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Milk fat’s particle size and distribution not only affect product quality, but also

have great impacts on food safety in the economy and society. Based on total

light scattering method, this paper has studied the inversion method of particle

size distribution under dependent mode condition by combining multi-

population genetic algorithm (MPGA) with Tikhonov smooth function. It has

minimized the influence from light-absorb medium to improve the inversion

accuracy. The approach introduces Tikhonov smooth function and apparent

optical parameters to build an objective fitness function and weaken the ill

condition of the particle size inversion equation. It also introduces multi-

population genetic algorithm to solve the premature convergence of

genetic algorithms. The results show that the relative error of the milk fat

simulation solution with a nominal diameter is -3.52%, whichmeets the national

standard of ±8% and better than the relative error of -5.01% of the standard

genetic algorithm. Thus, the improved MPGA can reconstruct particle size

distribution, with a good reliability and stability.
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Introduction

Particle size and distribution not only affect product performance and quality, but also

influence the economy and society in the aspects of environmental protection and human

health (Cai et al., 2010). In recent years, the demands for online monitoring of particulate

matter have increased, especially in environmental testing and food safety. More scholars

from global leading institutions focus on particle size inversion methods.

According to Wang Li’s finding, the method of using regularization to build objective

function and establish an improved mode searching model showed a good inversion

performance. She also proposed using generalized eikonal approximation to effectively

calculate the coefficient of light extinction for measuring the particle size (Wang, 2013;

Wang and Sun, 2013). Based on angular scattering method, Mroczka et al. measured

particle size distribution using regularization least squares algorithm with constraints.

Although they obtained a good inversion result, the team failed to reconstruct the bimodal
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distribution function (Mroczka and Szczuczyński, 2013).

Clementi et al. reversed polystyrene latex particles with

different shape, size distribution width and diameter range.

They used multi-angle dynamic light scattering and capered

Tikhonov and Bayesian methods to solve the ill non-linear

problem. The paper concluded that Bayesian method

produced better results than Tikhonov regularization (Igushi

and Yoshida, 2011). Compared with classical methods, intelligent

optimization algorithm showed better whole search ability in

measuring particle size distribution and can efficiently overcome

the effects from the noise. However, one algorithm cannot have

all the advantages of other algorithms. It can only manage to

reduce one or another disadvantage, improving the iteration

speed or calculation accuracy. The detection of particulate matter

across the world mainly focuses on inorganic molecules

distributed in the air, rather than organic ones dissolved in

the liquid media (He et al., 2018).

The following issues arise when particle matter in milk is

detected: during the detection of organic molecules in a liquid

medium, the medium may absorb light and affect the outcomes;

in the total light scattering method, the first kind of Fredholm

integral equation is a typical ill-posed problem; when calculating

particle size, the algorithm exhibits delayed convergence,

inaccurate inversion and poor noise resistance (Maguire et al.,

2018).

This research suggests an enhancedMPGA based on the total

light scattering approach to address these issues. It simplifies the

objective function using Tikhonov smooth function (Wang and

Sun, 2013) and reduces ill conditions of the inversion equation.

Based on the extinction spectra calculated by known specific

parameters, an inversion algorithm is built to generate a more

precise particle size distribution. Apparent optical parameters

(Fu and Sun, 2001; Yang et al., 2002; Fu and Sun, 2006; Ding

et al., 2020;Wrana et al., 2020) are introduced based on total light

scattering to solve the extinction coefficient and create an

objective function. This effectively overcomes the influence of

the light-absorbing medium. The study also achieves the particle

size inversion of milk fat in medium of liquid absorption,

addresses the typical ill-posed problem in the total light

scattering method, and provides a reliable method for

determining particle size of milk fat (Lienert et al., 2001;

Wang et al., 2021; Zhou et al., 2021; Cai et al., 2022).

Materials and methods

Experimental materials

The size of the milk fat particles in this study, which satisfied

the unimodal R-R distribution function, was 0.1 μm ~10 μm.

