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Abstract: The vasorelaxant effect of polyphenols is well known, and the mortality rate due to coronary
artery disease is low in people who consume polyphenol-containing foods. We aimed to elucidate
the mechanism by which polyphenols derived from persimmon juice (PJ) and persimmon leaves
(PLs) induce vasorelaxation and suppress vasocontraction in the superior mesenteric arteries isolated
from male Sprague Dawley rats. Vasocontraction was induced with 1 µM phenylephrine, and
polyphenol-induced vasorelaxation was expressed as a percentage of the previous tone induced by
phenylephrine. PJ powder (100 mg/L) induced higher levels of vasorelaxation (mean± standard error
of the mean, 88.6% ± 4.4%) than PLs powder (1 g/L; 72.0% ± 10.8%). Nitric oxide pathway inhibitors
(NG-nitro-L-arginine methyl ester + carboxy-PTIO) did not affect persimmon-derived polyphenol-
induced vasorelaxation, whereas potassium chloride, tetraethylammonium, and potassium-channel
inhibitors did. Vasorelaxation was endothelium independent with both extracts. Phenylephrine-
induced vasocontraction was suppressed by pretreatment with PJ and PLs powder, even when
inositol triphosphate-mediated Ca2+ release and extracellular Ca2+ influx were inhibited. These
results suggest that persimmon-derived polyphenol phytocomplex cause vasorelaxation and inhibit
vasocontraction through hyperpolarization of smooth muscle cells. Persimmon-derived polyphenols
may be able to prevent cardiovascular diseases caused by abnormal contraction of blood vessels.

Keywords: persimmon polyphenols; hyperpolarization; rat; superior mesenteric artery; vascular
smooth muscle; vasorelaxation; potassium channels

1. Introduction

Polyphenols contained in various foods are known to have a wide range of physiolog-
ical effects, such as antihypertensive, antioxidative, anti-inflammatory, and anti-allergic
effects, suppressing carcinogenesis and blood glucose elevation, and ameliorating cardio-
vascular disease and metabolic abnormalities [1–4]. There is a negative correlation be-
tween the frequency of intake of polyphenol-rich foods (tea, grapes, apples, cocoa, onions,
strawberries, etc.) and the risk of cardiovascular disease [5]. In addition, clinical studies
conducted on the effects of polyphenols on the circulatory system, revealed that ingestion of
polyphenols is effective in lowering blood pressure in patients with mild hypertension [6].
Furthermore, polyphenols ameliorate dyslipidemia and insulin sensitivity [7–11].

Polyphenols are also known to improve the ability of vascular endothelial cells to con-
trol the vascular tone and protect the cardiovascular system [12,13]. Polyphenols contained
in many foods induce endothelium-dependent vasorelaxation, suppress vasocontraction,
and exert antihypertensive effects [14,15]. In experiments with isolated arteries, it has been
reported that endothelium-dependent vasorelaxation induced by polyphenols is mainly
mediated via the nitric oxide (NO) pathway [16–19]. Furthermore, in peripheral arteries,
polyphenols reportedly cause vasorelaxation via the endothelium-derived hyperpolarizing
factor (EDHF) in addition to NO [20–22].
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The fruits and leaves of persimmons, which are produced in Japan, are rich in polyphe-
nols and were found to exert antihypertensive, antioxidative, anti-inflammatory, and blood
glucose-lowering effects [23–25]. Regarding vascular function, polyphenols derived from
persimmon leaves (PLs) reportedly cause NO-mediated vasorelaxation in conduit arteries
such as the aorta [26], but the mechanism of peripheral artery relaxation remains unclear.
Furthermore, to the best of our knowledge, there are no studies on the effects of polyphe-
nols derived from persimmon juice (PJ) on peripheral arteries. We hypothesized that PJ-
and PLs-derived polyphenols have strong vasorelaxation and vasocontraction inhibitory
effects on rat peripheral arteries due to vascular endothelium independence (i.e., vascular
smooth muscle hyperpolarization) rather than vascular endothelial cell-derived NO.

2. Materials and Methods
2.1. Preparation of PJ and PLs Powder

Immature, astringent Japanese persimmon (Diospyros kaki) fruits and leaves of the
Hiratanenashi cultivar, harvested in Nara Prefecture, were processed to obtain PJ and
PLs powder.

