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Introduction
Autoimmune diseases are groups of  complex immune system disorders with high prevalence rates world-
wide (4.5%) (1). High heritabilities have been previously observed on various autoimmune diseases (~60%–
90%) (2). In addition, GWAS have unraveled hundreds of  susceptible loci associated with autoimmune 
diseases (3), suggesting many functional genes involved in some key immunological pathways (e.g., MHC 
gene clusters in antigen presentation, TYK2 in cytokine signals) (4). However, the true functional variants 
and target genes for most GWAS variants remain largely unknown (4), and their discovery may be limited 
by 2 challenges. First, the detected variants may be in linkage disequilibrium (LD) with causal functional 
SNPs without genotyping. Second, more than 90% of  GWAS variants are located in the uncultivated non-
coding regions, complicating their functional interpretation.

Recent studies have integrated functional epigenetic data to predict noncoding SNP function. Many of  
these methods, such as CADD (5), DeepSEA (6), GWAVA (7), FATHMM-MKL (8), ReMM (9), and FIRE 
(10), adopted machine-learning algorithms to develop classifiers through integrating various annotations 
and labeled training data to distinguish potential functional and nonfunctional SNPs. However, the prior 
labeled training data may be both inaccurate and impractical owing to the current knowledge limitation 
in functional roles underlying noncoding SNPs. Other methods, such as RegulomeDB (11), 3DSNP (12), 
GWAS4D (13), IW-Scoring (14), Eigen (15), and FunSeq2 (16), either directly combined various epigenetic 
regulatory features to rank SNP functionality or adopted a weighted scoring scheme by considering the 
relative importance of  each feature to assign SNP functionality scores. However, these approaches incor-
porated epigenetic or transcriptional annotation across all cells or tissues, omitting the cell- or context-spe-
cific regulation, aiming to prioritize potential functional variants rather than to dissect the downstream 

More than 90% of autoimmune-associated variants are located in noncoding regions, leading 
to challenges in deciphering the underlying causal roles of functional variants and genes and 
biological mechanisms. Therefore, to reduce the gap between traditional genetic findings and 
mechanistic understanding of disease etiologies and clinical drug development, it is important 
to translate systematically the regulatory mechanisms underlying noncoding variants. Here, 
we prioritized functional noncoding SNPs with regulatory gene targets associated with 19 
autoimmune diseases by incorporating hundreds of immune cell–specific multiomics data. The 
prioritized SNPs are associated with transcription factor (TF) binding, histone modification, or 
chromatin accessibility, indicating their allele-specific regulatory roles. Their target genes are 
significantly enriched in immunologically related pathways and other known immunologically 
related functions. We found that 90.1% of target genes are regulated by distal SNPs involving 
several TFs (e.g., the DNA-binding protein CCCTC-binding factor [CTCF]), suggesting the 
importance of long-range chromatin interaction in autoimmune diseases. Moreover, we predicted 
potential drug targets for autoimmune diseases, including 2 genes (NFKB1 and SH2B3) with known 
drug indications on other diseases, highlighting their potential drug repurposing opportunities. 
Taken together, these findings may provide useful information for future experimental follow-up 
and drug applications on autoimmune diseases.
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regulatory circuits linking functional variants to disease etiology. Autoimmune disease–associated variants 
are significantly enriched in blood cell-specific enhancers (17), implying that the integration of  cell-specific 
functional data are required for dissecting molecular regulatory mechanisms underlying noncoding vari-
ants associated with autoimmune diseases.

The incorporation of  cell-specific multiomics data has accelerated the decryption of  functional mecha-
nisms underlying noncoding GWAS variants (18, 19). Recently, we identified a functional SNP, associated 
with 2 autoimmune diseases, that exerted allele-specific enhancer regulation on IRF5 expression through 
long-rang loop formation (20). Nevertheless, these studies primarily focused on one GWAS susceptibility 
loci on one disease, and only a limited number of  functional causal variants predisposing to autoimmune 
diseases have been validated (20). The autoimmune diseases share substantial common susceptibility vari-
ants and immunopathology (21). Therefore, deciphering the functions of  GWAS noncoding variants sys-
tematically is essential for accelerating GWAS findings into useful biological and clinical insight into the 
causes of  autoimmune diseases.

To address these issues, we devised an integrative analysis frame to prioritize potential functional non-
coding SNPs on 19 autoimmune diseases and further predicted their local and distal regulatory target genes 
using epigenetic, transcriptional, and 3D chromatin interaction data across hundreds of  blood immune cell 
types (Supplemental Tables 2, 3, and 6; supplemental material available online with this article; https://
doi.org/10.1172/jci.insight.136477DS1). Our analysis contains an integrative functional SNP prioritiza-
tion method combing cell-specific epigenetic scoring and allele-specific regulatory analysis. We next evalu-
ated the performance of  our method by comparing it with other representative methods. We then explored 
the immunologically related function as well as potential clinical drug applications for predicted target 
genes. In addition, we analyzed the roles of  long-range chromatin interactions on autoimmune SNPs as 
well as potential key regulatory transcription factors (TFs). Finally, we developed an open web resource 
(http://fnGWAS.online/) and a local analytical pipeline (https://github.com/xjtugenetics/fnGWAS).

Results
Integrative analysis prioritized potential noncoding functional autoimmune SNPs with causal target genes. We col-
lected 18,857 autoimmune noncoding tag SNPs predisposed to 19 distinct autoimmune diseases (report-
ed P < 5×10–8) from multiple resources (3, 22, 23) (Supplemental Table 1). LD analysis retained 51,594 
noncoding tags and LD-expanded (r2 > 0.8 in European ancestry) SNPs in 333 genome-wide significant 
loci (autoimmune-positive SNPs). We next collected 26,922,878 background SNPs in all 333 loci, and 
collected 47,131,427 negative SNPs beyond these loci (Supplemental Figure 1, further details in Meth-
ods). To explore potential key epigenetic regulatory features for autoimmune diseases, we collected 606 
epigenetic annotation data across 47 blood immune cell types from Roadmap (24) and ENCODE Project 
(25) (Supplemental Table 2). Previous studies suggested that the autoimmune causal SNPs are signifi-
cantly enriched in blood cell–specific enhancer marks (17). However, we found that compared with back-
ground SNPs, the autoimmune positive SNPs are significantly enriched higher for 347 active epigenetic 
features (Bonferroni’s adjustment after the χ2 test, FC > 1, P < 0.05/606) across 40 blood immune cell 
types within 4 epigenetic categories, including 9 DNase I hypersensitive sites (DHSs), 75 active histone 
modifications (H3K4me1, H3K4me2, H3K4me3, H3k27ac, and H3K9ac), 167 active genomic segmen-
tations (HMM-15, marked as active transcription or enhancer), and 96 TF-binding sites (TFBSs) (Sup-
plemental Figure 2 and Supplemental Table 1).