Ethanolamine, of which the refractive index was m � 1.454 +
1.59 × 10−5i and could be classified as liquid-absorbing medium,

was selected as the medium to dissolve milk fat particles.

Anhydrous milk fat was dissolved in the ethanolamine solvent

at a concentration of 6% to create milk fat simulated liquid. The

liquid was then thoroughly churned using a JJ-1 precision timed

mixer while being maintained at a constant 30 °C temperature.

The prepared simulated liquid was then measured with a

Malvern particle size analyzer. According to the analyzer, the

size of the measured particle system was 5.075 μm (Ding et al.,

2020).

Design of optical experimental system

Figure 1 shows the schematic diagram of the optical

experimental system. As can be seen from Figure 1, the whole

system included photoelectric sensor, light source, data receiving

unit and sample pool. Lasers of 0.3838, 0.4598, 0.5163,

0.6269 and 0.77 μm were selected as the light source (Ding

et al., 2020). To improve accuracy, the study used quartz cuvette

with low light consumption as the sample pool, the thickness of

which was 12.33 mm. The light intensity of each wavelength was

collected by the optical power detection device (optical power

meter) (Ding et al., 2020).

Measurement method

First, the ethanolamine medium was added into the sample

pool. The measuring area was irradiated with a laser at a preset

wavelength. Then, the scattered light intensity was collected by a

photoelectric sensor positioned at a 90° angle. The collected

signal was input to a computer for processing and was set as

the incident light intensity. Then the simulated liquid containing

FIGURE 1
Schematic diagram of particle optical experimental system.
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milk fat particles was added to the sample pool in place of the

original liquid. Using the same method above, the signal value

was recorded as the scattered light intensity. To avoid errors, the

ratio of the first result and the second result was processed and

calculated by the computer as the extinction value (Wang, 2013).

The excitation experiment was repeated for 20 times on the

simulated liquid of milk fat particles with lasers of different

wavelengths, and the average of the results was taken as the final

light intensity (Cai et al., 2010;Wang, 2013; Wang and Sun, 2013;

Ding et al., 2020).

Basic concept and improvement of total
light scattering method

The measurement of the particle size followed the Lambert-

Beer law.

The monochromatic parallel lights’ incident intensity was I0
and their wavelength was λ. When the lights were incident on the

particle system, they was scattered and absorbed, and the

transmitted intensity I would attenuate. The change can be

expressed as (Cai et al., 2010):

−dI � IτdL (1)
Where: τ was the turbidity of the particle medium and L was the

thickness of the medium to be measured. Assume that τ in the

particle system was independent of the optical path L. In other

words, the spatial distribution in the medium was disordered and

uniform. Eq. 1 can be integrated along L:

−∫I

I0

1
I
dI � ∫L

0
τdL (2)

The relationship between the incident light intensity and the

transmitted light intensity was changed into:

ln
I(λ)
I0(λ) � −τ(λ)L (3)

Where: I(λ)/I0(λ) was the extinction value with a wavelength of

λ, τ(λ) was the turbidity with a wavelength of λ.

When the to-be-measured particles satisfy the condition of

irrelevant single scattering and were all spherical particles with

the size of D. In the single scattering system, the ND single

particle’s extinction value was:

ln
I(λ)
I0(λ) � −π

4
LNDD

2Qext(λ, m,D) (4)

Where: Qext(λ, m,D) was the extinction coefficient, in which m

was the complex refractive index of the relative medium.Qext can

be deduced based on Mie scattering theory: (Cai et al., 2010)

Qext � 2
α2

∑∞
n�1(2n + 1)Re(an + bn) (5)

Where: α � πD/λ was the size parameter of zero-dimensional

particles; an and bn were the Mie coefficients related to Bessel and

Hankel functions.

an � ψ′
n(mα)ψn(α) −mψn(mα)ψ′

n(α)
ψ′
n(mα)ξn(α) −mψn(mα)ξ′n(α)

(6)

bn � mψ′
n(mα)ψn(α) − ψn(mα)ψ′

n(α)
mψ′

n(mα)ξn(α) − ψn(mα)ξ′n(α)
(7)

