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Abstract
The neurocognitive basis of the effect of long-term high altitude exposure on conflict control

is unclear. Event related potentials (ERPs) were recorded in a flanker task to investigate the

influence of high altitude on conflict control in the high-altitude group (who had lived at high

altitude for three years but were born at low altitude) and the low-altitude group (living in low

altitude only). Although altitude effect was not significant at the behavioral level, ERPs

showed cognitive conflict modulation. The interaction between group and trial type was sig-

nificant: P3 amplitude was greater in the low-altitude group than in the high-altitude group in

the incongruent trial. This result suggests that long-term exposure to high altitude affects

conflict control in the conflict-resolving stage, and that attentional resources are decreased

to resist the conflict control in the high-altitude group.

Introduction
In recent years, the rapid expansion of lowland Chinese population into the western part of
China has led to about 6 million Han lowland immigrants living Qinghai-Tibetan Plateau per-
manently as of 2006 [1]. Living at such a high altitude causes a reduction of partial pressure of
inspired oxygen and lower hemoglobin oxygen saturation (%SpO2), which can lead to hypoxia
[2, 3], and affects cognition [4].

Long-term exposure to high altitude with hypoxia may lead to impairness on conflict con-
trol. First, conflict control function was diminished among patients suffering from hypoxia [5].
Second, previous neuroimaging studies have provided evidences of the impact of high altitude
exposure on brain areas related to conflict control: the parietal lobe, prefrontal cortex (PFC),
and the anterior cingulate cortex (ACC) [6–8]. Third, in the electrophysiological study, the
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parietal P3 component was affected by hypoxia. Specifically, the Go/NoGo and oddball tasks
have shown increased P3 latency and decreased P3 amplitude among participants at high alti-
tudes, suggesting that cognitive abilities are sensitive to high altitude [9–11]. Moreover, smaller
N2 component was found in a group of people with impaired ACC functioning [12]. There-
fore, conflict control may be influenced by long-term exposure to high altitude. However, the
neurocognitive basis of the effect of long-term high-altitude exposure on conflict control is still
unclear.

One of the most common tasks used in the literature to measure conflict is the flanker task.
In this task, a target is flanked by non-target stimuli which correspond either to the same direc-
tional response as the target (congruent) or the opposite (incongruent). The flanker stimuli,
which require more cognitive processing, induce conflict on incongruent trials, and incongru-
ent flankers produce longer reaction times and reduced response accuracy than congruent tri-
als [13].

Event-related potentials (ERPs) have high temporal resolution and can provide a window
into the nature and precise temporal sequence of brain processes, making it possible to deter-
mine which stage of conflict control is affected by high altitude exposure [14, 15]. Conflict con-
trol includes different cognitive operations [16]. First, conflict detection or monitoring
processing involves recognition of the conflict, evaluation of the degree of conflict, and the real-
ization for a particular action. When the conflict is detected, resolution of conflict processing is
activated [17]. ERP studies have found that in the conflict control processing N2 and P3 com-
ponents are associated with conflict detection and resolution, respectively [17, 18]. The N2
peak is maximal at fronto-central electrode sites (FZ, FCZ, and CZ), and occurs in the time
window between 250–350 ms post-stimulus onset [18, 19]. According to conflict monitoring
theory, N2 component is related to ACC activation [20]. In healthy participants, N2 amplitude
was enhanced in incongruent trials when compared to congruent trials [21, 22], which was
thought to represent distinct conflict-monitoring or detection processes [17, 22, 23]. The P3
peak occurs approximately 300–500 ms after stimulus onset, and is maximal at central and
parietal scalp sites (CZ and CPZ) [24, 25]. The P3 is related to the conflict resolution: larger P3
amplitude for incongruent trial is more likely to be associated with the need for a more careful
evaluation of the stimulus to determine the correct response [17]. Longer P3 latency on incon-
gruent trials is due to increased stimulus evaluation or categorization time [17, 26].