To evaluate the functionality of  all positive autoimmune SNPs, we applied a 2-step integrative anal-
ysis strategy (Figure 1A). First, we developed a new and improved epigenetic functional scoring system, 
based on our previous epigenetic enrichment method (26, 27), using fold enrichment of  all 347 significant 
epigenetic features across 4 epigenetic categories as scoring weight (flowchart shown in Supplemental Fig-
ure 1, further details in Methods). We could therefore obtain 4 independent functional scores across 4 
different epigenetic categories on each SNP. By comparing the scoring rank of  each positive SNP among 
all negative SNPs, we prioritized 15,314 SNPs associated with 19 autoimmune diseases with functionality 
support on at least 1 epigenetic category (Figure 1B and Supplemental Table 4). Second, we incorporated 
allele-specific motif  prediction and multiple molecular-level quantitative trait loci (QTL) resources from 
multiple blood immune cell types to prioritize SNPs with potential allele-specific regulatory activities (Fig-
ure 1C and Supplemental Table 3), including TF binding QTL (bQTL) (28), histone modification QTL 
(hQTL) (29), DNase-I hypersensitivity QTL (dsQTL) (30), and chromatin accessibility QTL (caQTL) (31).  
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We found that most (63.5%) autoimmune SNPs with functionality support by the epigenetic functional 
scoring also had potential allele-specific regulatory activities, including 9080 SNPs with predicted allele-spe-
cific TF binding, 434 bQTL SNPs with allele-preferable binding on 5 TFs (JunD, NF-κB, PU.1, Pou2f1, 
and Stat1) in lymphoblastoid cell lines (LCLs), 542 hQTL SNPs associated with chromatin modification 
on either H3K4me1 (n = 163), H3K4me3 (n = 176), or H3K27ac (n = 322) in LCLs, as well as 1028 caQTL 
or dsQTL SNPs associated with chromatin accessibility in either naive or stimulus-specific macrophages (n 
= 541), CD4+ T cells (n = 79), or LCLs (n = 585) (Supplemental Table 5). Further analysis revealed signif-
icant enrichment for multiple allele-specific regulatory activities on those SNPs with functionality support 
by the epigenetic functional scoring (Supplemental Figure 3), including allele-specific binding motif  (Fish-
er’s exact test, FC = 1.02, P = 0.005, Supplemental Figure 3A) and multiple molecular QTL association 
(bQTL, dsQTL, caQTL, and hQTL) (Fisher’s exact test, FC = 1.56 to ~3.37, P < 0.05; Supplemental 
Figure 3, B–E). Taken together, through integrating epigenetic functional scoring and allele-specific regu-
latory analysis, we prioritized 9719 potential noncoding functional autoimmune SNPs with allele-specific 
regulatory activities (Figure 1D and Supplemental Table 4).

To explore potential regulatory target genes for these prioritized functional SNPs, we first integrated 
cis-QTL association and 3D chromatin interaction analysis using multiple regulatory data for more than 
30 blood cell types (Supplemental Table 6). We predicted potential target genes either directly regulated by 

Figure 1. Prioritizing potential functional autoimmune noncoding SNPs. (A) Flowchart showing integrative analysis method for prioritizing potential 
functional autoimmune SNPs with allele-specific regulatory activities. See brief description for epigenetic scoring process in Supplemental Figure 1. See 
Methods for more detailed information. (B) Ranking plot for scores of all autoimmune negative SNPs within 4 epigenetic categories. Red dashed line 
represents top 5% ranked value. (C) Schematic showing several potential allelic molecular-level regulatory mechanisms underlying functional autoimmune 
SNPs. Multiple intermediate molecular quantitative trait loci (QTL) data in blood immune cell types were collected, including bQTL (transcription factor 
binding quantitative trait loci) (28), hQTL (histone modification quantitative trait loci), caQTL (chromatin accessibility quantitative trait loci) (31, 89, 90), 
and dsQTL (DNase-I hypersensitivity quantitative trait loci) (30, 87). See more description for each QTL data in Supplemental Table 3. (D) Venn diagram 
showing overlapping of autoimmune SNPs with predicted allele-specific regulatory activity and autoimmune SNPs with at least one functionality support 
by the epigenetic functional scoring. The overlapped SNPs were prioritized to be potential functional.
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prioritized SNPs within target gene promoter (1 kb surrounding transcription starting sites [TSSs]) or regu-
lated by distal functional SNPs through 3D chromatin interactions. To further validate the potential caus-
al genetic regulatory effect for predicted genes, we employed 2 colocalization methods (32, 33) to assess 
whether the detected GWAS signal and cis-QTL association shared the same causal variant (posterior prob-
ability PP4 > 0.8) using all collected cell-specific cis-QTL and autoimmune GWAS data sets (Supplemental 
Tables 1 and 6). This multiomics analysis strategy has been shown to be useful for identifying functional 
causal genes at GWAS risk loci by our previous studies (20, 34). We predicted 354 potential target genes 
regulated by 2794 prioritized functional SNPs, which are supported by both cis-QTL, chromatin interac-
tion, and colocalization analysis (Supplemental Tables 7 and 8).

Integrative method improves prioritizing functional autoimmune SNPs compared with other methods. To further 
assess the performance of  our integrative method combing epigenetic functional scoring and allele-specif-
ic analysis, we compared the functional support on multiple immune cell–associated regulatory evidence 
between SNPs prioritized by our method and 5 other functional scoring methods, including 3DSNP (12), 
FIRE (10), GWAS4D (13), IW-Scoring (14), and RegulomeDB (11). To ensure fair comparison, we extract-
ed top-ranked SNPs under different functionality support by our method (Supplemental Table 4) with cor-
responding equal or approximately equal counts of  top-ranked SNPs from other methods, which resulted 
in comparison with 2 methods under all functionality support and 3 methods under selected functionality 
support (Table 1, see Supplemental Methods for details).

We first compared experimentally validated regulatory SNPs in mononuclear cells (35) and detected 
substantially more experimentally validated SNPs by our method compared with all 5 methods (Figure 
2A). Consistent results were found in 2 nonimmune cell types (K562, HepG2) (36), in which our method 
had substantially more experimentally validated regulatory SNPs compared with 3 other methods (FIRE, 
GWAS4D, and IW-Scoring) (Supplemental Figure 4). In comparison with 3DSNP or RegulomeDB, we 
identified comparable experimentally validated SNPs in 2 nonimmune cell types with substantially more 
experimentally validated ones in the mononuclear cell, implying the potential outperformance of  our meth-
od in prioritizing immune cell–specific regulatory SNPs. We next compared potential regulatory SNPs under 
multiple immune-related functional evidence (potential regulatory SNPs with predicted target genes, SNPs 
with significant molecular QTL association, causal SNPs identified by PICS approach [17], and enhancer 
RNA [eRNA] SNPs from FANTOM5 [37]). We found that our prioritized SNPs were enriched significantly 
higher for all functional evidence compared with FIRE (Fisher’s exact test, FC > 1, P < 0.05, Figure 2, B–E). 
We also detected much higher percentage of  PICS causal SNPs (17) (Figure 2D) and significantly higher 
enrichment for all other functional evidence on our prioritized SNPs compared with either GWAS4D or 
RegulomeDB (Fisher’s exact test, FC > 1, P < 0.05, Figure 2, B, C, and E). In comparison with 3DSNP, we 
detected comparable percentage of  regulatory SNPs with predicted target genes (Figure 2B) and significantly 
higher enrichment for all other functional evidence on our prioritized SNPs (Fisher’s exact test, FC > 1, P 
< 0.05, Figure 2, C–E). We also detected significantly higher enrichment for either regulatory SNPs with 
predicted target genes or molecular QTL SNPs (Fisher’s exact test, FC > 1, P < 0.05, Figure 2, B and C) and 
much higher percentage of  eRNA SNPs (37) (Figure 2E) on our prioritized SNPs compared with IW-Scor-
ing. Collectively, these analyses supported the outperformance in prioritizing functional autoimmune SNPs 
by our integrative analysis method over the other mentioned comparable methods.

Table 1. Description for functional comparing between our method and other methods

Compared SNP scoring 
methods (5)

Minimum functionality evidence (our method)
≥1 ≥2 ≥3 ≥4

3DSNP √ √ √ √
FIRE √ √ √ √
GWAS4D √
IW_Scoring √
RegulomeDB √

Prioritized functional SNPs under different minimum epigenetic functionality evidence by our method (≥4, ≥3, ≥2, ≥1, Supplemental Table 4) were 
extracted for functional comparison with equivalent or approximately equivalent top-ranked SNPs by other compared methods. Compared groups were 
indicated by tick. Figure 2 shows corresponding functional comparing results. 
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Allele-specific epigenetic regulatory effect mediated by risk alleles of  functional autoimmune SNPs. The incor-
poration of  multiple cell-specific multiomics data in our analysis may help decipher the allelic molecular 
mechanisms underlying prioritized noncoding functional SNPs. Figure 3, A–D, shows several SNPs in 
which the risk allele could exert allele-specific effect on target gene expression potentially through altering 
histone modification (H3K4me3, Figure 3A) or chromatin accessibility (Figure 3B) to affect the binding 
affinity of  specific TFs, or directly modifying long-range chromatin looping potentially mediated by the 
DNA-binding protein CCCTC-binding factor (CTCF) (38) (Figure 3, C and D) to affect the proximity of  
distal regulatory enhancers. Supplemental Table 9 shows more regulatory circuits linking autoimmune 
SNP risk allele, allele-specific epigenetic regulatory effect (allele-specific TF binding or epigenetic modifica-
tion or chromatin state), and regulatory effect on target gene expression.

