates for three naıv̈e biological
samples, two addicted biological samples, and four nonaddicted biological samples.)
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tions, utilizing mobility separation prior to fragmentation to
isolate parent ions in separations space. Data may be found in
the Supporting Information regarding the putative identifica-
tion assignments for prioritized metabolites.

■ RESULTS AND DISCUSSION
Overview of the Data Analysis Approach, Molecular

Expression Dynamics Inspection. For mass spectrometry-
based metabolomic data analysis, MEDI incorporates Gene
Expression Dynamics Inspector (GEDI) software. Figure 1b
outlines the general workflow for the analysis of metabolomics
data using a self-organizing map algorithm to sort detected
features in an unsupervised, data-driven manner. This workflow
facilitates the identification of unique expression profiles across
samples based on feature patterns detected in the metabolomic
analysis. Briefly, this workflow consist of six steps: (1) data
acquisition, (2) data preprocessing which incorporates peak
detection, alignment, and normalization, (3) generation of self-
organizing maps, (4) differential analysis intensity maps
generated in step (3) to determine relevant feature clusters,
(5) interrogation of metabolite feature assignment maps to
determine unique features/analytes of interest, and finally (6)
identification of peaks of interest. The MEDI workflow is
applicable across platforms, with the exception of peak
identification, which will be technique/detector-dependent.
The generalized MEDI workflow is now described in greater
detail.
Data Acquisition and Preprocessing (MEDI Workflow:

Steps 1 and 2). The first step in the proposed workflow is the
initial data acquisition. It is important to note that no one
sample preparation or mass spectrometry analysis technique
will give a global metabolomic view simply based on the
chemical diversity associated with metabolites. It is therefore
essential to plan experiments, extractions, and analysis
techniques accordingly. It is beyond the scope of this report
to discuss all metabolite extraction and analysis protocols, but it
is important to understand the limitations of each sample
preparation and analytical method. We suggest a few relevant
reviews on this topic.9,21,22

After data acquisition, raw data must be described as discrete
features. This involves centroiding and aligning retention time
and mass spectral profiles, in addition to deisotoping data to
ensure monoisotopic peak comparison. Subsequent normal-
ization scales data to reduce the impact of technical variation.
Publically available software (e.g., XCMS) can be used to filter,
detect, and align peaks; therefore, this workflow is compatible
across numerous mass spectrometry platforms (e.g., LC-MS/
MS, LC-IM-MS/MS, GC-MS).11 Normalized metabolomics
data are then appropriate for feature organization through the
self-organizing map algorithm.
Feature Organization and Analysis (MEDI Workflow:

Steps 3 and 4). In these MEDI workflow steps, a SOM
algorithm is used to assign detected features to a grid of user-
defined dimensions. Specifically, the algorithm arranges features
in an iterative manner based on similarity in intensity profiles
across samples. Initially, the grid is populated with randomly
generated intensity profiles. Randomly selected features from
the input data are placed in the grid location, or node, which
best matches the intensity profile of that feature. The profile of
this node is then adjusted to more closely resemble the profile
of the matched feature. Surrounding nodes are also adjusted to
more closely resemble the matched feature, but to a lesser
extent. This process is then performed again with a different,

randomly selected input feature. Features that behave similarly
across samples are assigned to a particular neighborhood, or in
nodes adjacent to like features. The assignment of features to
specific nodes is then iterated as node profiles evolve. After
features are assigned to specific node coordinates, intensity
maps are generated for each sample using the summed intensity
for each node. These profile the metabolic phenotype for each
sample, displaying all detected features in a heat map. The
relative number of features that contribute to a neighborhood is
shown in the feature density map. Subsequently, samples can be
averaged and subtracted based on sample group and
experimental specifics. Differential profile maps show clus-
ters/regions of up- or down-regulated features, which are
potential metabolites of interest. This specific analysis reveals
regions (boxed regions), which should be prioritized and
compared across samples. Importantly, the feature density map
indicates that many of these regions of interest are resultant of a
small number of metabolites.