With the increase in immigrants from low altitude to high altitude, further research on the
influence of high altitude in such immigrants is needed. Previous high-altitude studies explored
high-altitude local residents (e.g., native Tibetans) [1, 27] and individuals with acute exposure
to high altitudes [28, 29]. However, the effects of cognitive impairment on high-altitude local
residents or on the acute exposure group could not generalize to the adult immigrants because
genetics and other physiological adaptations of high-altitude local residents are different from
low-altitude residents [1, 19]. Furthermore, physiological features (e.g., ventilatory rate, heart
rate, and hematocri) of acute exposure to high altitudes were different from chronic exposure,
so the influence of high altitude on cognition may have different immediate and long-term
effects [30]. Therefore, studying cognitive changes in people who were born at low altitude and
had lived at high altitude for a long time will advance our understanding of the effects of long-
term high-altitude exposure.

In the present study, we investigated whether healthy young people who were born and
raised in low altitudes, but who were then exposed to high altitude for three years, showed
influence on a flanker task. The N2 components were the indicator of conflict detection,
whereas the P3 was an index of conflict resolution. First, we hypothesized that there would be
significant trial type effects on behavioral and ERP responses in both high and low altitude
groups. Specifically, we anticipated participants would have faster and more accurate responses
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in congruent relative to incongruent trials, and that larger N2 amplitude and larger and later
P3 component amplitude would be found in incongruent compared with congruent trials. Sec-
ond, because the brain areas related to conflict control (ACC and parietal cortices) are influ-
enced by high altitude exposure [6–8], we predicted that long-term exposure to high altitude
would significantly affect conflict control processing. The effects of high altitude would be
found in behavior results, with slower and less accurate responses in the high altitude group.
Based on the relationship between the ACC, the parietal cortex, and the N2, P3 components
[20], we expected to find smaller incongruent-N2 amplitudes and smaller and later incongru-
ent-P3 components in the high-altitude group than the low-altitude group.

Methods

Participants
Forty two healthy young college students from the Han ethnic group, aged 19–24 years old,
took part in this experiment. All participants signed an informed consent form before the
experiment. The experiment was conducted in accordance with the Declaration of Helsinki
and was approved by the Ethics Committee of the Institute of Psychology, Chinese Academy of
Sciences. All participants were right-handed and had normal or corrected-to-normal vision.
All participants had been born and raised in a low-altitude location (< 1,000 m). The high-alti-
tude group consisted of twenty-one participants (9 male, 21.95 ± 1.15 years) from Tibet Uni-
versity. They had lived at high altitude (3,650 m) for three years, and their data was collected
there. The twenty-one participants in the low-altitude group (10 male, 21.90 ± 1.67 years) had
never been to a high-altitude area, and their data was collected at a low-altitude location. SpO2
was measured with a warmed hand in a resting condition using a pulse oxymeter (CMS50D,
CONTEC, China).

Procedure
In the flanker task, the following characters were used for the congruent (>>>>> or
<<<<<) and incongruent (>><>> or<<><<) stimuli. The central character of the stim-
ulus was the target, to which the participant had to make either a left or right-hand button-
press, according to the direction of the arrow. A trial consisted of a fixation cross (500 ms), fol-
lowed by a blank screen (500 ms), and then the stimulus (200 ms), and a 1500 ms response
window. A 1500 ms blank screen followed the participant's response (or the end of the
response window if no response was made), before the next trial began. There were 24 practice
trials, followed by 2 experimental blocks of 80 trials, with short breaks in between blocks
(Fig 1).

ERP Recording
Electroencephalography (EEG) data were recorded from 64 scalp sites (10/20 system), using
Ag/AgCl electrodes mounted in an elastic cap (Neuroscan Inc.). The physical reference elec-
trode was approximately 2 cm posterior to CZ. Electrode impedances were kept below 5 kO.
Vertical and horizontal electrooculogram (EOG) data were recorded from above and below the
left eye and from the outer canthi of both eyes, respectively. EEG and EOG were continuously
recorded at a sampling rate of 500 Hz, applying a filter bandwidth of 0.05–100Hz.