Target genes are significantly enriched in immunologically related functions. To evaluate the immunological-
ly related functions on 354 predicted target genes, we collected multiple immune-relevant functional data 
sets (Supplemental Table 10), including genes involved in immune-relevant pathways, genes in which KO 
in mouse could cause abnormal immune system phenotypes collected from the International Mouse Phe-
notyping Consortium (IMPC), as well as genes associated with immunology-related Mendelian disorders 
collected from the Online Mendelian Inheritance in Man (OMIM). Any genes annotated by the preceding 3 
resources may indicate potential highly supported immune-relevant function. We identified 174 such genes 
(Figure 4A and Supplemental Table 11), including 164 genes participating in multiple immunologically 
related pathways, 26 genes in which KO in mouse could display abnormal immune system phenotypes from 
IMPC, as well as 23 genes associated with Mendelian disorders with immunology-related clinical symptoms 
from OMIM. We further analyzed other suggestive immune-relevant functions on predicted target genes 
(Supplemental Table 10), including genes with tissue-specific expression on blood, as determined by the Tis-
sue Specific Expression Analysis (TSEA) approach (pSI < 0.01) (39), genes expressed in any blood immune 

Figure 2. Comparing the integrative functional SNP prioritization method with other methods. (A) Comparison of experimentally validated functional 
SNPs between our method and 5 other methods from a high-throughput screen assay in mononuclear cells (35). (B–E) Comparison of percentage of anno-
tated SNPs with different regulatory evidence between our method and 5 other methods, including (B) potential regulatory SNPs with predicted target 
genes by combining cis-QTL, chromatin interaction, and colocalization analysis (see Methods for detailed information), (C) potential functional SNPs with 
significant molecular QTL association on multiple blood immune cell types (Supplemental Table 3), (D) causal autoimmune- associated SNPs identified 
by PICS approach, and (E) SNPs annotated with enhancer RNA (eRNA). Fisher’s exact test was performed in C–E with the asterisk representing significant 
higher enrichment on our method (FC > 1). *P < 0.05, **P < 0.005. NS, not significant; PICS, Probabilistic Identification of Causal SNPs.
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cell types collected from either Roadmap (24) or DICE project (40) (RPKM > 1), expert curated or text min-
ing predicted immune system disease–associated genes from DisGeNET databases (41), as well as potential 
causal GWAS effecter genes as determined by the summary data–based Mendelian randomization (SMR) 
analysis (42). We found that nearly all (351 of  354) target genes had suggestive immune-relevant function 
(Figure 4A and Supplemental Tables 11 and 12), including 345 genes expressed on blood immune cell types, 
38 genes with tissue-specific expression on blood as determined by TSEA approach (pSI < 0.01) (39), 181 
genes associated with immune system diseases collected from the DisGeNET database (41), as well as 193 
genes with causal relationship with autoimmune diseases as implemented by SMR analysis (FDR < 0.05, 
PHEIDI > 0.05) (42). Collectively, these data indicate potential immunological function for most gene targets, 
which may suggest new mechanistic insight into autoimmune disease etiologies.

To further verify the immunological roles for predicted target genes, we performed functional enrich-
ment analysis using clusterProfiler (43). We found that the predicted target genes are significantly enriched 
in multiple immunologically related pathways. Figure 4B shows the top 10 most significantly enriched 
pathways (from Reactome, Gene Ontology [GO], Kyoto Encyclopedia of  Genes and Genomes [KEGG], 

Figure 3. Allele-specific epigenetic effect mediated by risk alleles of prioritized SNPs. (A) Risk allele of rs4482069 is associated with higher histone mod-
ification (H3K4me3) in lymphoblastoid cell lines (LCLs), which may facilitate allele-specific binding of KLF1 and activate the enhancer activity to increase 
SLC15A4 expression. (B) Risk allele of rs3784789 is associated with lower chromatin accessibility in LCLs, which may hamper binding of several TFs (SPIC, 
ETV6, and ELF1) and restrain the enhancer activity to decrease CSK expression. (C and D) Motif prediction revealed that CTCF had allele-specific binding to 
the nonrisk allele of rs2234059 (C) and risk allele of rs2799079 (D), respectively. The higher or lower CTCF binding may result in weaker (C) or stronger (D) long-
range loop formation between SNP and target gene promoter, and further decrease (C) or increase (D) target gene expression, respectively. Detailed results for 
A–D appear in Supplemental Table 5 and Supplemental Table 7. More allele-specific regulatory examples are summarized in Supplemental Table 9.
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and Disease Ontology (DO); FDR < 0.05). These significantly enriched pathways include 8 overlapping 
autoimmune diseases that we analyzed, and show substantial genes in these disease pathways are regulated 
by prioritized functional SNPs associated with the same autoimmune disease (Supplemental Figure 5), fur-
ther supporting the crucial immunological roles of  our predicted target genes. We also detected significant 
enrichment for other immunologically related genes from different functional data sets (IMPC, OMIM, 
and DisGeNET) and SMR causal genes as well as expressed genes on blood cell types on predicted target 
genes (Fisher’s exact test, FC: 1.7 to ~11.0, P: 2.53 × 10–6 to ~8.36 × 10–145, Figure 4C). We further com-
pared tissue-specific expression on 25 distinct cell types from TSEA (39), and only detected significantly 
higher enrichment for blood tissue (Fisher’s exact test, FC = 1.4, P = 0.014, Figure 4D) on predicted target 
genes, which also showed the largest number of  tissue-specific expressed genes (Figure 4D). Altogether, 
these analyses revealed extensive enrichment of  immunologically related functions for target genes, sup-
porting the credibility of  our target gene prediction.

Prevailing long-range regulation linking functional autoimmune SNPs to distal target genes. The SNP-gene reg-
ulatory pairs could be divided either local genes (SNPs located within the target gene promoter) or distal 
genes (SNPs located outside the target gene promoter) (Figure 5A and Supplemental Table 7). Similarly, all 
regulatory target genes could be divided into local genes exclusively regulated by functional SNPs within 
the target gene promoter or distal genes that could be regulated by distal functional SNPs beyond the target 
gene promoter. We found that the definition of  different-sized promoter region (from 1–10 kb surrounding 
TSS of  target gene) had a negligible effect on both target gene prediction and proportion of  distal and/
or local target genes (Supplemental Figure 6). Therefore, we selected a stringent promoter definition (1 kb 
surrounding TSS) (44) for the following analysis. We detected a larger amount of  distal genes (n = 319) 
compared with local genes (n = 35), including 148 distal genes exclusively regulated by distal functional 
SNPs (Figure 5A and Supplemental Table 7). These exclusive distal genes included many known immu-
nologic genes, such as CD37 (45), CD28 (46), IL7 (47), IL12RB1 (48), or IL2RA (49). Previous functional 
assays have demonstrated that some distal immune-relevant genes could be regulated by distal enhancers in 
immune cell types, such as IL2RA (50), CD58 (51), IRF1 (52), or IRF5 (20), indicating the important roles 
of  long-range regulation on autoimmune diseases. We further analyzed all 4,778 SNP-gene regulatory pairs 
and detected predominantly distal pairs (87.48%) compared with local genes (Figure 5B and Supplemental 
Table 7). The prevailing long-range regulation may indicate that, for many functional noncoding autoim-
mune SNPs, their located or directly mapped genes might not be the direct regulatory target genes. Notably, 
the distal SNPs residing within local genes are more likely to regulate the distal target genes compared with 
their directly located genes (64.52% vs. 17.11%, Figure 5B). We also analyzed the distance between all dis-
tal regulatory pairs, and found that vast amount of  distal SNP-gene regulatory pairs (65.23%) are located 
more than 50 kb away (mean distance: 104.07 kb, Figure 5C). Together, these analyses underscored the 
important roles of  chromatin looping on autoimmune diseases.

