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While belonging to the nanoscale, protein machines are so complex that tracing

even a small fraction of their cycle requires weeks of calculations on super-

computers. Surprisingly, many aspects of their operation can be however

already reproduced by using very simple mechanical models of elastic

networks. The analysis suggests that, similar to other self-organized complex

systems, functional collective dynamics in such proteins is effectively reduced

to a low-dimensional attractive manifold.
1. Introduction
To a large extent, the living cell is a population of interacting molecular machines

[1]. These protein machines, acting as motors and pumps or performing oper-

ations with other biomolecules, such as DNA, underlie basic functions of the

cell. Understanding of their mechanisms is essential for molecular biology and

for prospective biotechnology applications. Single-molecule experiments could

provide much information on the dynamics of protein machines [2–5]. More

recently, high-speed atomic force microscopy methods have allowed direct

visualization of conformational motions at nanoscale resolution in real time [6].

Molecular structures and equilibrium conformations of almost all proteins are

known. They are determined through a combination of X-ray diffraction exper-

iments, cryo-electronic microscopy and other techniques, and can be found in

the Protein Data Bank (PDB). Moreover, conformational dynamics of proteins is

sufficiently well reproduced in all-atom molecular dynamics (MD) simulations.

Hence, it may seem that just some special MD simulations have to be performed

in order to unveil the operation mechanisms of protein machines. In practice,

severe difficulties are encountered if one attempts to do this.

All-atom MD simulations of proteins are extremely demanding in terms of the

computation time. Even with the most powerful supercomputers, the dynamics of

a protein can be traced only up to microsecond times. The best achievement so far

has been that, by employing special hardware and for a very small protein, a trajec-

tory of a millisecond duration could be obtained [7]. This is frustrating because

operation cycles of protein machines usually take tens of milliseconds. Thus,

even a single cycle for such a machine could not have been followed in MD simu-

lations and this would probably also not be done in the near future. It is astounding

that such a high degree of complexity, comparable to what is characteristic for the

global climate forecast or for modelling of big social systems, is found already at the

nanoscale, for macromolecules with only tens of thousands of atoms.

Within the last century, a substantial progress in understanding large complex

systems has been made (e.g. [8]). It is known that, in order to be functional, i.e. to

have robust and predictable dynamics, such systems should possess special

organization. They need to be organized into a hierarchy of dynamical subsys-

tems, each hierarchical level with its own separate time scale [9]. Moreover, it is

only rarely possible to deduce the descriptions at a higher level from

the dynamics at the lower level. Instead, phenomenological models based on

collective variables, or ‘order parameters’, are usually employed [10].

Furthermore, two kinds of mathematical models for complex systems can be

distinguished. The ‘realistic’ models are used to provide accurate quantitative
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Figure 1. A sketch of mechanochemical motions accompanying the catalytic turnover cycle of an enzyme. (Online version in colour.)
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predictions for a particular considered case (as, for example, in a

weather forecast). Typically, they would include many variables

and parameters, and their results still need to be interpreted and

understood. On the other hand, ‘simple’ mathematical descrip-

tions for complex systems are also broadly employed. The

intention of such reduced models is not to yield accurate quanti-

tative predictions, but rather to help in understanding of the

principal mechanisms involved (see also [11]).

Good examples of both approaches are provided by brain

research. There exist realistic models for chemical and electrical

processes within a neural cell. However, they are complicated

and therefore used only for single neurons or small popu-

lations of them. Large-scale modelling is instead performed

by means of greatly simplified models of neural networks. In

such networks, a neuron can even be treated as an automaton

with just a few states. Thus, actual physical and chemical pro-

cesses are not resolved. Nonetheless, simple neural network

models play a fundamental role in understanding of the brain.

Simple models of complex systems represent investigation

vehicles rather than computational tools. Such models are

often built by stressing one aspect of functional behaviour

and not resolving the rest. In this manner, one can better see

what interactions between the elements are responsible for a

specific function. It should be noted that such approach forms

the basis of constructive biology aimed at principal understand-

ing of how various biological functions emerge [12].

For proteins, both ‘realistic’ and ‘simple’ models are being

used, although the distinction is often not clearly made. Their

dynamics can be resolved either at the level of atoms, or at the

level of groups of atoms (such as residues), or at that of entire

protein domains. These three levels possess different charac-

teristic time scales, from picoseconds for single atoms, to

nanoseconds for atomic group residues, and to microseconds

or even milliseconds for motions of the domains. The models

at the last two levels are called coarse-grained.

The coarse-grained descriptions are typically judged by

how precise they are. With this perspective, an impressive

progress has been made and fairly accurate, but still compu-

tationally fast formulations exist. However, the increasingly

‘realistic’ coarse-grained descriptions get loaded with details

and become less transparent in comparison to the original

physical models that are quite simple.

Our focus in this review is not on how accurate the

coarse-grained descriptions for protein dynamics could be.

Instead, we concentrate on the simplest mechanical models

of protein machines and want to demonstrate how much

can be already learned while exploring them.
2. Ligand-induced mechanochemical motions
in enzymes

Protein machines represent a special class of enzymes. An

enzyme is a protein that acts as a single-molecule catalyst
accelerating a chemical reaction. The reaction event itself

takes place at an active centre inside the enzyme. Catalytic reac-

tions can involve conversion of one or two substrates into one

or two products, and several intermediate products can also be

formed. For simplicity, we shall however assume below that

one substrate molecule is converted into one product molecule

in a turnover cycle.

Hence, the considered reaction has three steps: (i) a sub-

strate binds to the protein at its active centre and forms a

substrate–enzyme complex ES, (ii) within the complex, the

substrate is converted into a product and a product–enzyme

complex EP is formed, (iii) the product is released and the

enzyme returns to its free form E, i.e.

Eþ S O ES O EP O Eþ P: (2:1)

The steps are generally reversible, so that an enzyme can also

operate in the opposite direction, even though the probability

of reverse cycles might be small.