Cluster Decryption (MEDI Workflow: Step 5). To
extract which metabolomic features contribute to neighbor-
hoods of interest, clusters must be decrypted into constituent
features. Each node has a finite number of associated features,
which determine the resultant heat maps. Multiple features can
contribute to a single coordinate intensity, thus images need to
be “decrypted” by determining which features contribute to
specific neighborhoods. The descriptive data for a feature
indicate the chemical properties of the feature and the location
in the raw data.

Feature Identification (MEDI Workflow: Step 6). The
final step in the proposed workflow includes the identification
of significant features. These identifications will be platform-
specific, thus the tools used for analyte identification will also
be platform-specific. There are several tools available for
fragmentation prediction and matching of spectra for
metabolomic-based studies, as well as databases (e.g., Human
Metabolome Database, Lipid Maps Structure Database,
METLIN, Kyoto Encyclopedia of Genes and Ge-
nomes).17−20,23,24 The metabolites detected provide the basis
for inferences on metabolic perturbations between sample
groups. Guidelines for metabolite identification confidence have
been outlined by the Metabolomics Standards Initiative.25

Applying MEDI to Explore the Effects of Long-Term
Cocaine Exposure. To display the utility of this workflow, we
applied the MEDI process to liquid chromatography−mass
spectral (LC-MS) sera profiles from cocaine-naıv̈e rats and
behaviorally distinct cocaine-addicted and cocaine-nonaddicted
rats. In these data, ∼2266 unique features (RT − m/z pairs)
were detected across all samples after peak picking, alignment,
and normalization using MarkerLynx software (Waters
Corporation, Milford, MA). Detected features were self-
organized using the GEDI software, and average group heat
maps are seen in Figure 2. This function simply averages node
intensities across a selected group of samples, which, in this
case, is determined by behavioral class. For comparison of the
generalized effects of cocaine exposure, the two behavioral
classes were pooled and are classified “cocaine-experienced.”
These individual self-organizing heat maps clearly show distinct
differences among groups. The density of metabolites for given
nodes can be seen in Figure S1 in the Supporting Information.
Visual inspection of the metabolite heat maps demonstrates

that the sera profiles for the three groups have both shared and
distinct characteristics. This displays a significant advantage to
using MEDI for metabolic phenotype investigation. By virtue of
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the feature organization process, the groupings that result from
the self-organizing algorithm are driven by hierarchical
specificity. As a result, if experimental groups have significant
differences, groups will emerge that concentrate these differ-
ences. In addition, background signals will be organized
together and essentially eliminated from the analysis. Features
that are specific to a particular sample will then occupy separate
regions. To gain perspective on how the MEDI process
compares to multivariate statistical analysis methods, we
performed principal component analysis and orthogonal partial
least squares-discriminant analysis on detected features.
Multivariate Statistical Analysis. The use of multivariate

statistical analysis methods is a common informatics approach
for metabolomics data. This enables researchers to determine
significant features in complex datasets, interrogate sample
grouping, investigate data acquisition reproducibility, and
classify unknown samples based on example training sets.
Figure 3a is a principal component analysis (PCA) of the three
sample groups analyzed. In PCA, the intensity of each feature
(considered a dimension) is used to describe a given sample.
Briefly, PCA determines the largest eigenvalue eigenvector of
the covariance matrix of the data, which is the first principal
component. This eigenvector describes the largest differences
in the samples. The second principal component is orthogonal
to the first principal component and describes the next largest
differences in the data. The result is sample grouping based on
similarity, and separation based on the largest global feature
differences in the first principal component, and the next largest
differences in the second principal component. The first and
second principal components are plotted in Figure 3a as the
abscissa and ordinate, respectively. This displays the samples in
maximally distinguishing two-dimensional space, based on
feature intensity. Subsequent principal components are all
orthogonal and describe progressively less variation (i.e., lower
eigenvalue eigenvectors of the covariance matrix). The PCA
plot in Figure 3a illustrates the ability for MS-based metabolic
profiles from cocaine-naıv̈e and cocaine-experienced rat sera to
separate in the first principal component (see x-axis in Figure
3a). This also shows a separation in the second principal
component (see y-axis); cocaine-experienced rats further
separate into two main groups. The top group (quadrant I)
consists of data from both behaviorally addicted (black) and
nonaddicted rats (red), while the other group (quadrant IV)
comprises data generated from biological duplicates of
behaviorally nonaddicted rats (multiple points due to technical
replicates). The grouping consistency in the biological
duplicates indicates biological variation from the other
cocaine-exposed rats. It is unclear if this secondary separation
is a result of behavioral class, or simply specific to the rats.
Importantly, the first principal component separates metab-
olomic profiles based on cocaine history, independent of
behavioral class. In these experiments, rat serum was obtained
two weeks after cocaine administration; therefore, cocaine and
its metabolites were not detected in these analyses. Although
the PCA plot indicates separation based on exposure, it
describes only 24% of the variation with the first two principal
components. For the purposes of subsequent binary compar-
isons, the samples are grouped as either cocaine-naıv̈e or
cocaine-experienced.
Orthogonal partial least-squares-discriminant analysis