Data Analysis
Data were analyzed with SPSS (SPSS, Inc., Chicago) for Windows. P< 0.05 was considered sta-
tistically significant. T-tests were used to analyze the SpO2 data with altitude group as the
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independent variable. Reaction times (RTs) were recorded online for all participants. Error
rates and RTs for correct responses from both groups were subjected to mixed-model analysis
of variance (ANOVA). The independent variable was trial type (congruent and incongruent)
as within-subject factor, and altitude group (high and low) as between-subject factor.

The EEG data were re-referenced to the average of left and right mastoid (M1 and M2).
Ocular artefacts were removed from the EEG signal using a regression procedure implemented
with Neuroscan software [31]. The ERP data were digitally filtered with a 40 Hz low pass. Con-
tinuous EEG data was segmented into stimulus-locked (-200ms to 1000ms) ERP segments,
including a 200 ms pre-stimulus baseline. Trials with various artifacts were rejected, with a cri-
terion of ±75 μV. Waveform averages were calculated for each individual subject within each
condition.

Six electrode sites (Fz, FCz, Cz, CPz, Pz, and POz) were selected for N2 and P3 data analysis.
These electrodes were selected because the amplitude of both N2 and P3 was maximal by
observation in these electrode sites, and previous studies have linked these regions with conflict
processing [18, 32]. Mean amplitude was used for statistical analyses of the N2 and P3 compo-
nents. The time windows for the N2 and P3 components were 200–350 ms and 350–650 ms,
respectively. The 50 percent area latency was adopted for P3 components [33]. Mean latency
was defined as the sampling point where a pre-specified fraction (50% in this case) of the total
area was reached. A combination of the jack-knife method and the fractional area latency mea-
sure produced the onset latencies of the P3 wave. The amended results are reported in line with
previous studies [34, 35]. Specifically, The statistical results (F-values and t-values) were cor-
rected using the formulas: FC = F/(N-1)2, and tC = t/(N—1), where N denotes the number of
observations in each condition. The specific time windows for ERP component were selected
by visual inspection of ERP grand averages. Electrophysiological data were analyzed from the
electrode exhibiting the largest amplitude waveform of each component of interest.

To ensure reliability of the results, the peak amplitude and peak latency were used for statis-
tical analyses of the P3 component. The time window for P3 amplitude was 360–560ms in con-
gruent trials and 410–610 ms for incongruent trials. We selected these specific time windows
for the P3 component because P3 peak value was chose as the midpoint and the same time
frame was taken for each condition.

A mixed-model ANOVA was applied to the N2 and P3 components. The ANOVA factors
for the N2 and P3 components included trial type (two levels: congruent and incongruent),
electrode sides (six levels: Fz, FCz, Cz, CPz, Pz, POz) as within-subject factors, and altitude

Fig 1. Materials and procedure. The procedure of the experimental paradigm.

doi:10.1371/journal.pone.0145246.g001
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group (two levels: high and low) as between-subject factor. The Greenhouse–Geisser correction
was used to compensate for sphericity violations. Simple effect analyses were conducted to
explore interaction effects.

Source localization of incongruent P3 amplitude values was plotted using the sLORETA
[36]. The sLORETA is an efficient tool for functional mapping and source localizing; it is con-
sistent with physiology localization. Fifty-eight electrodes (the M1, M2, two VEOG electrodes,
and two HEOG electrodes were excluded from the 64 electrodes) were used for analysis. A
transformation matrix was created using the electrode coordinates. The averaged waveforms in
the incongruent P3 time range were converted and saved into ASCII values for both the high-
altitude and low-altitude groups. sLORETA images were constructed based on the high-alti-
tude and low-altitude group data, respectively. The version of sLORETA employed in our
study was made available at http://www.unizh.ch/keyinst/NewLORETA/LORETA01.htm.