The tannin-containing PJ was prepared to obtain the so-called “Kakishibu” powder.
The harvested, immature fruits were treated with 0.2% (v/w) ethanol for 5 days to solubilize
the polyphenols. Treated fruits were crushed, immersed in water, and stored at room
temperature for 2 days. Thereafter, the supernatant, containing soluble components such as
sugar, was removed. Water was added to the residue containing the polyphenols, and the
mixture was heated to 120 ◦C for 30 min to extract the polyphenols. The extract was filtered,
evaporated in vacuo, and drum dried at 160 ◦C to produce a powder. PLs powder was
obtained from persimmon leaves that were roasted for sterilization, dried, and pulverized.

The catechin (tannin) concentrations in the PJ and PLs powders were 64.0% and
5.23%, respectively, as measured by using the iron-tartrate colorimetric method [27]. These
powders were prepared and provided by Ishii-Bussan, Inc. (Nara, Japan) and stored at
−20 ◦C until use.

2.2. Estimation of Catechin Components in PJ and PLs

PJ and PLs powders were dissolved in distilled water (10 g/L), filtered through 0.22 µm
membrane filters, and used for further experiments. A Shimadzu 8045 triple quadrupole
mass spectrometer with a probe electrospray ionization (PESI) ion source (Shimadzu, Kyoto,
Japan) was used for the direct detection of catechin components. The samples were placed
directly on a dedicated plastic sample plate and set on the PESI ion source [28]. The probe
needle was lowered such that the needle tip touched the sample and then was raised
to apply a high voltage for ionization. This vertical movement was repeated, and the
generated ions were introduced into the tandem mass spectrometry (MS/MS) system.
The PESI-MS/MS conditions were set as follows: probe-applied voltage, 2.3 kV; cycle time
for probe movement, 160 ms; desolvation line temperature, 250 ◦C; heat block temperature,
50 ◦C; and polarity, negative. The probe position (distance from the tip of the needle to the
center of the MS inlet) was set at 2 mm in the y axis and 2.5 mm in the x axis. The product ion
(Pl) spectra of the compounds were measured in the multiple reaction monitoring (MRM)-
Pl scan mode. The collision energies were adjusted to optimize the product ion signal
to be −27, −30, −33, −41 eV for (−) epigallo-catechin-3-gallate (EGCg), (−) epicatechin-
3-gallate (ECg), (−) epigallocatechin (EGC), and (−) epicatechin (EC). The MRM mode
was used to monitor the transition of the deprotonated molecule at m/z 457.0→ 168.8
(EGCg), 441.0→ 168.8 (ECg), 305.1→ 124.8 (EGC), 289.1→ 108.8 (EC) [29]. The catechin
composition ratios were calculated by integrating all peak areas of each compound using
the built-in LabSolutions software (ver. 5.99 SP2, Shimadzu Corp., Kyoto, Japan).
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2.3. Animal Procedures

All protocols for the animal experiments were approved by the Animal Care Com-
mittee of Nara Medical University in accordance with the policies established in the NIH
Guide for the Care and Use of Laboratory Animals (Permit No. 12689).

Male Sprague Dawley rats (n = 20, 10–12 weeks old and weighing 330–350 g; CLEA
Japan, Inc., Tokyo, Japan) were placed in a quiet, temperature- and humidity-controlled
room, and maintained in a 12 h light–dark cycle (08:00–20:00 light).

2.4. Preparation of Rings of Isolated Superior Mesenteric Artery

The rats were euthanized by exsanguination. Their superior mesenteric arteries
(SMAs) were excised and the adherent connective tissues were removed. The SMAs were
sectioned into rings of 1–1.5 mm in length that were arranged isometrically in vitro, as
previously described [30]. Briefly, the rings were horizontally mounted on tension hooks
(50 µm in diameter) in 4 mL organ baths containing Krebs–Ringer solution (118 mM NaCl,
4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25 mM NaHCO3, 2.5 mM CaCl2, and
10 mM D-glucose; pH 7.4). The solution was maintained at 37 ◦C by using a thermally
regulated water circuit, and continuously aerated with 95% O2 and 5% CO2.