ψn(α) �
���
πα

2

√
Jn+1/2(α) (8)

ξn(α) �
���
πα

2

√
H2

n+1/2(α) (9)

In Eqs 8, 9, Jn+1/2 andHn+1/2 were the Bessel function of half-

integer order and the Hankel function of first kind, respectively.

m � mr +mii was the complex refractive index of the particles

relative to their surrounding medium. The sum of infinite series

was considered when we calculated the extinction coefficients

using Mie scattering theory. The sum upper limit Nstop was

usually derived by the empirical formula of Wiscombe (Wang,

2013; Wang and Sun, 2013):

Nstop �
⎧⎪⎨⎪⎩ α + 4α1/3 + 1, 0.02≤ α≤ 8

α + 4.05α1/3 + 2, 8≤ α≤ 4200
α + 4α1/3 + 2, 4200≤ α≤ 20000

(10)

The calculation formula of the extinction coefficient Qext in

Mie scattering theory was:

Qext � 2
α2

∑Nstop

n�1 (2n + 1)Re(an + bn) (11)

In measurement, the particle system was a dispersion with

multiple scattered matters rather than a monodisperse

system. Thus, when we had the wavelengths, the extinction

value of spherical particles was calculated with the following

equation:

ln
I(λ)
I0(λ) � −π

4
L∫Dmax

Dmin

Qext(λ, m,D)N(D)D2dD (12)

Where:Dmax andDmin were the maximum and minimum values

that meet the particle size distribution in the system; N(D) was
the number of particles in [D + dD]. Volume distribution was

used for calculation, because quantity distribution was relatively

complex:

ln
I(λ)
I0(λ) � −3

2
LND ∫Dmax

Dmin

Qext(λ, m,D)
D

f(D)dD (13)

Where: ND was the total number of to-be-measured particles;

f(D) was the volume frequency distribution function of the

particle system. This formula was the Fredholm integral equation

of the first kind. As it is difficult to calculate directly, the equation

can be further discretized, as shown in Eq. 14:
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ln
I(λ)
I0(λ) � −3

2
LND∑S

j�1cj

Qext(λ, m, D̃j)
D̃j

f(Dj) (14)

Where: S denoted the grading number of particle size in

[Dmin, Dmax]; cj was the numerical integration coefficient;

fj( ~Dj) � ∫j+1
j

f(D)d(D); and ~Dj represented the midpoint of
subinterval [Dj,Dj+1]. There were S types of particle size
distribution to be solved, and they were measured using
multiple wavelengths. As a result, the linear equation set was
obtained (Wang, 2013; Wang and Sun, 2013):

E � Af (15)

Where: E � [ln(I1/I10);/ln(IU/IU0)]; U was the wavelength;

and A � [Aij] indicated the U × S weight matrix, with all

the elements expressed as: Aij � −3CjLNDQext(λi, m, ~Dj)/
(2 ~DJ), i � 1,/, U, j � 1,/, S; f � [f1( ~D1),/, fS( ~DS)].

Inversion of particle size distribution by total light scattering

method used algorithms to inverse particle size, with given

extinction values of incident light wavelengths. Based on

whether the distribution function was preset in data

processing, the inversion can be divided into dependent

algorithm and independent algorithm. After optical

measurement of the simulated liquid of milk fat particle, the

extinction value was obtained. Then, total light scatteringmethod

was used to inverse particle size. (The experiment and simulation

results were obtained by dependent algorithm).