A protein could have just provided a static support and an

appropriate environment for an active centre where a catalytic

event takes place. In most enzymes, binding or release of a

ligand (i.e. of a substrate or a product) and transitions in the

ligand state are however accompanied by conformational

changes, so that ligand-induced mechanochemical motions

arise.

The origin of such motions can be easily understood:

when a ligand binds to a protein, a new mechanical object,

i.e. the ligand–protein complex, is formed. Generally, this

new object includes additional interactions and, therefore, it

has a different equilibrium state. Thus, after ligand binding,

a process of conformational relaxation from the original equi-

librium state of a free protein to the new equilibrium state of

the complex should take place. Similar internal mechanical

motions can be triggered by other transitions within a turn-

over cycle. The database [13] contains information on

ligand-induced conformational changes in many proteins.

Hence, every transition in the reaction (2.1) is generally

accompanied by a change in the shape of an enzyme, i.e.

by some mechanochemical motion (figure 1). At the end, the

enzyme returns to its original free state and, thus, to its orig-

inal equilibrium conformation. This is repeated in each next

cycle. As a result, the enzyme effectively behaves like an

oscillator, repeatedly changing its shape.

Ligand-induced mechanochemical motions in enzymes

are functional. Their roles can be, for example, to create an

optimal configuration for the catalytic conversion event, to

transport ligand(s) to an active centre and to open the gates

for product(s) release. However, mechanochemical motions

can be also employed to produce forces and to manipulate

other macromolecules. In such cases, an enzyme operates as

a nano-machine.

Since the role of catalytic chemical reactions in protein

machines is just to power the mechanical activity, many of

them use the same reaction of ATP hydrolysis. In this reaction,
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Figure 2. The cycle of an active dimer. A substrate (red) binds and induces
shortening of the dimer. Then, the substrate is converted to a product (black),
and the product is released. Finally, the dimer returns to its original shape.
(Online version in colour.)

s = 1

DE0

DE1

s = 0

x

l0l1

E

Figure 3. Energy diagram of the active dimer. Two branches of the depen-
dence of elastic energy E on distance x between the beads for configurations
with (s ¼ 1) and without (s ¼ 0) a ligand are shown. Transitions between
the branches occur at x ¼ l0 and x ¼ l1; they are followed by relaxation to
new equilibrium states. Within each turnover cycle, energy DE0 þ DE1 is
dissipated in mechanical motions and the same energy is externally supplied
through the ligand. (Online version in colour.)
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a molecule of ATP binds to a protein and becomes converted in

its active centre to the products, ADP and phosphate (Pi), that

are afterwards released. Through each hydrolysis event, an

energy of about 20kBT becomes supplied. Because the difference

in energies is high, this reaction is practically irreversible.1
 20190244
3. Active dimer model of an enzyme
Protein machines often have a domain structure, i.e. they con-

sist of two or more domains connected by flexible joints.

Ligand-induced mechanochemical motions in such proteins

represent relative translational or rotational movements of

the domains. Although the details of the domain structure

and of the dynamics obviously depend on a particular

protein, the basic mechanism can be well illustrated by a

simple model of an active dimer [14,15].

This dimer has two beads that correspond, as an idealiz-

ation, to two protein domains (figure 2). The beads are

connected by an elastic link with natural length l0 and stiffness

constant k0. When a substrate arrives, it introduces an additional

elastic link between the two domains, with short natural length

lc and stiffness kc. Thus, substrate binding induces a mechano-

chemical motion, i.e. shortening of the distance between the

beads. When the new equilibrium configuration is however

reached, a reaction converting the substrate into a product

takes place and, as is for simplicity assumed, the product is

immediately released. As a result, the additional link connecting

the two domains disappears and, by a reverse relaxation pro-

cess, i.e. another mechanochemical motion, the dimer returns

to its original equilibrium configuration. With the arrival of a

further substrate, the cycle is repeated again. Reverse transitions

can be allowed, but we shall consider a model without them.

Since the product is instantaneously released once it has been

formed, the dimer can be found in only two states: s ¼ 0 (the free

dimer) and s ¼ 1 (the dimer with a bound ligand, i.e. with a

substrate). Elastic energies in these two states are

Es(x) ¼ 1

2
k0(x� l0)2 þ 1

2
skc(x� lc)2, (3:1)

where x is the distance between the beads. The two energy

branches are shown in figure 3. The equilibrium states of the

dimer are x¼ l0 for s ¼ 0 and x¼ l1 for s ¼ 1 where l1 ¼ (k0l0 þ
kclc)/(k0 þ kc). Note that, effectively, the two beads are connected

in the state s¼ 1 by an elastic link with stiffness k1 ¼ k0 þ kc and

natural length l1.
The dimer is immersed into viscous fluid and, as character-

istic for micro- and millisecond time scales, inertia is absent and
its internal motions are overdamped. Its dynamics is described

by the Langevin equation

dx
dt
¼ �G @Es

@x
þ j(t), (3:2)

where G is the mobility of a bead and j(t) represents thermal

noise with the correlation function

hj(t)j(t0)i ¼ 2GkBTd(t� t0); (3:3)

where T is the temperature and kB is the Boltzmann constant.

Stochastic transitions between two energy branches, that

correspond to binding of a substrate and product release,

are assumed to take place only near the equilibrium confor-

mations. Their rates are w01 ¼ csn (for substrate binding)

and w10 (for product release). Note that the rate of substrate

binding is proportional to substrate concentration cs.

Probability distributions p0(x) and p1(x) to find the dimer

in states s ¼ 0, 1 with distance x between the beads obey a

system of two coupled Fokker–Planck equations

@p0

@t
¼ @

@x
G
@E0

@x
p0

� �
þ G kBT

@2p0

@x2

� w01d(x� l0)p0(x)þ w10d(x� l1)p1(x) (3:4)

and

@p1

@t
¼ @

@x

�
G
@E1

@x
p1

�
þ G kBT

@2p1

@x2

� w10d(x� l1)p1(x)þ w01d(x� l0)p0(x) : (3:5)

Such dimer behaves as a stochastic oscillator that alter-

nates between the two states, with conformational relaxation

following each transition between them.