Many target genes are exclusively regulated by distal functional SNPs. We further analyzed target genes 
exclusively regulated by distal functional SNPs, which may suggest some new important functional genes 
missed by traditional GWAS risk gene mapping strategy (located or nearest known disease relevant genes). 
We identified 128 such genes (Supplemental Table 7), including some known immunologically relevant 
genes and many other genes with unknown immunological roles. Figure 5D shows an immunological-
ly relevant gene (HYAL3), in which multidimensional evidence (cis-QTLs, 3D chromatin interactions, 
and colocalization, Supplemental Tables 6 and 8 and Supplemental Figure 7) supported that multiple 
upstream functional SNPs could regulate distal HYAL3 expression through long-range chromatin interac-
tions. HYAL3 encodes an enzyme for hyaluronan degradation, an immune regulator with roles in inflam-
matory response (53). Functional analysis revealed that HYAL3 is involved in multiple immunologically 
relevant pathways (e.g., response to cytokine, response to IL-1, Supplemental Table 11), thus providing 
plausible mechanistic insight linking GWAS risk SNPs at the HYAL3 locus to autoimmune pathogenies. 
Supplemental Figure 8 shows additional well-known examples of  immunologically relevant genes (IL6ST, 
CD5) exclusively regulated by distal functional SNPs. IL6ST encodes a receptor of  IL-6, and its loss of  
mutation causes immunodeficiency and abnormal inflammatory responses (54). CD5 is a well-known neg-
ative regulator of  TCR and BCR signaling, with critical roles in protecting against autoimmunity (55). 
Figure 5E shows another example gene (CNTRL) currently with unknown immunological roles, which is 
exclusively regulated by multiple upstream functional SNPs through long-range chromatin interactions. 
Functional analysis revealed that CNTRL was expressed on 20 blood cell types and associated with several 
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immune system diseases according to DisGeNET database (Supplemental Table 11), indicating its poten-
tial roles in autoimmune etiology. Supplemental Figures 9–12 show additional example genes with indic-
ative immunologically functional clues (FAM213B, GBAP1, ICMT, and ICAM5) and exclusively regulated 
by distal functional SNPs. Together, these analyses suggest many new potential immunologically relevant 

Figure 4. Immunological function analysis for predicted target genes. (A) Summary of multiple immunologically related functions for predicted target 
genes. (B) Top 10 most significant enriched biological pathways analyzed by clusterProfiler (43) on predicted target genes. Both P value (line chart) 
and gene counts (bar chart) are shown. (C) Functional enrichment for different immunologically related gene sets between predicted target genes and 
whole-genome genes. Multiple data resources were collected for gene functional analysis, including genes in which KO in mouse could cause abnormal 
immune system phenotypes collected from IMPC, genes associated with immunology-related Mendelian disorders collected from OMIM, potential causal 
GWAS effecter genes by SMR analysis (42), expert curated or text mining predicted immune system disease–associated genes from DisGeNET databas-
es, and genes expressed (RPKM > 1) in blood immune cell types. Further description for each data resource is summarized in Supplemental Table 10. See 
Methods for detailed information. Enrichment analysis was performed using Fisher’s exact test. (D) Tissue Specific Expression Analysis (TSEA) for predict-
ed target genes on 25 diverse tissues, with dot size representing gene counts and dot color indicating significance level (P value) using Fisher’s exact test. 
Only 1 significant (P < 0.05) tissue (blood) was detected.
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genes without directly located functional SNPs, which may provide new mechanistic insight linking distal 
functional SNPs at GWAS risk loci to autoimmune pathogenies via long-range chromatin interactions.

Distal autoimmune genetic regulatory network may be mediated by several key TFs. To identify potential 
functional TFs mediating genetic regulation for autoimmune diseases, we compared allele-specific 
motifs occupying between 2794 functional SNPs with predicted target genes (Supplemental Table 7) 
and all autoimmune SNPs. We predicted 368 allele-specific motif  TFs on functional SNPs, among 
which 28 TFs are significantly enriched higher for functional SNPs (Bonferroni’s adjustment after 
Fisher’s exact test, P < 0.05/368, FC > 1, Figure 6A and Supplemental Table 13). To explore potential 

Figure 5. Prevailing long-range regulation linking functional SNPs to distal gene targets. (A) Schematic showing different regulatory models 
underlying prioritized functional autoimmune SNPs and gene targets. Local gene was defined as those exclusively regulated by functional SNPs 
within target gene promoter region (1 kb surrounding TSS). (B) Pie chart showing comparison between local and distal regulatory pairs (left), as well 
as between 3 types of distal regulatory pairs (right) in A. Local pair was defined as gene regulated by prioritized functional SNPs within target gene 
promoter region (1 kb surrounding TSS). (C) Counts of SNP-gene pairs at different distance (kb). (D and E) Two examples showing multiple functional 
autoimmune SNPs regulating distal target gene with (D) or without (E) known immunological function via long-range chromatin interactions. Func-
tional evidence supporting SNP-gene regulatory relationship, including both chromatin interactions, cis-QTL association, and colocalization between 
GWAS association and cis-eQTL association (selected colocalization results are shown in Supplemental Figure 7). Genomic annotation and chromatin 
interaction were visualized using WashU Epigenome Browser. More example genes are shown Supplemental Figures 8–12.
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regulatory targets on prioritized TFs, we considered 3 possible TF-gene regulatory models (Figure 
6B), including (a) a local model, TFs directly bind to target gene promoter (1 kb surrounding TSS) 
to mediate gene expression; (b) a distal model, TFs bind to distal enhancers to regulate target gene 
expression via long-range chromatin interactions; and (c) an indirect model, the TFs regulate target 
gene expression through mediating other regulatory TFs in a trans manner. We found that most of  
predicted target genes (81.36%, 288 of  354) could be regulated by these 28 TFs (Figure 6, B and C; and 
Supplemental Table 13), with predominant distal model (n = 230) compared with either local model (n 
= 125) or indirect model (n = 132). Moreover, except for 3 Sp-family TFs (SP1, SP2, and SP4), CTCF 
had the most regulatory target genes (total = 112: local = 17; distal = 50; indirect = 70, Figure 6D and 
Supplemental Table 13), consistent with its known role in facilitating long-range chromatin looping 
(38). Further analysis revealed that all 28 TFs had more distal regulatory target genes compared with 
local genes (Figure 6D), and that 26 involved potential immunological roles according to multiple 
collected functional data sets (Supplemental Table 10) or previous literature reports (Figure 6E and 
Supplemental Table 13), implying their broad roles in distal genetic regulation on autoimmune diseas-
es. We further analyzed the sharing of  gene targets between different TFs, and detected 19 TFs sharing 
all target genes of  28 enriched TFs (Supplemental Figure 13). Most of  these TFs (13 of  19) had known 
immunological roles according to previous studies (Figure 6E and Supplemental Table 13), including 
10 master TFs (RREB1, RARA, HIC1, RARG, EGR3, ETS1, SP1, PAX5, MZF1, and CTCF) (56) in 
blood cell types, indicating their potential central regulatory roles for autoimmune diseases. Together, 
these analyses suggested several possible key regulatory TFs mediating distal genetic regulatory net-
works on autoimmune diseases.