Results

Behavioral Results
SpO2was significantly higher in the low altitude group compared to the high altitude group,
measuring 97.48% ± 0.93% and 90.71% ± 2.31%, respectively [t (1, 40) = -12.47, p< 0.001].

For the high-altitude and low-altitude groups, respectively, the average error rate was
1.01% ± 1.67% (mean ± S.E.) and 0.91 ± 1.12%. The average time for correct responses was
541 ± 83 ms for the high-altitude group and 527 ± 67 ms for the low-altitude group
(Table 1). No significant differences were found in behavioral performance between these
two groups (ps > 0.05). The main effect of trial type was significant for reaction time and
error rate [F (1,40) = 328.60, p< 0.001; F (1,40) = 19.20, p < 0.001], with longer reaction
times and more errors in incongruent trials than in congruent trials [572 ± 76 ms vs.
495 ± 72 ms; 1.79% ± 2.43% vs. 0.12% ± 0.38%].

ERP Results
N2. With regard to the amplitude of the N2 component, the main effect of trial type was

significant [0.34 ± 0.55 μV vs. 1.51 ± 0.58 μV; F (1,40) = 19.15, p< 0.001], with more negative
N2 amplitude in the incongruent trial than in the congruent trial for both groups (Fig 2,
Table 2 and Table A in S1 File). The interaction between trial type and electrode was significant
[F (1,36) = 4.35, p< 0.005], and the stimulus difference effects were maximal at the FCz site [F
(1,40) = 26.66, p< 0.001].

P3. The peak amplitude and peak latency were used for statistical analyses of the P3 com-
ponent. With regard to the amplitude of the P3 component, the main effect of group was sig-
nificant, with smaller P3 amplitude for the high-altitude group than for the low-altitude group
[2.75 ± 0.87 μV vs. 5.42 ± 0.97 μV; F (1,40) = 5.53, p< 0.05]. The interaction between trial type
and group was significant [F (1,40) = 10.42, p< 0.005], with smaller P3 amplitude in the high-

Table 1. Mean reaction time (RT), errors rate and standard errors.

RT Errors Rate (%)

Congruent Incongruent Congruent Incongruent

HA 504(80) 579(85) 0.18(0.46) 1.83(2.88)

LA 487(65) 567(69) 0.06(0.27) 1.75(1.96)

Mean reaction time (RT), errors rate and standard errors for high-altitude (HA) group and low-altitude (LA) group in congruent and incongruent condition.

doi:10.1371/journal.pone.0145246.t001
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altitude group than in the low-altitude group under the incongruent trial [1.99 ± 0.77 μV vs.
5.76 ± 0.92 μV; F (1,40) = 9.87, p< 0.005] (Table 3, Fig 3 and Table B in S1 File). No other
main effects or interactions were significant for P3 amplitude. With regard to the P3 latency,
the main effect of trial type was significant, with longer P3 latency for incongruent than for
congruent stimuli [507.42 ± 3.69 ms vs. 461.91 ± 3.62 ms; F (1,40) = 214.56, p< 0.001]
(Table 3, Fig 3 and Table C in S1 File). No other main effects or interactions were significant.

The mean amplitude and the 50 percent area latency were used for the P3 component. With
regard to the amplitude of the P3 component, the main effect of group was significant, with
smaller P3 amplitude for the high-altitude group than for the low-altitude group
[2.18 ± 0.84 μV vs. 4.70 ± 0.89 μV; F (1,40) = 5.75, p< 0.05]. The interaction between trial type
and group was significant [F (1,40) = 6.67, p< 0.05], with smaller P3 amplitude in the high-
altitude group than in the low-altitude group under the incongruent trial [1.44 ± 0.79 μV vs.
4.91 ± 0.96 μV; F (1,40) = 9.42, p< 0.005] (Table 4, Fig 3 and Table D in S1 File). No other
main effects or interactions were significant for P3 amplitude. With regard to the P3 latency,

Fig 2. Grand average of ERP and topographical maps of N2. The grand average of ERP elicited in the
congruent (blue lines) and the incongruent (red lines) conditions at Cz site. The topographical maps were
generated every 10 ms from 300 ms to 330 ms. Data were averaged across 42 participants for each
condition.

doi:10.1371/journal.pone.0145246.g002

Table 2. Mean amplitudes of N2 component.