The persistent oscillations are powered by the energy sup-

plied with substrates. When a substrate binds, it brings the

energy es ¼ E1(x ¼ l0) 2 E0(x ¼ l0). On the other hand, when

a product is released, it removes the energy ep ¼ E1(x ¼
l1) 2 E0(x ¼ l1). Therefore, the energy provided to the dimer

in each cycle is DE ¼ es 2 ep ¼ (1/2)(k0 þ k1)(l0 2 l1)2 where

k1 ¼ k0 þ kc. It can be checked that it is equal, as should

have been expected, to the sum of the energies DE1 and

DE0 dissipated in the mechanochemical motions.

When conditions DE1� kBT and DE0� kBT are satisfied,

thermal fluctuations do not significantly affect the dynamics.
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Figure 4. A ratchet motor. The left bead of the dimer is immobilized (sche-
matically shown by a link to the grey box). The filament (green) is mobile
and can slide. (a) Initially, the dimer is in the expanded state without a
ligand. (b) When a substrate arrives, the right bead of the dimer forms a
connection to the filament and holds it. (c) As the dimer contracts, it
moves the sliding filament to the left. (d ) Once the product is formed
and immediately released, the connection between the dimer and the fila-
ment disappears, and the dimer freely expands. (a*) After one machine
cycle, the dimer returns to its initial configuration, but the filament becomes
displaced to the left by the distance Dl ¼ l0 2 l1. To visualize the displace-
ment, a mark is attached to the filament. See also the electronic
supplementary material, video S1. (Online version in colour.)
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Figure 5. An inchworm translocation motor. The filament (green) is
immobile and the dimer machine can actively translocate itself along it.
(a) Initially, the left bead of the dimer is connected to the filament and
holds it. (b) When a substrate arrives, a connection between the right
bead and the filament is established and then the left bead gets discon-
nected. (c) The dimer contracts, bringing the left bead closer to the
immobile right bead. (d ) When a product is formed and instantaneously
released, the left bead re-establishes a connection to the filament and
becomes immobile, whereas the right bead is disconnected. (a*) The free
dimer expands and reaches its initial conformation. After one cycle, its
location on the filament is shifted by the distance Dl ¼ l0 2 l1. The
inset shows an animal inchworm. See also the electronic supplementary
material, video S2. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190244

4

The oscillation period is determined by the times of mechan-

ochemical relaxational motions and the waiting times are

determined by transition rates w10 and w01.

The active dimer represents an idealization of an enzyme

with mechanochemical motions inside its turnover cycle. As

shown in the next section, it can be converted to a molecular

motor by using different ratchet mechanisms.
4. Ratchet translocation mechanisms
In classical engineering, mechanical ratchets are commonly

employed to transform oscillations into steady translational

or rotational motions. It is by a ratchet that reciprocal

spring length oscillations in a clock are transformed into

the rotational motion of its hands. Hence, it should not be

surprising that similar techniques are also broadly used by

molecular motors at the nanoscale.

The most straightforward way by which the active dimer

can be converted into a motor is illustrated in figure 4. In this

case, the function of the motor is to steadily move (i.e. trans-

locate) a filament. This function is implemented by means of

the classical ratchet mechanism. The dimer is immobilized by

fixing the left domain to a solid support, whereas the right

domain is free. In the first half of the cycle, the mobile right

domain holds the filament and moves it. In the second half,

however, the connection to the filament is absent and the

domain moves back without it. As easily seen, in each cycle

the filament becomes translocated in the left direction by

distance Dl ¼ l0 2 l1.

This ratchet mechanism cannot however be readily

implemented at the nanoscale. Indeed, it requires precise

localization and fixation of the motor with respect to the

filament—but strong thermal fluctuations may prevent this.2

Such limitation is absent in the inchworm translocation

mechanism (figure 5). Here, the filament is always held by
at least one domain. When the right domain is connected to

the filament, the dimer contracts and the left domain moves

to the right. After that, the left domain establishes a connec-

tion to the filament and, at the same time, the right domain

becomes free. Now, as the dimer expands, the right domain

moves forward. As a result, in each cycle the centre of mass

of the motor is shifted by Dl ¼ l0 2 l1.

While in the active dimer model all energy supplied

with a ligand is dissipated in internal mechanochemical

motions within the turnover cycle, a fraction of this energy

is used to produce external mechanical work in a motor

(e.g. to transport a filament through viscous fluid or to trans-

locate the motor along an immobile filament).

There are also other possibilities to convert cyclic shape

changes into a steady progressive motion. For example, the mol-

ecular dimer motor myosin V is ‘walking’ over an actin filament,

repeatedly lifting and moving forward one of its heads.

Remarkably, this walking myosin motion could be directly

visualized by using high-speed atomic force microscopy [16].
5. Elastic network models of proteins
The elementary units of proteins are residues (amino acids)

and therefore it is natural to work with the coarse-grained

descriptions at the level of such atomic groups. There are

20 essential amino acids and they are arranged into a long

polypeptide chain. Because of the interactions between the

residues, such polymer chains fold into unique equilibrium

conformations that define the protein native form.

In a compactly folded conformation, each residue has sev-

eral other residues in its neighbourhood and it effectively

interacts only with them. Under relatively weak local defor-

mations of the folded state, the pattern of contacts between

the residues, or the contact map, remains preserved and

only distances between neighbour residues are changed.