2.5. Tension Measurement

SMAs were used in the present study to determine isometric tension, as there is consid-
erable cumulative knowledge of their vascular function. Isometric tension was monitored
with a force-displacement transducer (Signal Conditioner/MSC-2, Primetech Co., Tokyo,
Japan), connected to one side of each tension hook, and documented with a pen recorder
(Pantos Unicorder/U-228, Nihon Kohden Kohgyo Co., Tokyo, Japan). The SMA rings were
suspended on the hooks, the tension was set to 0.2 g, and the rings were stabilized in the
organ baths at 37 ◦C for 90 min. The Krebs–Ringer solution was changed every 15 min.
The resting tension was maintained at 0.2 g throughout the experiment [31].

For studies of the endothelium-intact vessels, the rings were discarded if acetylcholine-
induced relaxation was not ≥80%. For studies of the endothelium-removed vessels, the
endothelial cells were removed by rubbing the intimal surface with a stainless-steel wire.
The endothelial cell removal was confirmed by the absence of relaxation when the vessel
was exposed to 1 µM acetylcholine.

None of the SMA rings were used for repeated measurements; rather, a single dose–
response test was performed on each ring. Various inhibitor combinations were tested
using different SMA rings isolated from the same rat. Inhibitors were added to the bath
30 min before the addition of phenylephrine.

2.6. PJ- and PLs-Induced Vasorelaxation

Relaxant responses were studied in SMAs that had been precontracted with phenyle-
phrine (1 µM). After the contractions reached a plateau, PJ (0.1–100 mg/L) or PLs
(0.1–1000 mg/L) powder was cumulatively added to the bath, and concentration–response
curves were plotted. Relaxation was expressed as a percentage of the contraction in re-
sponse to 1 µM phenylephrine.

2.7. Effect of PJ and PLs on Potassium Chloride- and Phenylephrine-Induced Vasocontraction

PJ or PLs powder (1 g/L) was added to the bath, and after 30 min, phenylephrine
(0.001–10 µM) or potassium chloride (0–80 mM) was added cumulatively. The shrinkage
rate was calculated as a percentage of the shrinkage force 25 min after the addition of
60 mM potassium chloride, which was tested in advance without the presence of PJ or
PLs powder.

Phenylephrine-induced vasocontraction is triggered via the receptor-operated channel-
mediated pathway in smooth muscle cell membranes and the intracellular triphosphate
(IP3)-mediated pathway in smooth muscle cells. To clarify which of these pathways were
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inhibited by PJ and PLs, we investigated the effects of PJ and PLs on phenylephrine-induced
vasocontraction by inhibiting each pathway.

2.8. Statistical Analyses

All data are expressed as means ± standard error of the mean. The biochemical and
physiological parameters were analyzed statistically with one-way analysis of variance fol-
lowed by Dunnett’s test for comparison of experimental conditions with control conditions.
Statistical significance was set at p < 0.05.

2.9. Chemicals and Drugs

4-Aminopyridine, apamin, carboxy-PTIO, glibenclamide, Nω-nitro-L-arginine methyl
ester hydrochloride, (R)-(−)-phenylephrine hydrochloride, and TRAM-34 were obtained
from Merck KGaA (Darmstadt, Germany). Iberiotoxin, potassium chloride, and tetraethy-
lammonium chloride were obtained from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan). Xestospongin C (XeC) was obtained from Abcam plc (Cambridge, UK).

3. Results
3.1. Catechins Contained in PJ and PLs

EC, ECg, EGC, and EGCg, were detected in the PJ and PLs samples. Their composition
ratios were EC:ECg:EGC:EGCg = 3:1:11:2 in PJ and 11:1:22:1 in PLs (Figure 1).
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Figure 1. MRM chromatograms of (a) persimmon juice (PJ) and (b) persimmon leaves (PLs).
The product ion (Pl) spectra of the compounds were measured in the multiple reaction monitor-
ing (MRM)-Pl scan mode. The collision energies were adjusted to optimize the product ion signal as
−27, −30, −33, −41 eV for (−) epigallo-catechin-3-gallate (EGCg), (−) epicatechin-3-gallate (ECg),
(−) epigallocatechin (EGC), and (−) epicatechin (EC). The MRM mode was used to monitor the tran-
sition of the deprotonated molecule at m/z 457.0→ 168.8 (EGCg), 441.0→ 168.8 (ECg), 305.1→ 124.8
(EGC), 289.1→ 108.8 (EC).
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3.2. Endothelium-Dependent Vasorelaxation Induced by PJ and PLs