Congruent Incongruent

HA LA HA LA

Fz 1.12(0.85) 1.85(0.77) -0.53(0.70) 0.58(0.76)

FCz 0.77(0.82) 2.30(0.83) -1.05(0.75) 0.61(0.75)

Cz 0.85(0.75) 2.78(0.80) -0.68(0.68) 1.37(0.69)

CPz 1.18(0.77) 2.92(0.89) 0.11(0.68) 1.95(0.80)

Pz 0.77(0.76) 2.07(1.03) -0.04(0.78) 1.27(0.97)

POz -0.24(0.68) 1.78(0.80) -0.81(0.77) 1.32(0.83)

N2 mean amplitudes in μV (SE) during the congruent and incongruent conditions, separated between low-

altitude (LA) and high-altitude (HA) group, at six midline electrodes (Fz, FCz, Cz, CPz, Pz, POz).

doi:10.1371/journal.pone.0145246.t002
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the main effect of trial type was significant, with longer P3 latency for incongruent than for
congruent stimuli [504.19 ±0.21 ms vs. 460.58 ±0.16 ms; F (1,40) = 110402.28, p< 0.001]
(Table 4, Fig 3 and Table E in S1 File). No other main effects or interactions were significant.

Table 3. The peak amplitude and peak latency of the P3 component.

Amplitudes Latencies

Congruent Incongruent Congruent Incongruent

HA LA HA LA HA LA HA LA

Fz 2.96(0.95) 4.14(0.83) 1.19(0.88) 4.86(0.87) 455.52(3.07) 469.62(4.20) 504.10(3.65) 509.81(3.48)

FCz 3.85(0.98) 6.15(1.01) 1.87(0.90) 6.88(1.09) 458.95(3.30) 471.05(4.04) 505.62(3.77) 508.95(3.56)

Cz 4.30(0.98) 7.00(1.02) 2.57(0.92) 7.94(1.14) 462.19(3.67) 468.76(4.15) 505.33(3.74) 508.00(3.45)

CPz 4.90(0.91) 6.61(0.93) 3.42(0.89) 7.48(1.04) 456.48(3.15) 465.24(4.05) 504.57(3.72) 509.14(3.83)

Pz 3.83(0.84) 4.63(0.94) 2.49(0.84) 5.12(1.02) 454.29(2.94) 464.19(3.96) 506.57(3.83) 508.57(3.82)

POz 1.22(0.70) 1.91(0.80) 0.38(0.64) 2.30(0.89) 454.86(3.01) 461.81(3.86) 507.71(3.62) 510.67(3.81)

P3 peak amplitudes in μV (SE) and peak latencies in ms (SE) during the congruent and incongruent conditions, separated by low-altitude (LA) and high-

altitude (HA) group, at six midline electrodes (Fz, FCz, Cz, CPz, Pz, POz).

doi:10.1371/journal.pone.0145246.t003

Fig 3. Grand average of ERP and topographical maps of P3. The grand average of ERP elicited in the
low-altitude group (LA, dotted lines) and the high-altitude group (HA, solid lines) at the Cz and CPz in the
congruent (blue lines) and incongruent (red lines) conditions. The topographical maps were generated every
10 ms from 440 ms to 470 ms in congruent condition, and 510 ms to 540ms in incongruent condition. Data
were averaged across 21 participants for each group.

doi:10.1371/journal.pone.0145246.g003
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Source Localization
The sLORETA showed the strongest activation in the parietal lobe (Brodmann area 7) in both
groups. Fig 4 shows the mean activation levels of the incongruent P3 components in the brain
regions of the two groups as plotted by standardized low resolution electromagnetic tomogra-
phy analysis (sLORETA). The talairach coordinates were value = 3.76E+0, (X = -25, Y = -65,
Z = 65) for the high-altitude group, and value = 8.98E+0, (X = -10, Y = -80, Z = 50) for the
low-altitude group.