Such deformations can therefore be viewed as elastic, in con-

trast to plastic deformations that would have involved partial

unfolding or refolding, and thus a change in the contact map.
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This observation leads to a phenomenological description

of a protein in terms of an elastic network, with individual resi-

dues represented by point-like particles and elastic potential

interactions between them. Essentially, the network represents

a set of beads connected by elastic springs. Such simple descrip-

tion was first proposed (but at the atomistic level) by Tirion in

1996 [17]. Below, we shall use a variant of the description that

was formulated by Bahar et al. [18] (see also [19]).

The energy of a network of N beads i ¼ 1, 2, . . ., N con-

nected by a pattern of elastic springs with (identical) stiffness

constants k is

E ¼ k
2

X
i,j

Aij

�
dij � d(0)

ij

�2
, (5:1)

where dij ¼ jRi 2 Rjj is the length of a spring that connects

beads i and j at positions Ri and Rj and d(0)
ij is the natural

length of this spring; matrix Aij with elements 0 or 1 defines

the pattern of connections between the beads.

To obtain an elastic network for a protein, its experimen-

tally known equilibrium conformation from the PDB is

used. The equilibrium position R(0)
i for every residue i is deter-

mined by the coordinates of the a-carbon atom of this residue

in the equilibrium PDB state. Then, equilibrium distances

d(0)
ij ¼ jR

(0)
i � R(0)

j j are computed for all pairs (i, j) of residues

in the protein. If, for a given pair, the equilibrium distance is

shorter than a cutoff length lcut, the respective two beads are

made connected by an elastic spring. Hence, the connection

matrix is chosen as Aij ¼ 1 if d(0)
ij , lcut and Aij ¼ 0 otherwise.

Furthermore, the natural lengths of the springs are made

equal to the equilibrium PDB distances d(0)
ij between them.

Thus, an elastic network becomes constructed [18,19] whose

equilibrium state coincides with the known equilibrium PDB

conformation of the considered protein.

Note that, while being quadratic in terms of distance

changes between the beads, the elastic energy (5.1) is a

more complex function of coordinates Ri. Generally, an elastic

network is therefore a nonlinear mechanical system.

Often, additional linearization in terms of the deviations

ri ¼ Ri � R(0)
i from the equilibrium positions of residues is

performed, leading to a set of normal modes on which the

subsequent linear analysis relies. Thus, an approximate

expression for the elastic energy, quadratic in variables ri, is

instead employed. It has been pointed out in [20] that even

nonlinear conformational dynamics of proteins can be

however investigated by using the elastic energy (5.1).

At the time scales exceeding picoseconds, inertial effects

are negligible and the dynamics is overdamped. Therefore,

neglecting hydrodynamic effects, the equations of motion

for the beads corresponding to protein residues are (for i ¼
1, 2, . . ., N)

dRi

dt
¼ �g @E

@Ri
þ fi(t), (5:2)

where g is the mobility of the beads (for simplicity, assumed

to be the same for all of them). These Langevin equations

include independent thermal noises with components fa,i(t)
for a ¼ x, y, z that have correlation functions

hfa,i(t)fb,j(t0)i ¼ 2gkBTdabdijd(t� t0): (5:3)

Strong simplifications are obviously involved in this

model and therefore the questions can be asked: Would not

it be better to assume that the stiffness constant k for a
spring depends on what pairs of residues are connected by

it? Should not it perhaps also depend on the natural length,

so that the longer springs are more soft? Should not the mobi-

lity g of the residues depend on their positions within a

protein and perhaps be higher on the surface of it?

Paying attention to such questions, different variants of

elastic network models for proteins have been proposed and

are employed (for comparison and discussion, see [21]). More-

over, an iterative learning algorithm based on experimental

nuclear magnetic resonance (NMR) data for a large set of pro-

teins could be used to determine optimal residue-specific

stiffness constants that were also dependent on the natural

length [21].

The intrinsic difficulty of elastic network models is that

they do not allow partial unfolding and refolding during the

dynamics of a protein. The pattern of spring connections is

determined by the equilibrium conformation of a protein and

remains fixed. To some extent, such processes can be taken

into account by modifying interaction potentials between the

beads [22–25].

It should be noted that there are also other structure-

based descriptions for proteins, where unfolding and refold-

ing may take place and where more complex and diverse

interactions between the residues are assumed. For a survey

of such coarse-grained models, see [26,27].

Our focus in this review is however on simple mechanical

descriptions. Therefore, we shall rely on the original elastic

network model as formulated above.
6. Conformational dynamics in protein machines
Ligand-induced mechanochemical motions that play a principal

role in the operation of protein machines are conformational

relaxation processes in such macromolecules. At the level of

domains, they could be already reproduced in the active dimer

model considered above. The residue-level elastic network

descriptions are much more complex and conformational relax-

ation processes in such models should be thoroughly explored.

In the absence of thermal noises, the dynamics of an elastic

network represents its relaxation to a state with the minimal

elastic energy (5.1). Generally, the energy landscape can be

quite complicated and include many additional minima,

in addition to the equilibrium reference state (E ¼ 0). In a

ragged energy landscape, relaxation would be typically

terminated in one of such metastable states (figure 6a).

When elastic networks are randomly constructed, they

indeed tend to have ragged energy landscapes and thus

resemble glass systems [20]. Figure 7 shows the pattern of

relaxation trajectories in a typical random network. As we

see, only a few of the 100 displayed trajectories ended in

the true equilibrium state. All other trajectories terminated

in various metastable states.

A completely different relaxation pattern is characteristic

for protein machines [20,28]. Figure 8 shows the pattern

of conformational relaxation in a single b-subunit of the

rotary molecular motor F1-ATPase (it consists of three

b- and three a-subunits forming a ring). The metastable

states are absent and all trajectories return to the equilibrium

reference conformation, even though the distance u12

between labels 1 and 2 could have changed by up to 30%.