Following precontraction with phenylephrine, PJ and PLs induced dose-dependent
relaxation of vessels. Maximum vasorelaxation effects were observed with 100 mg/L PJ
powder (88.6% ± 4.4%) and 1 g/L PLs powder (76.4% ± 6.7%). Thus, PJ induced higher
levels of vasorelaxation than did PLs. These vasorelaxation effects were not altered by
endothelium removal (Figure 2a,b, Table 1).
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Figure 2. Concentration–response curves for (a,c) persimmon juice (PJ)- and (b,d) persimmon leaf
(PLs)-induced vasorelaxation in rat superior mesenteric artery rings (n = 4–6). (a,b) These curves
were constructed from experiments in the presence and absence of endothelium. (c,d) These curves
were constructed from experiments in the absence (control) and presence of NG-nitro-L-arginine
methyl ester (L-NAME; 1 mM) + carboxy-PTIO (0.1 mM) and potassium chloride (20 mM). Results
(mean ± standard error of the mean) are expressed as a percentage of the previous tone induced by
phenylephrine (1 µM). * p < 0.05 vs. the control (Dunnett’s test).
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Table 1. Effects of various inhibitors on persimmon juice (PJ)- or persimmon leaf (PLs)-induced
vasorelaxation in rat superior mesenteric artery rings.

Inhibitors Added PJ (0.1 g/L) PLs (0.3 g/L)

% Relaxation p Value % Relaxation p Value

Endothelium (+)
none 88.6 ± 4.39 58.4 ± 7.79

+L-NAME + carboxy-PTIO 100.0 ± 6.99 0.97 72.6 ± 6.58 0.93
+KCl 12.7 ± 36.5 * 0.0002 8.39 ± 19.0 * 0.05

Endothelium (-)
none 97.1 ± 0.28 0.95 1 69.2 ± 25.0 0.91 1

+TEA 48.4 ± 21.1 † 0.03 12.5 ± 12.9 † 0.04
+(1) 4-Aminopyridine 97.0 ± 0.46 0.85 96.6 ± 1.44 0.99

+(2) Glibenclamide 100.0 ± 4.54 0.89 90.3 ± 4.35 0.98
+(3) IbTX + apamin + TRAM-34 90.7 ± 6.48 0.74 18.2 ± 0.11 0.09

+(1) + (2) + (3) 49.7 ± 11.4 † 0.03 20.2 ± 11.5 0.07

The inhibitors added were none, NG-nitro-L-arginine methyl ester (L-NAME 1 mM) + carboxy-PTIO
(0.1 mM), potassium chloride (20 mM), tetraethylammonium (TEA 1 mM), (1) 4-aminopyridine (1 mM),
(2) glibenclamide (10 µM), (3) iberiotoxin (ibTX 0.1 µM) + apamin (0.1 µM) + TRAM-34 (10 µM), and
(1) + (2) + (3). Relaxations (mean ± standard error of mean) are expressed as a percentage of the previous
tone induced by phenylephrine (1 µM). * p < 0.05 vs. none in the presence of endothelium (Dunnett’s test).
† p < 0.05 vs. none in the absence of endothelium (Dunnett’s test). 1 p values compared to none in the
presence of endothelium. n = 4–6.

NG-nitro-L-arginine methyl ester (1 mM) and carboxy-PTIO (0.1 mM), inhibitors
of the NO pathway, did not inhibit PJ and PLs-induced vasorelaxation. Potassium
chloride, at a concentration that depolarizes cell membranes (20 mM) significantly
inhibited PJ- and PLs-induced vasorelaxation (Figure 2c,d, Table 1). These results
suggest that vasorelaxation induced by PJ and PLs is caused by hyperpolarization of
vascular smooth muscle.

3.3. Effect of Potassium-Channel Inhibitors on PJ- and PLs-Induced Vasorelaxation

As endothelial cells were not involved in PJ- and PLs-induced vasorelaxation, we
used endothelium-removed vessels to investigate the effects of various potassium-channel
inhibitors on PJ- and PLs-induced vasorelaxation at the level of vascular smooth muscle.

Tetraethylammonium (TEA; 1 mM), a non-selective potassium-channel inhibitor,
significantly inhibited PJ (0.1 g/L)- and PLs (0.3 g/L)-induced vasorelaxation
(Figure 3a,b and Figure 4a,b, Table 1).