(OPLS-DA) can also be used to compare cocaine-naıv̈e to
cocaine-experienced rat sera profiles (see Figure S2 in the
Supporting Information).26 OPLS-DA, in this case, finds the

relationship between the UPLC-MS data and cocaine history as
a supervised method. OPLS-DA orients the model such that
the abscissa is the predictive component, or between-group
variation. The orthogonal ordinate then describes intragroup
variation. Specifically, this model explains 98% of the data
variation between groups. Figure 3b shows a corresponding S-
plot used to determine metabolites of significance. This S-plot
graphs features based on group specificity or correlation
(ordinate) and covariance (abscissa). Features with a high
group correlation, or specific to either cocaine-exposed or
cocaine-naıv̈e condition, in this case, have a large magnitude in
the y-dimension. Features with a large loadings contribution to
the predictive component possess large magnitudes in the x-
dimension. In this manner, we are able to determine the
features that are specific to long-term cocaine exposure.

MEDI Heat Map Interpretation. The SOM approach to
feature organization places features with similar sample
intensity profiles proximal in the coordinate grid, as mentioned
above. This generates regions of features that are up- and
down-regulated (e.g., Figure 3c, red and blue, respectively)
consistently across samples, in addition to regions that are
specific to a subset of samples. This provides additional
flexibility to data organization beyond the conventional
dimensions of loadings analyses of MVSA methods. Shown in
Figure 3c is an average MEDI heat map of cocaine-experienced
serum profiles (i.e., both behavioral classes) with the average
naıv̈e heat map subtracted to display metabolites that are either
up-regulated (yellow to red), or down-regulated (blue to dark
blue) as a general result of prolonged cocaine exposure. This
differential analysis subtracts the average node intensities of
cocaine-naıv̈e rat sera profiles from the averaged experimental
group. Although many islands exist, the more intense regions of
up-regulation are outlined for comparative purposes. These
regions are both annotated and outlined with a colored box in
Figures 3c. The colored boxes are present for comparative
purposes and indicate the feature location in other data
representations (Figures 3b and 3c) [Box coordinates: a
(39,38:50,51); b (46,33:50,37); c (28,34:38,46); d
(39,28:45,36); e (36,20:42,27); f (46,20:50,32)]. It should be
noted that these boxes are consistent across sample groups and
determined by group perimeter. Thresholding and feature
recognition software is being implemented for future
applications.
Correlating the regions of interest in Figure 3c with a raw

LC-MS plot (Figure 3d) illustrates the concept that grouped
features display a large range of chemical properties, as they
occupy different regions of separations space. The marker color
in Figure 3d corresponds to the location in the heat map in
Figure 3c. The S-plot in Figure 3b, described above as a
common method to extract meaningful features from OPLS-
DA binary analyses, has been modified so the color of the
markers corresponds to the regions of interest in Figure 3c. All
the features that would be prioritized through OPLS-DA are
encapsuled in the regions of interest. These features occupy
dispersed regions of the S-plot.