Remarkably, another important feature can be noticed

in figure 8. Starting from various initial conditions, the
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from their respective values in the equilibrium reference state. The reference
state corresponds therefore to the origin of coordinates. Adapted from [20].
(Online version in colour.)
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work. The equilibrium state corresponds to the origin of coordinates. Adapted
from [20]. (Online version in colour.)
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trajectories converge to a narrow bundle that leads to the

equilibrium state. This suggests a special funnel organization

of the elastic energy landscape: this landscape includes a

narrow valley with steep walls that leads to the equilibrium

state. The motions starting at different positions first fall

into this valley and then continue along the bottom of it

(figure 6b).

Similar behaviour could be found when conformational

relaxation in the elastic networks of other motor proteins,

such as muscle myosin [20], myosin V (figure 9) and kinesin

KIF1A [28], hepatitis C virus (HCV) helicase [29], various

membrane ABC transporters [30] and several superfamily 2

helicases [31], was examined. This suggests that it may rep-

resent a common property of the proteins operating as motors

or machines.

The funnel energy landscape is known to be characteristic

for protein folding. It ensures that, at its last stage, the folding

proceeds along a definite pathway and leads to a unique

native conformation of a protein [32]. By contrast, the land-

scape with the energy (5.1) is for elastic deformations of a

protein already in its folded state. Nonetheless, the funnel
structure of this landscape should have a similar interpret-

ation: it ensures that the protein has definite conformational

motions, all proceeding close to the same pathway.

In a macroscopic mechanical device operating as a

machine, well-defined movements of its parts are repeated

in each cycle. The analogous movements in protein machines

represent mechanochemical motions in a protein. The special

structure of the energy surface, with a narrow valley and

steep walls, allows a molecular device to operate similar to

a classical machine. In this way, transverse fluctuations

become suppressed and the motion becomes effectively

low-dimensional, i.e. characterized by one or a few collective

mechanical coordinates.

The analysis shows that functional conformational motions

in machine proteins are typically slow [20]. When additional

linearization of dynamical equations is performed and the

normal modes are determined, they correspond to the modes

with low relaxation rates. Hence, their existence implies that

a gap is present in the relaxation rate spectrum of the normal

modes of a protein [20].

Reduction of collective dynamics to a low-dimensional

attractive manifold is typical for functional complex systems

and represents a characteristic self-organization effect. When

a similar reduction is found for proteins, their relaxation

dynamics can therefore be described as being self-organized.

According to the general theory of complex systems [10],

the amplitudes corresponding to slow collective motions
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Figure 9. Conformational relaxation in myosin V. Here, 100 relaxation trajec-
tories starting from different initial network conformations are plotted in the
plane of distances between the labels (1,2,3) indicated above. Black dots
mark the equilibrium and the metastable states reached. The ATP-bound
equilibrium structure is taken as a reference state. The red trajectory corre-
sponds to the conformational transition upon ATP binding. Adapted from
[28]. (Online version in colour.)

(a) (b)

(d) (c)

Figure 10. The cycle of a model elastic network machine [20]. (a) Initially,
the machine is in its equilibrium state. (b) A substrate (red) establishes elastic
links to three beads (blue) in the hinge region between the two domains. (c)
The machine changes its conformation to the new equilibrium state. (d ) In
this state, a reaction converting the substrate into product takes place and the
product is instantaneously released. After that, the machine returns to its
original conformation, completing the cycle. When the machine is used to
construct a motor, three black beads in the lower domain are immobilized
and the yellow bead in the upper domain interacts with the filament. Repro-
duced from [35]. See also the electronic supplementary material, video S3.
(Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190244

7

in proteins can be viewed as order parameters that enslave

other, fast conformational motions and control them. Note

that a connection to the domain-level descriptions becomes

hence established: such order parameters may yield natural

variables by which relative motions of the domains can

be described.
7. Protein evolution and design of machines
Ordered slow collective motions in proteins could have

emerged in the process of biological evolution. During this

process, proteins should become optimized for their machine

functions—and ordered mechanochemical motions are a pre-

requisite for that. Currently, the emergence and evolution of

protein machines is a research subject of much interest.

While similar investigations for actual proteins remain to

be performed, the question has been addressed by looking at

whether it would be possible to construct an elastic network

with ordered collective motions by running a computer evol-

ution [20] (see also [33,34]). It has been demonstrated that, as

a result of such an evolution, elastic networks with the prop-

erties strongly resembling those of actual protein machines

can be indeed designed [20].

The constructed network consists of two stiff domains

connected by a flexible hinge (figure 10). The pattern of con-

nections in the hinge region is optimized to ensure ordered

conformational motions described by a single collective

mechanical coordinate. These collective motions are slow
and separated by a gap from other conformational motions

in the network. Moreover, there are no metastable states in

the neighbourhood of them. Therefore, after any pertur-

bation, the designed network moves back to its equilibrium

conformation along a unique pathway.

By using the constructed elastic network, a model protein

machine could be furthermore designed [20]. Binding of

a substrate (figure 10) leads to a conformational change

from the open to a closed equilibrium conformation. This

mechanochemical motion is also slow and proceeds along a

well-defined pathway. In the closed state, the substrate is con-

verted into a product and the product is released. Then, the

backward conformational motion to the original equilibrium

state takes place. Thermal fluctuations could be included into

the model [20], revealing that mechanochemical motions are

robust with respect to them. A detailed description of the

model machine is given in [35].

This designed machine operates cyclically, similar to an

oscillator, and its operation is powered by the energy supplied

with the substrates. In fact, it represents a structurally resolved

version of the active dimer in §3.

In the original version, Langevin stochastic dynamics was

employed [20] and therefore hydrodynamic effects could not

be resolved. Hydrodynamic flows could be however later

taken into account [36]. This was done by immersing the

designed machine into an environment consisting of solvent

particles whose interactions were characterized by multi-particle

collision dynamics [37]. Repulsive or attractive forces between

the machine beads and solvent particles, corresponding to

hydrophobic or hydrophilic interactions, could be introduced.