None of the other potassium-channel inhibitors, (1 mM 4-aminopyridine, a potent,
non-selective, voltage-gated potassium-channel inhibitor; 10 µM glibenclamide, a
vascular, ATP-sensitive potassium-channel inhibitor; 0.1 µM iberiotoxin + 0.1 µM
apamin + 10 µM TRAM-34, calcium-activated potassium-channel inhibitors) inhibited
PJ-induced vasorelaxation. However, in the presence of a combination of all these
inhibitors, PJ (0.1 g/L)- and PLs (1 g/L)-induced relaxation was significantly inhibited
(Figure 3c,d and Figure 4a, Table 1).
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Figure 3. Concentration–response curves for (a,c) persimmon juice (PJ)- and (b,d) persimmon
leaf (PLs)-induced vasorelaxation in endothelium-removed rat superior mesenteric artery rings
(n = 4–6). (a,b) These curves were constructed in the absence (control) and presence of tetraethylam-
monium (TEA; 1 mM). (c,d) These curves were constructed in the absence (control) and presence
of (1) 4-aminopyridine (1 mM), (2) glibenclamide (10 µM), (3) iberiotoxin (ibTX; 0.1 µM) + apamin
(0.1 µM) + TRAM-34 (10 µM), and (1) + (2) + (3). Results (mean ± standard error of mean) are
expressed as a percentage of the previous tone induced by phenylephrine (1 µM). * p < 0.05 vs. the
control (Dunnett’s test).
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Figure 4. Effects of various inhibitors on (a) 0.1 g/L persimmon juice- or (b) 0.3 g/L persimmon
leaf-induced vasorelaxation in rat superior mesenteric artery rings (n = 4–6). The inhibitors added
were none, NG-nitro-L-arginine methyl ester (L-NAME 1 mM) + carboxy-PTIO (0.1 mM), potassium
chloride (20 mM), tetraethylammonium (TEA 1 mM), (1) 4-aminopyridine (1 mM), (2) glibenclamide
(10 µM), (3) iberiotoxin (ibTX 0.1 µM) + apamin (0.1 µM) + TRAM-34 (10 µM), and (1) + (2) + (3).
Results (mean ± standard error of mean) are expressed as a percentage of the previous tone induced
by phenylephrine (1 µM). * p < 0.05 vs. none in the presence of endothelium (Dunnett’s test). † p < 0.05
vs. none in the absence of endothelium (Dunnett’s test).

3.4. Effect of PJ and PLs on Potassium Chloride- and Phenylephrine-Induced Vasocontraction

Concentration-dependent vasocontraction due to potassium chloride via L-type Ca2+

channels was significantly suppressed by pretreatment with 1 g/L PJ, but not PLs powder
(Figure 5a, Table 2). On the other hand, concentration-dependent vasocontraction due to
phenylephrine was significantly suppressed by pretreatment with both PJ and PLs powder
(Figure 5b, Table 2).
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Figure 5. Concentration-response curves for (a) potassium chloride- and (b) phenylephrine-induced
vasocontractions in rat superior mesenteric artery rings (n = 4–6). Curves were constructed for
experiments with no pretreatment (control) and pretreatment with persimmon juice (PJ) (1 g/L) and
persimmon leaf (PLs) (1 g/L) powder. Results (mean ± standard error of mean) are expressed as a
percentage of the previous tone induced by potassium chloride (60 mM). * p < 0.05 vs. each control
(Dunnett’s test).
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Table 2. Effects of persimmon juice (PJ) and persimmon leaf (PLs) pretreatment on potassium
chloride- and phenylephrine-induced vasocontractions in rat superior mesenteric artery rings.

Pretreatment Potassium Chloride (80 mM) Phenylephrine (10 µM)

% Contraction p Value % Contraction p Value

Control 118.8 ± 8.46 126.9 ± 6.32
+PJ (1 g/L) 15.0 ± 5.28 * 0.00002 1.2 ± 0.77 * 0.000001

+PLs (1 g/L) 91.3 ± 15.1 0.10 6.1 ± 3.02 * 0.000001
Contractions (mean ± standard error of mean) are expressed as a percentage of the previous tone induced by
potassium chloride (60 mM). * p < 0.05 vs. each control (Dunnett’s test). n = 4–6.