Figure 6. Identifying key TFs mediating autoimmune genetic regulatory network. (A) Scatter plot showing fold enrichment (FC) and significance enrich-
ment level in 368 predicted motif TFs between prioritized functional SNPs and all autoimmune SNPs using Fisher’s exact test. Significantly higher enriched 
TFs (FC > 1, P < 0.05/368) are marked in blue. See detailed motif enrichment analysis results in Supplemental Table 13. (B) Schematic showing 3 TF-target 
gene regulatory models. The gray arrow indicates SNP-target gene interaction. (C) Venn diagram showing counts of 3 types of target genes on significant 
TFs in B. (D) Comparison between distal and local target genes on significant TFs. Count of all target genes are shown with TFs sorted by their count. (E) 
Annotated immunological functions on significant TFs (see detailed TF function information in Supplemental Table 13). The immunological functional 
resources are briefly described in Figure 4. Further detailed description is summarized in Supplemental Table 10. See Methods for detailed information.
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Analyzing potential clinical applications on target genes. To explore potential clinical implications on predicted 
target genes, we first investigated all approved or experimental drug targets with known indications from mul-
tiple resources (57–62) (Supplemental Tables 14 and 15). We identified 74 genes targeted by drugs with known 
clinical indications on either autoimmune diseases (n = 37) or other immunologically related diseases (e.g., 
allergies, infections, or inflammations, n = 40) or other diseases (n = 55) (Figure 7, A and B, and Supplemental 
Table 14), implying the extensive therapeutic implications on predicted target genes. The identified drug target 
genes showed pervasive shared drug indications, with 62.5% of genes targeted for other immunologically 
related diseases and 41.8% of genes targeted for other diseases also shared targeted indications for auto-
immune diseases (Figure 7B and Supplemental Table 14), indicating potential pleiotropic therapeutic effect 
among drug targets. Except for known drug target genes, we also identified 182 potential druggable genes, 
including 115 without known drug target indications (Supplemental Table 15 and Figure 7A). In comparison 
with all genome genes, our predicted target genes are significantly more enriched in both known drug target 
genes (Fisher’s exact test, FC = 4.1, P = 4.19 × 10–25) and predicted druggable genes (Fisher’s exact test, FC 
= 3.5, P = 8.03 × 10–58) (Figure 7C), further supporting the potential important clinical implications on them.

Consistent with the observed pleiotropic indications among drug target genes (Figure 7B), we found 
extensive disease association sharing for both autoimmune drug target genes and other drug target or 
druggable genes (Supplemental Figure 14, A and B), which may suggest new potential opportunities for 
drug repurposing on autoimmune diseases from other nonautoimmune drug target or druggable genes.  

Figure 7. Drug implications analysis on predicted target genes. (A) Pie chart showing percentage of predicted target genes for either known drug target genes or 
predicted druggable genes or others. (B) Venn diagram showing sharing of drug target genes with indications on either autoimmune diseases, other immunolog-
ically related diseases or other diseases. See Supplemental Table 14 for detailed indication information and classification of these 3 disease types. (C) Functional 
enrichment analysis for either known drug target or predicted druggable genes on our predicted target genes compared with all genome genes using Fisher’s 
exact test. (D) PPI between autoimmune-drug target genes (marked in red) and other drug target or druggable genes. PPI plot was queried online from STRING 
database (score > 0.9). (E) Functional enrichment analysis showing percentage of genes with strong PPI (score > 0.9) with autoimmune-drug target genes on 
either predicted druggable genes or known drug target genes. The comparison was performed between predicted target genes (green) and all druggable or drug 
target genes (orange), as well as between all druggable genes or drug targets and all genome genes (blue) using Fisher’s exact test.
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To explore the functional relevance between known autoimmune-drug genes and other genes, we first ana-
lyzed their shared biological pathways. We found that most (32 of  37) autoimmune-drug genes shared 
the same immunologically related pathways with 68.7% (125 of  182) of  drug target or druggable genes 
(Supplemental Figure 14C), implying their intimately functional connectivity. We further performed pro-
tein-protein interaction (PPI) analysis, and detected strong PPI (interaction score > 0.9) between 56.8% 
(21 of  37) of  autoimmune-drug genes and 29 other known drug target or druggable genes (Figure 7D), 
indicating the pervasive regulatory relevance between known autoimmune-drug target and other genes. 
This was further supported by enrichment analysis, in which 37 autoimmune-drug genes showed signifi-
cantly higher PPI with either predicted druggable genes (FC = 2.0, P = 4.01 × 10–72) or known drug target 
genes (FC = 3.1, P = 4.46 × 10–112) compared with whole-genome genes (Fisher’s exact test, Figure 7E). 
Moreover, when restricted PPI targets of  autoimmune-drug genes to our predicted gene targets, we found 
significantly higher PPI on our predicted target genes compared with either all predicted druggable genes 
(FC = 2.5, P = 7.81×10–13) or all known drug target genes (FC = 2.8, P = 2.93 × 10–12) (Fisher’s exact test, 
Figure 7E). Based on these preceding analyses, it is reasonable to assume that incorporating both GWAS 
genetic regulation and protein-protein interaction network could help prioritize new potential drug target 
genes for autoimmune diseases. We prioritized 23 new candidate drug target genes for 7 autoimmune dis-
eases (Figure 8, Supplemental Figure 15, and Supplemental Table 16), which showed both strong PPI with 

Figure 8. Predicted new targets with potential drug repurposing opportunities for autoimmune diseases. (A–C) Predicted new candidate drug targets on 
3 autoimmune diseases. The orange rectangle shows predicted new drug genes. Genes with known indications on other autoimmune or nonautoimmune 
diseases are shown in black or blue. Genes without known drug target indications are shown in red. Supplemental Figure 15 shows predicted new candi-
date drug targets on 4 other autoimmune diseases. See Supplemental Table 16 for detailed drug indication information.
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known drug target genes and genetic regulation associated with the same autoimmune disease. Among 23 
prioritized genes, we found 14 genes with known drug indications on other autoimmune diseases as well as 
2 genes (NFKB1, SH2B3) with indications on other diseases (Figure 8, Supplemental Figure 15, and Sup-
plemental Table 16). The remaining 7 genes had no indications while with druggable evidence, including 3 
genes (DAG1, IL27, STX4) predicted targeted for ulcerative colitis, 3 genes (IL27, IFNLR1, PPP5C) predicted 
targeted for ankylosing spondylitis, as well as 4 genes (IFNLR1, IL27, STAT2, IL18R1) predicted targeted 
for psoriasis (Figure 8 and Supplemental Table 16). Together, our analysis not only prioritized some new 
promising drug targets for future drug exploration, but also suggested some known drug targets (NFKB1, 
SH2B3) that could be exploited for future drug repurposing on autoimmune diseases.

Open web application and local pipeline. To facilitate quick searches for interested SNP(s) or gene(s) pri-
oritized by our integrative analysis, we developed an open website (http://fngwas.online/) and collected 
comprehensive resources, including functional scores with predicted allele-specific regulatory activities 
on all noncoding autoimmune SNPs, regulatory target genes on prioritized functional SNPs, immuno-
logically related functions for predicted target genes, and clinical drug applications for target genes. We 
also provided precomputed functional analysis results across whole-genome SNPs/genes for bulk down-
loading (http://fngwas.online/download.php), which included functional scores and predicted allelic 
regulatory mechanisms underlying all autosomal noncoding SNPs as well as multiple disease-relevant 
function and drug target analysis for all genome genes. To further expand the potential application of  our 
analytical frame on other complex diseases and traits, we also developed packaged local pipeline named 
fnGWAS (dissecting the functionality of  noncoding GWAS SNPs, workflow shown in Supplemental Fig-
ure 16), which could be run on any local Linux server with user-definable annotation data and parame-
ters (https://github.com/xjtugenetics/fnGWAS). In our study, GWAS SNPs in European ancestry were 
selected and fnGWAS have provided built-in 1000 genome v3 genotype data in European samples (63). 
However, GWAS SNPs from the population of  other ancestries (such as African) are also supported if  the 
corresponding reference genotype data are prepared.