Simulations have shown that, even under hydrodynamic fluctu-

ations, ordered collective motions of the machine persist [36].



(a) (b)

(d) (c)

Figure 11. The model protein machine in a biological membrane. The lipids
are modelled as short polymer strings. Orange beads are hydrophobic and red
beads are hydrophilic. The solvent is included into the simulations, but its
particles are not displayed. Adapted from [38]. See also the electronic
supplementary material, video S4. (Online version in colour.)

(a)

(b) s = 1
s = 0

4

3

2

1

0.2 1 2 3 4 5 6 7 8 9 10
0.3

0.4
y

x

z

y

z

x

Figure 12. Construction of a model ratchet motor. (a) Beads 1, 2 and 10 are fixed,
immobilizing one domain. Bead 64 can interact with the force centres (blue beads)
on the filament. The filament can only slide along its direction. (b) The trajectory of
bead 64 within one cycle. In the ligand-bound state s ¼ 1, the bead comes close
to the filament, establishes interactions, and moves it. In the second half of the
cycle (s ¼ 0), this bead is separated from the filament and moves back without
holding it. Thus, the filament becomes progressively translocated after each cycle.
Adapted from [38]. See also the electronic supplementary material, video S5.
(Online version in colour.)
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Remarkably, they proceed along the same pathway as in the

Langevin dynamics, although the motion along this pathway

becomes modified.

The designed machine has also been used in a model

study of active inclusions in biological membranes [38].

The membranes were formed by lipids, modelled as short

polymer strings and immersed into the solvent with the

multi-particle collision dynamics. Two groups of machine

beads in both its domains were made hydrophobic, so that

they preferred to stay inside the membrane (figure 11).

Lipid flows accompanying cyclic contractions of this

machine, corresponding to an active protein inclusion in a

biomembrane, have been determined and analysed [38].

By using the designed machine, a model molecular motor

could be constructed [35] by using the ratchet mechanism

shown in figure 4.

The interactions with the filament were then resolved.

Three beads in one motor domain were immobilized, thus

fixing the position of this domain (figure 12a). The second

domain performed swinging motions, repeated in each

cycle. They could be traced by monitoring positions of the

end bead (figure 12b). Approximately, the bead moved

along a straight line after binding of a substrate. The filament

was positioned close to this line and it could only slide (with

viscous friction) along its direction. Force centres were placed

at regular intervals along it.

The end bead had short-ranged attractive potential inter-

actions with the force centres. Hence, in one part of the cycle

the mobile domain moved to the right while grasping the

filament, whereas it moved back in the second part of the

cycle without it. Thermal fluctuations for the beads and

the filament were further included and an external force

(i.e. the load) could be introduced.

Remarkably, already this simple model allowed the analy-

sis of the stepping behaviour in the weak and strong coupling

regimes, yielding statistics [35] similar to that in real protein

motors (see also [34]). The stall effect could also be reproduced.
8. Operation cycles of molecular motor hepatitis
C virus helicase

As a result of natural biological evolution, protein motors employ

various strategies to transform internal mechanochemical
motions into the directional transport. They are well adapted to

different functions they should execute. Motors that have to

transport cargo through the cell, such as the cytoskeletal

motors kinesin and dynein or the myosin V motor, are equipped

with two legs whose coordinated movements allow them to

walk along the tracks without modifying them [39,40]. Other

motors may have the task to change the structure of a track

while translocating along it.

Helicases move along one strand of DNA and, while

doing this, should separate the opposite strand from the

DNA duplex. To implement this function, they have a struc-

ture different from that of the transport motors. The helicases

from the largest superfamily have two motor domains that

bind and hydrolyse ATP in each operation cycle, and also

other domains important for manipulating the DNA [41].

The helicase of HCV is the best-studied one, because of its

important role in viral replication that makes it a major target

for inhibition by drugs [42]. Single-molecule experiments with

this molecular motor led to a conjecture that the inchworm

ratchet translocation mechanism, described in §4, should

underlie its operation [43,44]. This hypothesis could not how-

ever be checked, because mechanochemical motions were not

directly experimentally accessed.

To provide a structurally resolved description of HCV heli-

case operation, we have first investigated [29] the dynamics of

its ligand-free elastic network. Using this coarse-grained

description, the funnel conformational relaxation pattern



(a) (b)

(c)(d)

Figure 13. The inchworm translocation cycle of HCV helicase. Following ATP
binding, the left motor domain (orange) moves towards the right motor
domain (blue), so that the protein conformation is changed from (a) the
open to (b) the closed one. In the closed conformation, hydrolysis occurs
and its products are released (c), inducing the return (d ) to the initial
open conformation. Within the cycle, interactions between the motor
domains and the DNA strand (green) are switched. When ATP binds, a
link (red) between the right domain and the strand is established, so that
this domain holds the DNA. After the hydrolysis, the reconnection occurs
(c) and now the left domain grasps the DNA. As a result, the motor translo-
cates itself by one DNA base in the right direction after each cycle. Adapted
from [29]. See also the electronic supplementary material, video S6. (Online
version in colour.)

(a)

(b)

(c)

Figure 14. The operation of HCV helicase. Forced by translocation of the two
motor domains along the upper strand, the third domain (grey) is drawn as a
wedge between the two DNA strands and thus mechanically separates them.
Three consequent snapshots (a,b,c) from a structurally resolved coarse-grained
simulation [29] are displayed. See also the electronic supplementary material,
video S7. (Online version in colour.)
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(cf. §6) characteristic for machine proteins, ensuring robust

motions of the domains, was observed. In HCV helicase, they

represent opening and closing of two stiff motor domains con-

nected through a hinge (figure 13). Remarkably, the motions

were robust, but so soft that even a small perturbation localized

in the region of the ATP binding pocket could produce them.