Loadings Contributions of MEDI Coordinates. Corre-
lations between the MEDI feature assignment location and the
loadings contributions to PCA are seen in Figures 4a and 4b.
The loadings contribution of a feature to a particular principal
component indicates the weight of that feature regarding
sample magnitude in that dimension. In other words, a feature
with a large negative loading value in the first principal
component will influence a sample containing that feature to
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have a negative value in that component. Representing the
loadings in this medium provides insight into neighborhood
formation. The static nature of these samples means any
clustering that occurs is sample-group-specific, assuming
technical reproducibility. As such, what occurs in all cocaine-
experienced sera profiles will group, and subsequent neighbor-
hoods will form based on sample specificity. Figures 4a and 4b
should be considered with both Figures 3a and 3c, as the
loadings contributions link the MEDI heat map to the PCA
scores plot. The largest trends are resultant of cocaine
experience and have been organized into two main regions of
the map accordingly. The upper portion of the map
corresponds to features that are down-regulated, generally, in
the cocaine-experienced. This is indicated by the dominantly
red upper portion. Features initially partition based on the
global group differences. Considering the second principal
component loadings, there is very little contribution from the
features that are found in elevated intensities in the cocaine-
naıv̈e samples, which is seen by the relatively small contribution
of the red region in Figure 4a. The second principal component
loadings map offers more insight into the formation of feature
islands in the cocaine-experienced group. The significant
feature loadings are those describing intraexperienced separa-
tions, which are indicated by the scores plot. The nodes that
contribute greatly to the second principal component form
regions in the MEDI plot. This demonstrates the finer
clustering effects of the feature sorting algorithm. Subpopula-
tions of samples, such as the biologically distinct cocaine-
exposed rats, produce regions representing features that are
unique to that subgroup. The grouping in principal component
analysis, in addition to individual sample MEDI heat map
investigation, provides insight into the interpretation of these
underlying features.
Specifically, coordinate (50,51), or the extreme bottom right

node, has the greatest contribution to a positive loading in the
first and second principal components. This feature group,
consisting of putatively identified deoxyuridine, and three other
features, contains the most distinguishing features to cocaine
experience in PCA. This group is also prioritized during the
MEDI process. Other contributing signals are listed based on
their group occupation, feature descriptors, and, when
applicable, a putative identification in Table 1. The greatest
negative contributors to principal component two are found
within region “c,” in addition to more peripheral regions. These
features are up-regulated in the distinct cocaine-exposed rat
sera. As a result, these features provide insight into the

difference between this rat and other cocaine-exposed models.
In addition, region “f” has a positive contribution to the second
principal component, and thus is up-regulated in most cocaine-
exposed rats. As a result, this region may provide alternative
insight into the intragroup separation.

Region Interpretation and Comparison. Further heat
map interpretation prioritizes regions of interest, which consist
of grouped features. Figure 5 compares the summed node
intensities for outlined regions of the MEDI heat map. This
provides insight into the significance of regions, in addition to
the intragroup differences that occur. The summed intensities
corroborate the loadings analysis, as the regions selected have
significant differences in intensities between cocaine-experi-
enced and cocaine-naıv̈e groups, and each have positive
contributions to the first principal component. The regions
that show differences within the experienced group (i.e., regions
c and f) have varied intensities between behavioral classes, and
also hold negative and positive contributions to the second
principal component, respectively. The significance of the
displayed differences was subsequently determined.

Determination of Contributing Features. Extracting
relevant biological information is paramount in metabolomic
experiments. Following regional analysis of MEDI heat maps,
the extraction of contributing features is performed through the
interface of GEDI by selecting a node, or through an exported
“Gene Assignments List.” Table 1 lists relevant feature
identifiers, region located, and, when available, putative

Figure 4. Loadings contribution of nodes to PCA. The contributions
of each node to (a) the first principal component and (b) the second
principal component are indicated by color intensity. Red indicates a
negative contribution and blue indicates a positive contribution.