Discussion
Most autoimmune susceptibility SNPs are located in the noncoding region. However, it remains challeng-
ing to pinpoint the causal SNPs and functional genes to decipher the underlying biological mechanisms. 
In this study, we systematically explored the molecular mechanisms underlying noncoding susceptibility 
SNPs associated with 19 autoimmune diseases, through combining functional SNPs scoring, allelic regu-
latory activity analysis, target gene prediction, gene function annotation, as well as drug application explo-
ration. We found predominant long-range chromatin interaction linking functional SNPs to distal target 
genes, which may be mediated by several key TFs, including CTCF. Notably, we detected broad immu-
nological functions and clinical drug applications on predicted target genes. In addition, we developed an 
open website and an analytical pipeline. Taken together, our study highlighted the intensive regulatory roles 
of  noncoding SNPs associated with autoimmune diseases.

We have previously integrated epigenetic features for known disease-associated SNPs to predict 
novel susceptibility SNPs for complex diseases (26, 27, 64, 65). In this study, we developed a new 
and improved epigenetic functional scoring method together with allele-specific regulatory activ-
ity analysis to prioritize functional autoimmune SNPs through incorporating immune cell–specific 
active epigenetic information. Other comparable scoring methods have also been developed, such as 
3DSNP (12), FIRE (10), GWAS4D (13), IW-Scoring (14), and RegulomeDB (11). Compared with 
these approaches, one distinct feature of  our method was the integration of  immune cell–specific epi-
genetic information (Supplemental Table 17), which may provide better evaluation for disease-specific 
functional autoimmune SNPs. Another feature of  our analysis frame is the comprehensive functional 
evaluation on multiple regulatory levels spanning SNP functional scoring, analysis of  allele-specific 
regulatory mechanisms underlying SNPs, gene target prediction, gene function analysis, as well as 
gene clinical application analysis (Supplemental Table 17). The integration of  cell-specific epigenetic 
annotation has proven to be highly successful for prioritizing functional GWAS SNPs and validated 
by many recent experimental assays (20, 66). Our analysis revealed that the top-ranked autoimmune 
SNPs prioritized by our method are enriched significantly higher in multiple blood immune cell–asso-
ciated regulatory elements compared with other methods, implying the outperformance of  our method 
in prioritizing noncoding functional autoimmune SNPs.
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Recent studies have shown that considerable noncoding GWAS SNPs could regulate target genes 
through long-range loop formation (67–69), providing unprecedented new mechanical insight under-
lying GWAS disease association. Consistently, our analysis revealed prevailing long-range regulation 
linking functional autoimmune SNPs to distal target genes, suggesting the important roles of  chromatin 
interactions for autoimmune diseases. Our analysis also suggested that many functional SNPs within 
local genes could regulate distal target gene expression, including vast amounts of  functional SNPs with-
in local gene promoter. One underlying mechanism hypothesis was that the gene promoter could also act 
as an enhancer, to regulate distal gene expression (70), which was consistent with our recent findings that 
one functional autoimmune risk SNP within TNPO3 promoter could independently regulate distal IRF5 
expression via long-range loop formation (20). We also identified several potential key regulatory TFs 
with significant enrichment in functional autoimmune SNPs, including CTCF. CTCF is well known for 
its regulatory roles for mediating enhancer-promoter interaction in chromatin loop formation (38), and 
played essential roles in late B cell differentiation (71). A previous study found that those downregulated 
genes after Ctcf  knockdown in mouse T cell line are significantly enriched for immune-relevant pathways 
(72), further supporting the roles of  CTCF in long-range regulation for autoimmune disease. In line with 
the prevailing long-range genetic regulation detected for autoimmune diseases, we also found predom-
inant distal regulatory genes compared with local genes for all enriched TFs, indicating their potential 
roles in mediating distal genetic regulatory network for autoimmune diseases. Future functional assays 
are needed to decipher their precise regulatory mechanisms.

The past fruitful GWAS findings have remarkably accelerated the translation of  new drug clin-
ical utilities (73). The drug targets with human genetic evidence of  disease association are twice as 
likely to lead to approved drugs (74). Consistently, we found that our predicted autoimmune target 
genes are significantly more enriched in both known drug target genes and druggable genes compared 
with whole-genome genes, supporting the potential important clinical implications on disease effecter 
genes. A previous GWAS study has incorporated PPI with 98 annotated RA risk genes to predict new 
drug targets, and highlighted CDK6 and CDK4 as promising candidates (75). The incorporation of  
functional genomic and immune-related annotations as well as PPI has been demonstrated successful-
ly in prioritizing potential drug target on immune-related traits (76).Our study consistently integrated 
both genetic association and PPI, and prioritized 23 new candidate drug target genes on 7 autoimmune 
diseases, including many genes (16 of  23) with known indications on autoimmune diseases or other 
diseases. The drug repurposing strategies have shed light on many new promising therapeutic opportu-
nities for autoimmune diseases, such as the dopaminergic drug for multiple sclerosis (77) or Fibrate for 
treating for primary biliary cirrhosis (78). Our results may provide important clues for future clinical 
drug repurposing on autoimmune diseases. For example, we predicted IL2RA to be a potential new 
drug target for ankylosing spondylitis. IL2RA is targeted by several known drugs (e.g., HuMax-TAC), 
with indications on autoimmune diabetes, and has known roles in the pathogenesis of  autoimmunity 
(4). Moreover, we found that IL2RA was regulated by several functional SNPs associated with ankylos-
ing spondylitis. Collectively, these data suggest the potential drug repurposing opportunity of  IL2RA 
on ankylosing spondylitis.

Methods

Autoimmune SNPs collection
We collected SNPs associated with 19 autoimmune diseases (alopecia areata, ankylosing spondylitis, 
autoimmune thyroid disease, celiac disease, Crohn’s disease, IgE and allergic sensitization, inflamma-
tory bowel disease, juvenile idiopathic arthritis, multiple sclerosis, narcolepsy, primary biliary cirrhosis, 
primary sclerosing cholangitis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, system-
ic scleroderma, type 1 diabetes, ulcerative colitis, and vitiligo) from multiple resources, including the 
GWAS Catalog (3), the ImmunoBase (https://www.immunobase.org/), and other public studies (22, 
23). All databases were visited in March 2019 and summarized in Supplemental Table 1. For SNPs 
achieved genome-wide significance reported in European ancestry (P < 5×10–8), any coding or splicing 
SNPs annotated by ANNOVAR (79) using GENCODE v19 reference data were removed. We further 
excluded SNPs within the major histocompatibility complex locus (MHC) owing to the complex LD 
patterns. The filtered SNPs were selected as autoimmune tag SNPs.
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LD analysis, positive, background, and negative SNP definitions
LD analysis for autoimmune tag SNPs was conducted using PLINK v1.90 (80) in European samples from 1000 
genome v3 genotype data (63), with maximum distance for r2 calculation set as 1 M. Genome-wide significant 
loci were defined as merged unique regions surrounding 1 M of any filtered noncoding tag SNPs with overlap-
ping MHC region truncated. We extracted noncoding tags and LD expanded (r2 > 0.8) SNPs within genome-
wide significant loci as positive SNPs and all noncoding SNPs in these loci as background SNPs. We collected 
41,377 susceptible SNPs with ID record in the 1000 genome v3 genotype data (63) from the GWAS Catalog 
(visited in March 2019). All other noncoding SNPs beyond genome-wide significant loci and beyond the MHC 
region with low LD (r2 < 0.1) with the GWAS catalog-susceptible SNPs were selected as negative SNPs.