It is known that ATP binds in the open conformation to a

pocket on the left domain, whereas ATP hydrolysis and pro-

duct release take place in the closed conformation, when ATP

comes into contact with an atomic catalytic group on the sur-

face of the right domain. To take this into account, an ATP

molecule was introduced into the model as a single bead able

to bind to the pocket by forming elastic links with several

beads around it. Upon binding, the links were stretched and

tended to contract the pocket, inducing the closure of the

motor domains. It was assumed that, in the closed state, the

hydrolysis occurred and the products left the pocket. This

was modelled by removing the additional ligand particle

together with its links. After that the motor domains moved

back to the open conformation, finishing the cycle.

Further on, it was noticed that the slow opening and clos-

ing motions along the DNA were also accompanied in the

elastic network model by faster and smaller conformational

changes in the DNA binding clefts of the motor domains.

Consequently, the clefts could narrow or widen depending

on the ligand state.

The DNA strand was modelled as a polymer chain with the

beads corresponding to single DNA bases. It was assumed

that, in a narrow cleft, a stiff link between a certain experimen-

tally known residue and a DNA bead was formed, so that

this motor domain could hold the DNA. When the cleft

widened, this link disappeared releasing the DNA. As shown
in figure 13, the opening and closing motions of the motor

domains were coordinated with alternating grasping and

releasing of the DNA strand in such a way that inchworm

translocation could take place.

The function of HCV helicase is to separate the two DNA

strands, unzipping them. To reproduce this effect, a second

polymer DNA strand was included into the model. The two

strands were held together by bridge interactions between the

bases in each of them. Such interactions were softening and dis-

appeared when the distance between the strands was increased.

As shown in figure 14, the translocating motor domains pushed

the third passive domain into the space between the two

strands. This domain thus acted as a mechanical wedge and

progressively unzipped the duplex DNA.

Several operation cycles could be followed within a compu-

ter simulation [29]. The obtained results have provided a direct

demonstration of the helicase operation in terms of confor-

mational motions within the motor. They have confirmed the

previously proposed inchworm operation mechanism [44].

Subsequent experimental work has allowed elucidation of

this mechanism at a greater detail [45,46].
9. Allosteric regulation effects in proteins
Control mechanisms are required to regulate timing and speed

of catalytic chemical reactions within a cell. Remarkably, such
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Figure 15. Deformation spreading through a designed elastic network with
asymmetric cooperativity. Four consequent snapshots are displayed. Upon
ligand binding, elastic links around the pocket in the left domain become
strained (a). Later on, the deformation propagates into the interface between
the two domains (b,c). Eventually, the links around the pocket in the right
domain get strained (c,d ). Thus, contraction of the ligand pocket in the left
domain leads to opening of the pocket in the right domain, i.e. to an allo-
steric effect. Bond thickness visualizes the strain magnitude of the respective
elastic link. The colour indicates whether a link is stretched (blue) or com-
pressed (red). Contracting forces were applied to two beads (green) in the
ligand pocket. The allosteric effect was quantified by measuring the distance
between two beads (green) in the response pocket. Adapted from [33]. See
also the electronic supplementary material, video S8. (Online version in
colour.)
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regulation can already take place at the level of a single

enzyme. By binding a molecule (different from the substrate)

to a specific site away from the active centre, the catalytic turn-

over rate of an enzyme can be modified, inhibiting or

enhancing its activity. This mechanism, involving communi-

cation between different sites in a protein molecule, is known

as allosteric regulation [47,48].

Allostery is important for protein machines [49]. In myosin

V, for example, binding of ATP to a pocket in its head domain

results in opening of the cleft where the actin filament is held.

This allows the head to detach itself from the actin filament

and make a step. Similar allosteric mechanisms control the

operation of other cytoskeletal motors as well.

According to an intuitive interpretation of allosteric regu-

lation, binding of a ligand should cause a local deformation

around the binding centre where interactions with the ligand

generate stress. This deformation propagates through the

protein and, as a result, its conformation at a distant site

becomes changed. Thus, functional site-to-site communication

within a protein is established.

In NMR experiments, it is indeed possible [50,51] to

detect communication pathways in allosteric proteins. Such

pathways are formed by subsets of physically interacting

residues and they link remote functional sites.

Mechanical aspects of allostery are often studied using the

coarse-grained elastic network models of proteins [52,53]. In

the framework of the normal-mode analysis, they can be

understood as a linear response of a protein to ligand binding,

modification, or release [54–57]. The effects of intramolecular

communication in myosin V were moreover investigated by

using the complete nonlinear elastic network model of this

protein [58].

Functional intramolecular communication, underlying

allosteric effects in proteins, should have emerged from the

natural biological evolution of such proteins. To demonstrate

this, model elastic networks with similar internal communi-

cation properties have been designed by running a computer

evolution [33]. This was done similar to how the model mol-

ecular machine, described in §7, was designed—but with a

different choice of the evolutionary pressure.

The optimization goal was that binding of a ligand to a

pocket at one site in the network (modelled by the appli-

cation of contracting forces to two beads within it) should

have produced opening (or closing) of another pocket located

in the remote part of the network. After each structural

mutation, equations of motion for the network were numeri-

cally integrated until the final stationary state was reached.

A mutation was accepted if it led to an improved allosteric

response. During the evolution, the networks gradually chan-

ged their architecture, so that the desired function became

implemented at the end.

Networks with either symmetric or asymmetric coopera-

tivity could be designed. If the cooperativity is symmetric,

closing of the ligand pocket leads to closing of the response

pocket too. The cooperativity is asymmetric if closing of the

ligand pocket results in the opening response.

In a designed network, the allosteric communication results

from propagation of elastic strain from the ligand binding

pocket to the response site (figure 15). Here, remarkable obser-

vations can be made: out of all network links, only a minority of

them gets significantly deformed and, moreover, the highly

strained links form a pathway connecting the two pockets.