3.5. Effect of PJ and PLs on Phenylephrine-Induced Vasocontraction in the Presence of an Inhibitor
of Intracellular Triphosphate-Mediated Ca2+ Release and in the Absence of Ca2+

Pretreatment with PJ and PLs powder significantly inhibited phenylephrine
(300 nM–10 µM)-induced vasocontraction in the presence of 0.5 µM XeC, a cell-permeable
blocker of IP3-mediated Ca2+ release (Figure 6a, Table 3).
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Figure 6. Concentration–response curves for phenylephrine-induced vasocontraction in the absence
(control) or presence of pretreatment with persimmon juice (PJ) (1 g/L) and persimmon leaf (PLs)
(1 g/L) powder in rat superior mesenteric artery rings (n = 4–6). (a) The curves were constructed for
experiments in the presence of xestospongin C (XeC; 0.5 µM) and (b) in the absence of Ca2+. Results
(mean ± standard error of mean) are expressed as a percentage of the previous tone induced by
potassium chloride (60 mM). * p < 0.05 vs. each control (Dunnett’s test).

Table 3. Effects of persimmon juice (PJ) and persimmon leaf (PLs) pretreatment on phenylephrine-
induced vasocontractions in the presence of xestospongin C (XeC) or in the absence of Ca2+ in rat
superior mesenteric artery rings.

Condition Phenylephrine (10 µM)

% Contraction p Value

+ XeC (0.5 µM) 130.8 ± 2.32
+ XeC (0.5 µM) + PJ (1 g/L) 1.2 ± 1.17 * 0.0001

+ XeC (0.5 µM) + PLs (1 g/L) 13.5 ± 2.91 * 0.0002
Ca2+ (-) 48.2 ± 18.9

Ca2+ (-) + PJ (1 g/L) 2.1 ± 1.10 * 0.04
Ca2+ (-) + PLs (1 g/L) 16.4 ± 7.48 0.14

Contractions (mean ± standard error of mean) are expressed as a percentage of the previous tone induced by
potassium chloride (60 mM). * p < 0.05 vs. each control (Dunnett’s test). n = 4–6.
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Phenylephrine (300 nM, 1 µM, and 10 µM)-induced vasocontraction in the absence of
Ca2+, i.e., with inhibition of the influx of extracellular Ca2+ through the receptor-operated
Ca2+ channels (ROCs), was significantly inhibited by pretreatment with PJ powder. In
addition, phenylephrine (300 nM)-induced vasocontraction in the absence of Ca2+ was
significantly inhibited by pretreatment with PLs powder (Figure 6b, Table 3).

4. Discussion

This study demonstrated that PJ- and PLs-derived polyphenol-induced vasorelaxation is
not mediated by the endothelial cells, which differs from the results of previous reports. Gener-
ally, relaxation in conduit arteries, such as the aorta, is mainly mediated via NO release from
the endothelium, and that in the peripheral arteries is mainly via EDHF [32,33]. In fact, many
polyphenols reportedly induce NO- and EDHF-mediated relaxation of the endothelium [34,35].
However, in this study, PJ- and PLs-derived polyphenols yielded strong vasorelaxation at the
smooth muscle level, but neither of these pathways was found related to this effect.

The effects of potassium-channel inhibitors on vasorelaxation induced by PJ- and PLs-
derived polyphenols were non-specific. Therefore, we hypothesize that these polyphenols
cause hyperpolarization rather than activation of specific potassium channels. In fact,
vasorelaxation induced by PJ- and PLs-derived polyphenols was inhibited by the addition of
a depolarizing concentration (20 mM) of potassium chloride, which was further supported
by the fact that potassium chloride-induced vasocontraction was suppressed by PJ- and
PLs-derived polyphenol pretreatment.

Polyphenols are known to suppress the vasocontraction caused by endothelin-1 and an-
giotensin II [36–38]; however, to the best of our knowledge, this study is the first to demon-
strate that PJ- and PLs-derived polyphenols suppress vasocontraction caused by phenyle-
phrine. Pretreatment with PJ- and PLs-derived polyphenols suppressed phenylephrine-
induced vasocontraction via both the ROC- and the IP3-mediated pathways. Hence, we
hypothesize that these polyphenols cause hyperpolarization of the smooth muscle, thereby
reducing the release of Ca2+ from the extracellular and intracellular stores of smooth muscle
cells into the cytoplasm. In addition, as potassium chloride-induced vasocontraction via
L-type Ca2+ channels was also suppressed by the PJ powder, it seems that suppression of
vasocontraction induced by PJ-derived polyphenols was not receptor-specific.