Integrating epigenetic functional scoring and allele-specific regulatory activity analysis 
for prioritizing potential functional autoimmune SNPs
Epigenetic features selection. We collected 606 epigenetic data (called peak region) on 47 blood cell types from 
Roadmap (24) and ENCODE Project (25) (Supplemental Table 2). Four different epigenetic categories of  
data were incorporated for SNP annotation, including 15 chromatin states (HMM-15), histone modifica-
tion, DHSs and TFBSs. One epigenetic feature represents one epigenetic annotation in one cell type (e.g., 
H3K4me1 in GM12878). SNPs were labeled as annotated or unannotated on each epigenetic feature by 
analyzing their overlapping with selected feature using bedtools v2.25.0 (81). We performed enrichment 
analysis for each epigenetic feature by comparing counts of  annotated positive SNPs and background SNPs 
using Χ2 test. All epigenetic features with significantly higher enrichment for positive SNPs compared with 
background SNPs (Fold enrichment > 1, Bonferroni’s adjusted P < 0.05) were selected for the following 
epigenetic scoring. The fold enrichment (FC) is defined as follows: FC = annotated positive SNPs × total 
background SNPs/annotated background SNPs × total positive SNPs.

Epigenetic functional scoring. Based on our previous epigenetic enrichment approach (26, 27), we devel-
oped a new cell-specific epigenetic weighted scoring method to evaluate the functionality for all noncoding 
autoimmune positive SNPs (flowchart shown in Supplemental Figure 1). For each epigenetic category 
(HMM-15, histone modification, DHS, and TFBS), we adopted an accumulative quantitative score system 
using fold enrichment of  selected significant features within each category as weight, separately, which is 
defined as follows:

 (Equation 1)
where j denotes particular feature (1 ≤ j ≤ n) among each epigenetic category (assuming n total fea-

tures), B indicates whether the tested positive SNP was annotated (B = 1) or unannotated (B = 0) on feature 
j. Therefore, we can obtain 4 independent functional scores across 4 different epigenetic categories for each 
tested SNP. For each epigenetic category, we further scored for all negative SNPs to build null distribution, 
and derived the epigenetic functional support on each positive SNP if  its functional score was higher than 
the top 5% ranked score value of  all negative SNPs.

Allele-specific motif  analysis. We analyzed the allele-specific TF-binding motifs on all autoimmune 
positive SNPs using FIMO from MEME Suite toolkit (v4.11.0) (82) with default parameters, and TF 
motifs from 5 public motif  databases, including JASPAR (2018 version) (83), HOCOMOCO (v11) 
(84), SwissRegulon (85), Transfac, and Jolma2013 (86). To identify potential functional motifs, we 
focused the motif  search on TF genes expressed in at least 1 of  the 20 blood immune cells from Road-
map (24) or DICE (40) (RPKM >1). The allele-specific binding motifs predicted by at least 2 different 
data sets were retained.

Molecular QTL association analysis. We collected different molecular QTL data in multiple blood cell 
types from 8 different studies (28–31, 87–90) (Supplemental Table 3), including bQTL on 5 immune-rele-
vant TFs (NF-κB, PU.1, Stat1, JunD, and Pou2f1) (28), hQTL (H3K4me1/H3K4me3/H3K27ac) (28, 29, 
87, 88), dsQTL (30, 87), and caQTL (31, 89, 90). For all QTL data sets, the tested SNP and molecular peak 
(TFBSs or ChIP-Seq peaks) pairs could be divided into either local (SNP located within molecular peak) 
or distal ones (SNP located beyond molecular peak). We retained significant association results between 
autoimmune positive SNPs and local molecular peaks passed multiple testing corrections (FDR < 0.1).

Functional SNP prioritization. Any autoimmune-positive SNP with both functionality support by at 
least 1 epigenetic category in the functional scoring and predicted allele-specific regulatory activity to 
be potential functional.
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Predicting target genes for prioritized functional SNPs
cis-QTL analysis. We examined the cis-QTL association between prioritized noncoding SNPs and all near-
by genes in 1 M region. We collected 12 cis-eQTL and 2 cis-pQTL data over 20 blood immune cell types 
from 13 different published studies (Supplemental Table 6). For pQTL data from the INTERVAL study 
(91), we extracted all cis-pQTL (1 M surrounding gene TSS) pairs and transformed the protein ID to gene 
symbol ID using the UniProt online tools. For any full QTL data set without multiple testing corrections, 
we adjusted the original P value using the FDR method. All significant QTL results with probe and/or gene 
level FDR <0.05 validated by at least 2 different data sets were retained.

3D chromatin interaction analysis. All SNP-gene pairs with cis-QTL associations were divided into either 
local (SNPs within target gene promoter, 1 kb surrounding TSS) or distal (SNPs beyond target gene pro-
moter) genes. We collected chromatin interaction assay (5C, in situ Hi-C, capture Hi-C, HiChIP, and ChIA-
PET) and predicted chromatin interaction data (IM-PET, PreSTIGE, PHM) on multiple blood immune 
cell types from 11 different studies (Supplemental Table 6). To validate the long-range regulation between 
distal SNP-gene pairs, the 3D chromatin interactions between prioritized SNP and gene transcript promot-
er region (GENCODE v19) were examined using bedtools v2.25.0 (81). The integration of  cis-QTLs and 
3D chromatin interactions may better identify causal regulatory effect at GWAS loci by diminishing the 
potential accidental overlapping with QTLs for GWAS SNPs. All distal SNP-gene pairs with chromatin 
interaction evidence from at least 2 different data sets were retained.

Colocalization analysis. To validate the potential causal genetic regulatory effect for filtered target genes, 
we employed 2 complementary methods (32, 33) to assess whether the detected GWAS signal and cis-QTL 
association shared the same causal variant. For the available 16 GWAS summary and 7 full QTL data sets 
(Supplemental Tables 1 and 6), we used the Coloc (32) method using the coloc R package for colocalization 
analysis. The Coloc method (32) adopted a Bayesian statistical test using summary-level data to estimate 
5 posterior probabilities: no association with either GWAS or QTL (PP0), association with GWAS while 
not with QTL (PP1), association with QTL while not with GWAS (PP2), association with GWAS and 
QTL while with 2 independent SNPs (PP3), association with both GWAS and QTL with one shared causal 
SNP (PP4). We defined the 100 kb region surrounding each GWAS index SNP (P < 5×10–8) and tested for 
colocalization with any overlapping QTL genes. For all curated GWAS and QTL data sets (including data 
sets with no full summary-level data available, Supplemental Tables 1 and 6), we used PICCOLO (33), 
another adapted Coloc method, for colocalization analysis. PICCOLO (33) estimates the colocalization of  
GWAS and QTL Probabilistic Identification of  Causal SNPs (PICS) (17) credible set using reported lead 
SNPs and P value. PICS is a fine-mapping algorithm used to estimate the probability of  each SNP being 
causal at a given locus (17). We performed PICCOLO analysis as described by Tachmazidou et al. (92). 
Briefly, we estimated the PICS credible set for each lead GWAS index SNP and each top QTL SNP using 
pics.download. Then, we performed colocalization analysis using pics.coloc.lite with a default parameter. 
For both Coloc and PICCOLO, any genes with both PP4 greater than 80% and significant QTL association 
with prioritized SNPs from at least 2 cis-QTL data sets were considered to support colocalization.

Local and distal target gene prediction. We defined target gene, exclusively regulated by functional SNPs 
within its promoter region (1 kb surrounding TSS), as a local gene, and any other gene that could be reg-
ulated by distal functional SNPs as a distal gene. We predicted local or distal target genes on prioritized 
SNPs using different strategies. For local ones, any genes with both cis-QTLs association and colocaliza-
tion evidence were prioritized to be potential target genes. For distal ones, any genes with cis-QTLs associ-
ation, 3D chromatin interaction, and colocalization were considered to be potential target genes.

Comparison with other functional scoring Methods
Curation of  top-ranked SNPs. We compared our SNP prioritization method with 5 other functional scoring meth-
ods, including 3DSNP (12), FIRE (10), GWAS4D (13), IW-Scoring (14), and RegulomeDB (11). Prioritized 
functional SNPs under different minimum epigenetic functionality evidence by our method (≥4, ≥3, ≥2, and 
≥1, Supplemental Table 4) were extracted for functional comparison with equivalent or approximately equiv-
alent top-ranked SNPs by other compared methods (see Supplemental Methods for a detailed description).