Table 1. Putative Metabolite Identificationa

retention time
(min) m/z

MEDI
region putative identification

11.76 130.066 a 3-methylene-indolenine
9.92 182.192 a no database match
10.82 185.080 a (3-methoxy-4-hydroxyphenyl)

ethylene glycol
11.78 190.048 a kynurenic acid
9.85 229.091 a deoxyuridine
10.53 229.142 a no database match
10.77 243.095 a thymidine
10.34 273.175 a estradiol
10.19 308.091 a glutathione
9.49 338.087 a 3-indole carboxylic acid glucuronide
9.74 340.104 a 5-hydroxy-6-methoxyindole

glucuronide
10.55 361.138 a dityrosine
14.09 500.277 a LPE(20:5)
9.72 520.336 a LPC(18:2)
9.09 201.068 b bilirubin oxidation product
12.62 225.088 c 3-hydroxykynurenine
9.22 305.159 c sodiated steroid-like molecule
12.18 430.296 c glycocholic acid −2H2O
12.18 448.306 c glycocholic acid-H2O
12.19 466.318 c glycocholic acid
10.19 162.056 d 4,6-dihydroxyquinoline
9.55 269.132 d 3-carboxy-4-methyl-5-pentyl-2-

furanpropionic acid
9.48 371.227 d 6-keto-prostaglandin F1a
9.54 399.625 e [M+2H]2+

1.20 203.054 f succinyl acetoacetate
11.94 223.066 f no database match
14.11 542.327 f LPC(20:5)

aMetabolites were given preliminary identifications based upon
accurate mass, ion type, and database searching.
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identifications. The organization of features is a function of
whether the feature is present in the same permutation of
samples at relatively similar intensities. As a result, the
subpopulations that arise indicate biological subtleties that
exist among groups. The putatively identified features in
disparate regions provide insight into these biological differ-
ences.
Regions a−f all show distinct up-regulation as a result of

prolonged cocaine exposure, as seen in both Figure 5 and the
loadings representation in Figure 4a. Region “a” contains
metabolites that occur in a majority of the cocaine-exposed
group. These include metabolites indicative of compensatory
mechanisms of the biochemical effects of prolonged cocaine
exposure. A largely up-regulated metabolite found in this region
is (3-methoxy-4-hydroxyphenyl)ethylene glycol, which is the
primary serum metabolite of norepinephrine and has been
found to be dysregulated following cocaine withdrawal.27 This
metabolite is downstream of dopamine (and more generally
catecholamine) synthesis.28 Kynurenic acid is a naturally
occurring metabolite resulting from tryptophan metabolism,
and it has displayed protective effects against cocaine toxicity.29

The inhibitory effects of cocaine exposure on glial cell growth
have also been shown, significantly decreasing incorporation of
thymidine in DNA synthesis, which inhibits growth.30 The
marked increase in serum thymidine concentrations is perhaps
a compensatory result of cocaine exposure, or perhaps a result
of metabolite pooling resulting from lack of incorporation. This
could be the reason for up-regulation of deoxyuridine as well.
Alterations in estradiol concentrations have been seen in
response to cocaine exposure, although why up-regulation
occurs in male rats following cocaine extinction is unclear. The
presence of 3-carboxy-4-methyl-5-pentyl-2-furanpropionic acid
could speak to renal health as a result of the prolonged cocaine
exposure.31,32

Region “c” concentrates the biological differences that exist
within the cocaine-exposed group. The increased 3-hydrox-
ykynurenine that appears to exist implicates further tryptophan
perturbations and is indicative of neural inflammation.33 This
metabolite has been associated with oxidative stress and
neuronal cell death. Unidentified features that exist in this
region may ultimately provide more insight into the biological
variation that exists.

The other distinct region of difference within the cocaine-
experienced group is region “f.” The presence of succinylace-
toacetate is a unique metabolite resulting from tyrosinemia,
which has been shown to result from long-term cocaine
exposure.34 The differences in lysophosphocholines observed
should also be noted.
The current study focuses entirely on the up-regulated

features found in the cocaine-experienced group. There is a
wealth of information that is present in the regions of down-
regulation. However, considering the pedagogical nature of this
data set, we have chosen to demonstrate the relevance of the
MEDI method using a subset of the prioritized features. For
definitive assignments, putative identifications should be
validated against standards with retention time and MS/MS
matching.