The phytochemical characterization of the polyphenolic components of the persim-
mon cultivar used in this study, Hiratanenashi, have already been reported [39,40]. High-
performance liquid chromatography and mass spectrum analysis data show that persim-
mon fruits and leaves possess the catechin polymers, proanthocyanidin, which account for
more than 90% of the total polyphenols in these fruits [40] and leaves [41]. Therefore, the
vascular effects exerted by PJ and PLs in this study are primarily due to the monomeric
and polymeric catechins, with minimal influence from other polyphenols. Moreover, the
vascular reactivity of polyphenols derived from PJ was found to be higher than that of
the polyphenols derived from PLs. This may, in part, be due to the fact that catechin
concentration was more than 10 times higher in the former than in the latter. Second, the
difference in the composition ratios of the four catechins EC, ECg, EGC, and EGCg in PJ
and PLs may also be pivotal for the superior vascular effects of PJ compared to PLs.

As is frequently reported, all of these catechins have vasorelaxant effects. EGCg report-
edly causes vascular endothelium-dependent, NO-mediated relaxation of the rat aorta [42].
EC reportedly causes relaxation in human saphenous veins by activating potassium channels
in the smooth muscle [43], a mechanism consistent with the results of this study. In fact,
we discovered the same relaxation and contraction-inhibitory effects with standard EGC in
preliminary experiments (data not shown) as we did with PJ- and PLs-derived polyphenols.
Therefore, the vascular activity of PJ- and PLs-derived polyphenols may be primarily due to
the action of monomeric EC and EGC with a high composition ratio in both PJ and PLs. On
the other hand, Pu-erh tea reportedly causes vasorelaxation of rat aortas in an endothelium-
independent manner, partially via a reduction in the influx of extracellular Ca2 + induced
by theabrownins, which are oxidatively polymerized rather than monomeric catechins [44].
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Furthermore, PLs contain 40% or more of prodelphinidin, a catechin polymer that reportedly
has a vasorelaxant effect [26]. Therefore, the vascular action of PJ and PLs shown in this study
may be closely related not only to the monomeric catechins but also to the polymeric cate-
chins produced in the fermentation process. The limitation of this study is that the difference
in the structure and composition ratio of the polymeric catechins of PJ and PLs related to
vascular action has not been clarified. Further research is needed to clarify the contribution of
monomeric and polymeric catechins to the vascular effects of PJ and PLs.

Several experimental and clinical studies have revealed that polyphenols from certain
fruits and vegetables reduce blood pressure [45–48]. As the antihypertensive effects of
those polyphenols are mediated via vascular protection at the endothelial cell level [49–51],
their antihypertensive effects may vary among individuals with cardiovascular disease
depending on the degree of endothelial damage. On the other hand, in this study, we
revealed that the putative hyperpolarization induced by PJ- and PLs-derived polyphenols
acted on smooth muscle cells. Even if the endothelial cells are damaged by hypertension or
arteriosclerosis, hyperpolarization will not be affected, which means that these polyphenols
may confer a stable antihypertensive effect regardless of endothelial damage.

Furthermore, in this study, PJ- and PLs-derived polyphenols displayed functions
similar to those of potassium-channel openers and Ca2+ antagonists, both of which are
drug types indicated for heart failure. This suggests that persimmons may help ameliorate
or prevent hypertension and cardiovascular disease as a functional food. Certain potas-
sium channel openers reportedly reduce the Ca2+ sensitivity of contractile elements (Ca2+

desensitization) in addition to reducing intracellular Ca2+ concentrations via hyperpolariza-
tion [52,53]. However, in this study, we did not investigate whether the hyperpolarization
of vascular smooth muscle by PJ- and PLs-derived polyphenols reduces the Ca2+ sensitiv-
ity of contractile elements. Further studies are needed to elucidate the effects of PJ- and
PLs-derived polyphenols on Ca2+ desensitization in vascular smooth muscle.

5. Conclusions

This study showed that PJ- and PLs-derived polyphenols have strong vasorelaxation
and vasocontraction-inhibitory effects determined by the hyperpolarization of vascular
smooth muscles. As these effects are not mediated via the endothelial release of NO,
PJ- and PLs-derived polyphenols may have a preventive effect on cardiovascular events
not only in people with normal blood pressure, but also in those with hypertension and
endothelial damage.
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