Functional enrichment comparison. For collected functional SNPs set from each methods, we firstly 
compared their experimentally validated SNPs count in 3 cell types (blood mononuclear cells, K562 
and HepG2) from 2 recent high-throughput screen reports (35, 36). We next compared their function-
ality enrichment on multiple regulatory data support using Fisher’s exact test, including (a) SNPs with 
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predicted local or distal target genes (see gene prediction method in detail), (b) SNPs annotated with 
molecular QTL (bQTL, hQTL, dsQTL and caQTL) on multiple blood immune cell types (Supplemen-
tal Table 3), (c) reported causal SNPs associated with 16 autoimmune diseases prioritized by the PICS 
approach (17), and (d) SNPs annotated with eRNA from FANTOM5 (37).

Exploring immunologically related functions for predicted target genes
Pathway analysis and functional genes curation. We performed biological pathway enrichment analysis 
(including GO, KEGG, DO and Reactome pathway) for all predicted gene targets using clusterProfiler 
R package with default parameter (43), except that setting use_internal_data = TURE for KEGG enrich-
ment analysis to enable online query from the latest KEGG data. Multiple testing was corrected by the 
FDR method with significance level at FDR < 0.05. To identify potential immunologically related genes, 
we manually curated immunologically related biological pathways from all annotated terms on predict-
ed target genes. We also collected immunologically related genes from other public data sets, including 
the IMPC portal (http://www.mousephenotype.org/, release-9.2), the OMIM)database (https://www.
omim.org/), and the DisGeNET database (http://www.disgenet.org/home/, v6.0, expert curated or text 
mining predicted genes) (41). All data sets were downloaded or queried online in May 2019.

Gene expression and tissue-specific expression analysis. We collected gene expression data on 5 blood immune 
cell types (CD4 memory, CD4 naive, Mobilized CD34, Peripheral blood mononuclear, and GM12878) 
from Roadmap (24) and 15 primary immune cells types from the DICE project (http://dice-database.
org/) (40). Gene expression was measured by RPKM (reads per kilobase per million mapped reads). In 
addition,we collected the gene lists with tissue-specific expression (as based on a specificity index threshold 
[pSI], pSI < 0.01) in 25 broad GTEx tissue types based on a previous report by Wells et al. (39).

SMR analysis. We analyzed the causal relationship between predicted target genes and autoimmune 
disease risk using 16 GWAS summary and 7 QTL summary data (Supplemental Tables 1 and 6) by the 
SMR approach (42). We ran SMR (v0.712) with default parameters. LD correlations between SNPs were 
estimated from 6743 unrelated European samples from the Atherosclerosis Risk in Communities (ARIC) 
data (dbGap accession phs000280.v3.p1.c1) (93) with one of  each pair of  individuals with a SNP-derived 
relatedness estimate of  > 0.025 suggested by GCTA (v1.91) (94) randomly removed. Gene-disease pairs 
that passed both the multi-SNP-based SMR test (FDR adjusted PSMR < 0.05) and the heterogeneity test by 
HEIDI (PHEIDI > 0.05) were considered to be potential causal.

Regulatory TF analysis
We performed enrichment analysis for all allele-specific binding motif  TFs on functional autoimmune 
SNPs by comparing annotated functional SNPs with all positive autoimmune SNPs using Fisher’s exact 
test. For each TF with significant higher enrichment on autoimmune SNPs (Bonferroni’s adjusted P < 0.05, 
FC > 1), we assigned the predicted regulatory targets of  its binding SNPs as its direct regulatory target 
genes. The TF-gene regulatory network was visualized by Cytoscape V3.4 (http://www.cytoscape.org/). 
Master TFs on 26 blood cell types are collected from a previous report (56).

Drug target and drug repurposing analysis
Curation of  drug target genes. Clinically approved or experimental drug target genes with known indi-
cations were obtained from 3 different databases, including the DrugBank database (https://www.
drugbank.ca/, v5.1.2) (57), the Therapeutic Target Database (TTD, 2018 updated) (58), and Open 
Targets database (59). All 3 drug databases were queried in March 2019. For the TTD data set, we 
translated the UniProt protein ID into corresponding gene symbol ID using UniProt online tools. All 
drug indications were manually classified into autoimmune diseases, immunologically related diseases 
(allergies, infections, inflammations, rejection, immune system diseases, and hematologic malignan-
cies), or other diseases.

Curation of  druggable genes. We collected potentially druggable genes from either the drug-gene interac-
tion database (DGIdb) (www.dgidb.org, v3.0.2) (60), Pharos (https://pharos.nih.gov/idg/targets) (61), or 
a previous report by Finan et al. (62). We queried DGIdb and Pharos in March 2019. DGIdb organized 
druggable genome under 2 classes, including more than 35 validated or predicted drug-gene interaction 
types from 20 disparate sources, and 39 gene categories associated with druggability. Pharos classified all 
targets into 4 groups by characterizing the degree to which they are not studied (labeled Tdark) or studied 
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(labeled Tbio, Tchem, or Tclin). The studied targets from Pharos were retained. Any gene targets with drug-
gability evidence from at least 2 resources were prioritized as potentially druggable.

Predicting new potential drug target genes. For all annotated drug target or druggable genes, we analyzed 
protein-protein interaction (PPI) between these genes and all other genes. PPI was queried online from the 
STRING database (https://string-db.org/) in June 2019, with only high-confident interacted pairs (interaction 
score > 0.9) retained. By leveraging both PPI and upstream autoimmune disease regulatory information, we 
can prioritize new potential drug target gene A or for a particular disease, drug target gene B, by filtering wheth-
er (a) A has strong PPI (interaction score > 0.9) with any drug target gene C, which had known indication on 
autoimmune disease B; (b) both A and C are regulated by upstream functional SNPs predisposing to autoim-
mune disease B; and (c) A is either a known drug target gene or predicted druggable gene. The predicted genes 
with known indication on other diseases might suggest new potential drug repurposing opportunities.

Data availability
All analysis results are available at http://fngwas.online. Analysis pipeline scripts are available at 
https://github.com/xjtugenetics/fnGWAS.

Statistics
The χ2 test was used to determine epigenetic features with significantly more enrichment in autoimmune pos-
itive SNPs compared with background SNPs with significance level at Bonferroni’s adjusted P < 0.05. Multi-
ple testing on cis-QTL data sets was corrected using FDR method by R with significance level at FDR < 0.05. 
Colocalization analysis was conducted using Coloc (32) and PICCOLO (33) with posterior probability PP4 
greater than 80% considered to support the colocalization between GWAS and cis-QTL association. Motif  
analysis was conducted using FIMO from MEME Suite toolkit (v4.11.0) (82) with default parameters (P < 
0.0001). Multiple testing on molecular QTL data sets was corrected using FDR method by R with significance 
level at FDR < 0.1. Functional enrichment for immune cell–associated regulatory data (motif  and molecular 
QTL) on prioritized functional SNPs, as well as all collected immune-relevant functional data sets (IMPC, 
OMIM, SMR, DisGeNET, TSEA, gene expression, and drug target) on predicted target genes was analyzed 
using Fisher’s exact test with significance level at P < 0.05. Gene pathway enrichment analysis was performed 
using clusterProfiler R package (43) with significance level at FDR < 0.05. To identify potential causal GWAS 
effector genes, we ran SMR (v0.712) (42) with default parameters, with genes passing both the multi-SNP–
based SMR test (FDR < 0.05) and heterogeneity test (PHEIDI > 0.05) considered potential causal. Functional 
enrichment for motif  TFs was compared between prioritized functional SNPs with predicted target genes 
and all autoimmune SNPs using Fisher’s exact test with significance level at Bonferroni’s adjusted P < 0.05. 
Functional enrichment for druggable or known drug target genes or genes with PPI was compared between 
predicted target genes, and all genome genes using Fisher’s exact test with significance level at P < 0.05.
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