Discussion
Our study investigated the cognitive impact of long-term exposure to high altitude on healthy
young people during a flanker task. The results showed that a conflict control effect was suc-
cessfully elicited, as reflected by behavior and ERP results, with longer reaction time, higher
error rates, larger N2 amplitude, and longer P3 latency in the incongruent trials than in the
congruent trials. Our test focused on the neural mechanisms responsible for conflict control
after long-term exposure to high altitude. SpO2 decreased in the high altitude group, which
suggests that the subjects were suffering from hypoxia. The interaction between trial type and
group was significant on P3 amplitude, with smaller P3 amplitude in the high altitude group
than in the low altitude group under incongruent trials.

The main effect of trial type was significant in behavioral and ERP results. For the behav-
ioral result, consistent with previous studies [13, 19], longer reaction times and higher error
rates were found in incongruent trials compared to congruent trials, which suggested that con-
flict control had occurred. In line with previous ERP studies, the two typical conflict-related
ERP components were detected in the present study [17, 22, 23]. The N2 amplitude was higher
in the incongruent trials than in the congruent trials, reflecting the process of conflict detection
[17, 22]. In addition, the maximal N2 amplitude was at FCz, and the N2 amplitude at the scalp
distribution was consistent with previous studies that employed the flanker task [17, 19], sug-
gesting that N2 may be located in the ACC and reflect conflict detection [20]. Moreover, longer
P3 latency was found in the incongruent trials than in the congruent trials. According to previ-
ous studies, longer P3 latency in incongruent trials is due to increased stimulus evaluation or
categorization time to determine the correct response and occurrs within the parietal cortex
[17, 37]. Same as in previous research, our results show this process is delayed approximately
40 ms in incongruent compared with congruent trials [17].

Table 4. The mean amplitude and the 50 percent area latency of the P3 component.

Amplitudes Latencies

Congruent Incongruent Congruent Incongruent

HA LA HA LA HA LA HA LA

Fz 2.38(0.95) 3.90(0.73) 0.62(0.85) 3.98(0.81) 473.14(0.45) 472.57(0.34) 518.95(0.38) 519.24(0.29)

FCz 3.46(0.96) 5.77(0.89) 1.24(0.85) 5.78(1.00) 485.24(0.29) 484.86(0.30) 522.19(0.34) 522.38(0.33)

Cz 3.82(0.98) 6.39(0.89) 1.90(0.86) 6.83(1.06) 480.38(0.26) 480.19(0.19) 516.29(0.29) 516.48(0.24)

CPz 4.18(0.89) 5.71(0.80) 2.75(0.82) 6.50(1.01) 465.71(0.25) 465.71(0.25) 504.38(0.30) 504.76(0.26)

Pz 3.08(0.83) 3.77(0.85) 1.97(0.77) 4.37(1.01) 448.48(0.36) 448.48(0.27) 494.29(0.37) 494.76(0.29)

POz 0.67(0.68) 1.37(0.74) 0.15(0.59) 1.99(0.87) 410.95(0.30) 411.24(0.22) 468.19(0.66) 468.38(0.33)

P3 mean amplitudes in μV (SE) and 50 percent area latencies in ms (SE) during the congruent and incongruent conditions, separated by low-altitude (LA)

and high-altitude (HA) group, at six midline electrodes (Fz, FCz, Cz, CPz, Pz, POz).