■ CONCLUSIONS
We have described the MEDI workflow and applied this
method to a static set of sera samples from behaviorally
conditioned cocaine addiction rat models. We have demon-
strated the utility of SOM to distinguish underlying feature
motifs. Features that contributed to these regions were
putatively identified and metabolic connections that have
been well-described as consequential of cocaine exposure were
established.
Although this method was applied to data acquired using

mass spectrometry-based detection, it is easily applied to other
metabolomics platforms (e.g., NMR), or to additional
dimensions of separation combined with MS. We have also
indicated the application of the MEDI workflow only on static
samples, although the GEDI core software is ideal to determine
underlying temporal dynamics. MEDI is a method that provides
a medium to express metabolic phenotype and prioritize
features based upon underlying sample patterns.
It should be noted that the dataset investigated in this study

was for proof of principle, and caution should be observed in
interpreting these results regarding cocaine classification, as a
small sample set was investigated and absolute identification of
analytes necessitates further studies. To enhance confidence in
metabolites indicative of behavioral classification, a larger
cohort is required. However, for the purposes of this report,
we consider these data to be an instructive application of the
MEDI process.
Although we apply this method to end point analyses, this

method is also well-suited for comparison of temporal dynamic
samples, as the name implies. For the purpose of this work,
however, we endeavor to describe this method on temporally
pooled samples. Specifically, the MEDI workflow begins with
data acquisition and ends with the identification of biologically
significant up- and down-regulated mass spectrometry signals.
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Figure 5. Histogram depicting the intensity integrated over six of the
enclosed regions of MEDI heat map in Figure 3b. Rats with a history
of cocaine exposure (white) had mean intensities significantly higher
than cocaine-naıv̈e rats (blue) in all regions tested (p < 0.05). In
addition, the mean intensity of region “f” was significantly higher in
cocaine-addicted rats (black) than nonaddicted (red) (p < 0.01).
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of ICANN98, The 8th International Conference on Artificial Neural
Networks; Springer, 1998; Vol. 1, pp 65−74.
(5) Correia Baptista Soares de Mello, J. C.; Goncalves Gomes, E.;
Angulo Meza, L.; Biondi Neto, L.; Gomes Pinto de Abreu, U.; de
Carvalho, T. B.; de Zen, S. In Applications of Self-Organizing Maps, 1st
Edition; Johnsson, M., Ed.; InTech Publishers: Midlothian, TX, 2012;
Chapter 4, pp 67−88.
(6) Owens, J.; Hunter, A. In Proceedings of IEEE International
Workshop on Visual Surveillance, Dublin, Ireland, July 1, 2000; pp 77−
83.
(7) Eichler, G. S.; Huang, S.; Ingber, D. E. Bioinformatics 2003, 19,
2321−2322.
(8) Rochfort, S. J. Nat. Prod. 2005, 68, 1813−1820.
(9) Goodacre, R.; Vaidyanathan, S.; Dunn, W. B.; Harrigan, G. G.;
Kell, D. B. Trends Biotechnol. 2004, 22, 245−252.
(10) Nordstrom, A.; O’Maille, G.; Qin, C.; Siuzdak, G. Anal. Chem.
2006, 78, 3289−3295.
(11) Smith, C. A.; Elizabeth, J.; O’Maille, G.; Abagyan, R.; Siuzdak,
G. Anal. Chem. 2006, 78, 779−787.
(12) Patterson, A. D.; Li, H.; Eichler, G. S.; Krausz, K. W.; Weinstein,
J. N.; Fornace, A. J., Jr; Gonzalez, F. J.; Jeffrey, R. Anal. Chem. 2008,
80, 665−674.
(13) Tyburski, J. B.; Patterson, A. D.; Krausz, K. W.; Slavik, J.;
Fornace, A. J., Jr; Gonzalez, F. J.; Idle, J. R. Radiat. Res. 2008, 170, 1−
14.
(14) Schramm-Sapyta, N. L.; Olsen, C. M.; Winder, D. G.
Neuropsychopharmacology 2005, 31, 1444−1451.
(15) Schramm-Sapyta, N. L.; Cauley, M. C.; Stangl, D. K.; Glowacz,
S.; Stepp, K. A.; Levin, E. D.; Kuhn, C. M. Psychopharmacology 2011,
215, 493−504.
(16) Dalley, J. W.; Fryer, T. D.; Brichard, L.; Robinson, E. S. J.;
Theobald, D. E. H.; Laane, K.; Pena, Y.; Murphy, E. R.; Shah, Y.;
Probst, K. Science 2007, 315, 1267.
(17) Wishart, D. S.; Knox, C.; Guo, A. C.; Eisner, R.; Young, N.;
Gautam, B.; Hau, D. D.; Psychogios, N.; Dong, E.; Bouatra, S. Nucleic
Acids Res. 2009, 37, D603−D610.