The strain flow seems to be channelled into this pathway.
In figure 16, communication pathways in designed

networks with symmetric and asymmetric cooperativity are

shown. They are constructed by retaining only those links

in a network whose maximum absolute deformation during

the strain propagation exceeds some threshold. It can be

seen that the pathways possess linear chains of nodes

connecting the pockets in the two domains.

The identified pathway chains have been furthermore

demonstrated to be crucial for allosteric effects. If a mutation

was applied to one of the nodes along the chain, it could



(a)

(b)

Figure 16. Communication pathways in designed networks with (a) sym-
metric and (b) asymmetric cooperativity. The network in (b) is the same
as in figure 15. Here, only the links whose maximum absolute deformation
during strain propagation has exceeded a threshold are retained. The
same colour coding as in figure 15. Adapted from [33]. (Online version in
colour.)
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often disrupt the allosteric response, whereas the mutations

in other nodes had only minor effects.

To verify the relevance of these evolutionary design

results for real allosteric proteins, the same dynamical simu-

lations and data analysis were repeated [33] for an elastic

network of myosin V, exploring the communication between

the ATP binding pocket and the actin binding cleft. The strain

propagation induced by ATP binding could be observed, and

it was also seen that the actin cleft became open when the

deformation wave had reached it. Furthermore, the com-

munication pathway was also determined. Remarkably,

regions with accumulated strain agreed well with the

known structural motifs of conserved residues that are essen-

tial for the mechanochemistry of the myosin V motor.

Hence, by running in silico evolution, elastic networks with

the same allosteric properties as those of actual protein

machines can be readily obtained. This suggests that a similar

natural evolution process has led to the emergence and per-

fection of allosteric regulation in real proteins too. Currently,

there is a considerable interest in designing artificial structures

inspired by allosteric proteins—and even two-dimensional

elastic grids with allosteric properties have been thus

designed [59–61].
10. Discussion
The investigations based on elastic networks reveal that

chemistry and mechanics are effectively separated in motor

and machine proteins. The ‘chemistry’, i.e. the sequence of

amino acids in a protein, determines into what native confor-

mation it would fold and what would be an elastic network
of that protein. Then, conformational dynamics in the folded

state would be controlled by mechanical deformations and

forces in this network.

From a general perspective of the theory of complex sys-

tems, low sensitivity of dynamics to chemical details can be

beneficial for protein machines. If functional conformational

motions in such proteins were strongly dependent on fine

details, the motions could not have been robust enough to

ensure reliable operation of a nano-device.

This can be especially important for virus machines, such

as HCV helicase. Because viruses do not employ the proof-

reading and error correction machinery of the cell (e.g.

[62]), every next copy of their molecular motors is typically

different, without destroying in most cases the functional

operation of a machine.

Studies of evolving catalytic networks as models of a

living cell [63] suggest that robustness against perturbations

(i.e. mutations) is intrinsically linked to the robustness with

respect to environmental fluctuations. Hence, although in a

different context, it is plausible that, in addition to providing

robustness against mutations, separation of mechanical

motions from chemical details in proteins also reduces their

sensitivity to thermal fluctuations and to internal noise.

Not only functional conformational motions, but also

allosteric regulation, can be already reproduced using mech-

anical models of elastic networks. It is remarkable that even

the simplest models where differences between residues are

neglected and all elastic springs are equally stiff yield reason-

able predictions and are broadly employed [57,64]. By

allowing residue-specific interactions and a dependence of

spring constants on the natural length, the agreement with

the experimental data can be nonetheless improved [21].

Computer simulations of protein dynamics based on

simple elastic networks are faster than all-atom MD simu-

lations by orders of magnitude.3 This dramatic difference

makes it possible to statistically explore special properties

of conformational relaxation in motor and machine proteins.

Structure-based coarse-grained simulations using elastic

networks confirm the presence of slow ordered collective

motions in such proteins. These motions are attractive, i.e.

starting from different initial conditions, relaxation trajec-

tories converge to them. Since the reduction of dynamics to

a low-dimensional attractive manifold is a characteristic prop-

erty of self-organization in complex systems [8], it can be

concluded that self-organization at the level of a single

macromolecule takes place.

The reduction to low-dimensional models with one or a few

collective mechanical coordinates represents further essential

simplification for protein machines. Often, but not necessarily

always, collective coordinates characterize relative positions of

protein domains. Biological nano-machines become then

indeed similar to macroscopic mechanical devices with

ordered and coordinated movements of their parts [1].

In this review, the attention was focused on simple, but

still structurally resolved dynamical descriptions. It should

be however stressed that, additionally, there are efficient

models of molecular motors without the structural resol-

ution. These models, out of the scope of our short review,

employ phenomenological descriptions with one or several

mechanical coordinates combined with stochastic transitions

between discrete Markov states (e.g. [65–69]). We have

also not reviewed important reduced models based on the

low-energy Brownian ratchet mechanisms [70,71].
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A limitation of simple elastic network models, considered

in our review, is that they cannot provide for partial unfolding

and refolding, i.e. for ‘cracks’ in a protein [22,72]. The topology

of a network is determined by distances between residues in a

chosen reference state and it is not permitted to change. Hence,

plastic deformations, accompanied by breakup of existing elas-

tic links and/or creation of new links, do not take place.

Systematic incorporation of plastic deformations into such

models is an important problem for further research.

It cannot be accidental that elastic networks already allow

one to reproduce principal features of conformational

dynamics in protein machines. However, these models

remain so far phenomenological and their relationship to

the underlying all-atom dynamical descriptions still has to

be elucidated. On the other hand, further analytical and

numerical investigations are also needed to get better general

understanding of nonlinear dynamics in elastic networks.
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Endnotes
1However, ATP synthesis becomes possible if sufficiently strong
forces are applied and this is indeed taking place, for example, in
F1-ATPase.
2Similar ratchet mechanisms are however possible in rotary
molecular motors.
3Often, elastic network simulations for proteins can be already
performed using desktop PCs.
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