doi:10.1371/journal.pone.0145246.t004
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The major finding of our study was that the smaller P3 amplitude was found in the high-
altitude group under incongruent trials, which suggested that the conflict-resolving stage of
conflict processing was significantly affected by high altitude, and there may be a decrease in
control on the conflict resolution in the high-altitude group [38]. According to a previous
study, in the conflict resolution stage, greater P3 amplitude is likely to be associated with more
careful evaluation of the stimulus [17]. The decreased P3 amplitude in the high-altitude group
may suggest that the high-altitude group could not evaluate the stimulus as well as the low-alti-
tude group. Moreover, the flanker P3 was related to the attentional resources needed for
improved cognitive control, with lower P3 amplitude seen in the less attentional resources con-
dition [39, 40]. The same task demanded more cognitive resources from the high-altitude
group than from the low-altitude group to resolve the conflict. The high cognitive demand in
the high-altitude group limited the attentional resources necessary to resist the conflict control
[25] and as a consequence, lower P3 amplitude was found in the high-altitude group [41]. The
decreased P3 amplitude in the high-altitude group was also found in our previous study, sug-
gest that long-term high-altitude exposure leads to diminished availability of attentional
resources [42]. Using sLORETA, we localized the incongruent P3 component in the parietal
cortex (Fig 4) [36]. These scalp maps further highlight the scalp distribution of the P3 ampli-
tude modulation. This distribution is compatible with conflict resolution sources, and the pari-
etal cortex is influenced by chronic hypoxia [6, 17, 24, 25], which may explain why lower P3
amplitude was found in the high-altitude group than in the low-altitude group under incongru-
ent trials. However, inconsistent with our hypothesis, compared with the low altitude group,
smaller incongruent-N2 amplitude was not found in high-altitude group which may suggest
that the conflict detection or motoring processing in the flanker task was not affected by long
term high altitude exposure.

Significant group differences were not found in the behavior results. The disappearance of
the effects on behavior after prolonged exposure to high altitude may result from adaptation
supported by a compensatory mechanism, which was also found in our previous study [42]. To
finish the same task, the attentional resources in the high-altitude group were partly deprived
to compensate the cognitive deficiency, which was reflected by lower P3 amplitude [25]. More-
over, the compensatory mechanisms lead to no group difference on P3 latency, which had
strong association with the behavioral result. In our previous study, the group difference was
more remarkable in the more difficult condition [42], so the group difference may become
notable if the task was more difficult.

Fig 4. Source localization. The source localization of the surface incongruent P3 amplitude sLORETA
images showing the standardized current density maxima for the high-altitude group (A) and low-altitude
group (B), as seen from the horizontal, sagittal, and coronal sections. Talairach coordinates (X, Y, Z) are
indicated, the activity is colour-coded. Yellow colour indicates local maxima of the incongruent P3 component
is in the parietal lobe (Brodmann area 7) in the high- and low-altitude groups.

doi:10.1371/journal.pone.0145246.g004
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The limitations of our study are as follow: First, consequences of living at a high altitude
may be influenced not only by hypoxia, but also by many other factors (e.g., differences in cli-
mate or culture). Although the participants in our study had lived in high altitude for three
years and had acclimated to the environment, results should still be interpreted cautiously. Sec-
ond, the task we used here was not difficult enough to clearly show differences between the two
groups on behavioral results. Further research should increase the degree of task difficulty.

In conclusion, our study demonstrates that chronic exposure to high altitude alters conflict
control processing at the conflict-resolving stage, as evidenced by the incongruent-lower P3
amplitude in the high altitude group. The attentional resources available to process stimuli in
the function of conflict control are decreased in the high altitude group.

Supporting Information
S1 File. The ERP data of N2 and P3 components. The N2 mean amplitude during the congru-
ent and incongruent conditions, separated by low-altitude and high-altitude group, at six mid-
line electrodes (Fz, FCz, Cz, CPz, Pz, POz) (Table A). The P3 peak amplitude (Table B), peak
latency (Table C), mean amplitude (Table D) and the 50 percent area latency (Table E) during
the congruent and incongruent conditions, separated by low-altitude and high-altitude group,
at six midline electrodes (Fz, FCz, Cz, CPz, Pz, POz).
(XLSX)
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