(18) Wishart, D. S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A. C.;
Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S. Nucleic Acids
Res. 2007, 35, D521−D526.
(19) Smith, C. A.; Maille, G. O.; Want, E. J.; Qin, C.; Trauger, S. A.;
Brandon, T. R.; Custodio, D. E.; Abagyan, R.; Siuzdak, G. Ther. Drug
Monit. 2005, 27, 747.
(20) Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E. A.; Glass, C.
K.; Merrill, A. H., Jr; Murphy, R. C.; Raetz, C. R. H.; Russell, D. W.
Nucleic Acids Res. 2007, 35, D527−D532.
(21) Novakova, L.; Vlckova, H. Anal. Chim. Acta 2009, 656, 8−35.
(22) Alvarez-Sanchez, B.; Priego-Capote, F.; Luque de Castro, M. D.
TrAC, Trends Anal. Chem. 2010, 29, 111−119.
(23) Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa,
M. Nucleic Acids Res. 1999, 27, 29−34.
(24) Kanehisa, M.; Goto, S.; Hattori, M.; Aoki-Kinoshita, K. F.; Itoh,
M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. Nucleic
Acids Res. 2006, 34, D354−D357.
(25) Sumner, L. W.; Amberg, A.; Barrett, D.; Beale, M. H.; Beger, R.;
Daykin, C. A.; Fan, T. W. M.; Fiehn, O.; Goodacre, R.; Griffin, J. L.
Metabolomics 2007, 3, 211−221.
(26) Wiklund, S.; Johansson, E.; Sjstrm, L.; Mellerowicz, E. J.;
Edlund, U.; Shockcor, J. P.; Gottfries, J.; Moritz, T.; Trygg, J. Anal.
Chem. 2008, 80, 115−122.
(27) McDougle, C. J.; Black, J. E.; Malison, R. T.; Zimmerman, R. C.;
Kosten, T. R.; Heninger, G. R.; Price, L. R. Arch. Gen. Psychiatry 1994,
51, 713−719.
(28) Lovenberg, W.; Bruckwick, E. A.; Hanbauer, I. Proc. Natl. Acad.
Sci. U.S.A. 1975, 72, 2955.
(29) Rockhold, R. W.; Oden, G.; Ho, I. K.; Andrew, M.; Farley, J. M.
Brain Res. Bull. 1991, 27, 721−723.
(30) Garg, U. C.; Turndorf, H.; Bansinath, M. Neuroscience 1993, 57,
467−472.
(31) Niwa, T.; Takeda, N.; Maeda, K.; Shibata, M.; Tatematsu, A.
Clin. Chim. Acta 1988, 173, 127−138.
(32) Costigan, M. G.; Yaqoob, M.; Lindup, W. E. Nephrol. Dial.
Transplant. 1996, 11, 803−807.
(33) Okuda, S.; Nishiyama, N.; Saito, H.; Katsuki, H. J. Neurochem.
1998, 70, 299−307.
(34) Fallstrom, S.-P.; Lindblad, B.; Steen, G. Acta Paediatr.
(Stockholm) 1981, 70, 315−320.

Analytical Chemistry Article

dx.doi.org/10.1021/ac5010794 | Anal. Chem. 2014, 86, 6563−65716571

mailto:john.p.wikswo@vanderbilt.edu
mailto:john.p.wikswo@vanderbilt.edu
mailto:john.a.mclean@vanderbilt.edu