Dependent algorithm, also known as function restrictionmethod,

required presetting a distribution function during the calculation. Its

concept was simple. The measured extinction values of multiple

incident light wavelengths need to be substituted into the preset

distribution function to solve the characteristic parameters of the

function. This method was widely used for its simple steps. The

specific steps in this paper were as follows:

The distribution function of the to-be-measured particle

system was preset as follows:

f(D) � f(D,D1, D2) (16)

Where: D1 and D2 were the characteristic parameters of the

distribution function f(D).
In inversion, Eq. 16 was substituted into Eq. 14 by referring to

extinction values:

ln
I(λ)i
I0(λ)i � −3

2
LND∑S

j�1cj
Qext(λi, m, ~Dj)

~Dj

fj( ~Dj,D1, D2) (17)

Where: i indicated the measured wavelength λi. The objective

function was:

OBE �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ln(I/I0)i
ln(I/I0)k −

−3
2LND∑S

j�1cj
Qext(λi ,m, ~Dj)

~Dj
fj( ~Dj,D1 , D2)

−3
2LND∑S

j�1cj
Qext(λk ,m, ~Dj)

~Dj
fj( ~Dj,D1 , D2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

, i ≠ k (18)

Thus, the problem of inversing to-be-measured particle

size distribution transformed into solving parameters D1 and

D2 corresponding to the minimum objective function. By

substituting parameters D1 and D2 into Eq. 19, the

Sauter average particle size was obtained and compared

with the actual particle size (Wang, 2013; Wang and Sun,

2013).

D32 �
∫Dmax

Dmin
D3f(D)dD∫Dmax

Dmin
D2f(D)dD

(19)

Where: f(D) was the distribution function of the particle size;

D denoted the single particle size; Dmax and Dmin represented

the maximum and minimum particle sizes in the particle

system.

Based on the method of total light scattering, Tikhonov

regularization was introduced into the objective function. The

equation was:

min � ����E − Af
����2 + α

����f����2 (20)

Where: α denoted the regularization parameter which adjusted

the relative weight between the residual E − Af2 and the

regularized f2. The Tikhonov smooth objective function was:

φ(f) � min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑s

i�1
⎧⎨⎩ln( I

I0
)

λi

− ⎡⎢⎢⎣ − 3
2
LND∑N

j�1cj
Qext(λi , m, Dj)

Dj
f(Dj)⎤⎥⎥⎦⎫⎬⎭2

+α∑N

j�1[f(Dj)]2
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(21)

Where: when calculating the extinction value, the apparent

optical scattering principle was used, so light absorption

character of the liquid medium should be considered. The

regularization parameter was solved by the L curve method

(Yang, 2016; Zhou et al., 20212021), in which the maximum

curvature point was the most appropriate regularization

parameter. Let ρ � lgb − Axα
2 , θ � lgxα

2 , then the curvature

can be defined as (Yang, 2016; Wang et al., 2019; Zhou

et al., 20212021):

K(α) � ρ′θ″ − ρ″θ′

[(ρ′)2 + (θ′)2]3
2

(22)

Where: The α, which corresponded to the maximum value of

K(α), was the desired regularization parameter. Thus, the problem

of inversing particle size distribution was transformed to finding

the minimum value of the objective function.

After the objective function was constructed by

Tikhonov (Yang, 2016; Wang et al., 2019; Zhou et al.,

20212021) regularization, MPGA (Guo et al., 2020; Shi

et al., 2021; Yang et al., 2022) was introduced to find the

minimum value.
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Solving the objective function minimum
value with MPGA

1) Taking the unimodal R-R distribution function as an

example, the first step was to determine �D and K, the

characteristic parameter values of the R-R distribution

function. Then, n initial populations were randomly

generated. Each population contained m individuals. Each

individual, which was coded in binary to form a gene coding

of a chromosome, represented different set of D and K, which

were the characteristic parameter values of a R-R distribution

function.

2) The objective fitness function was determined. The function

in this paper was y � E − Af2 and y � E − Af2 + αf2.

3) The fitness of each individual in each community was

calculated using the substituted individuals, and the

findings were rated within each population from high to poor.

4) Excellent individuals were moved from each subpopulation to

adjacent subpopulations to replace low-fitness individuals.

5) Selection operation was carried out. To scale the fitness value

of individuals in each sub-population, Roulette Wheel

Selection was adopted. The chance of elimination would

increase as the fitness rating decreased. Then the

individual was assessed to see if it met the optimization

criteria. If it was qualified, the results would be decoded

and exported to obtain the optimal solution and the

iteration stopped; Otherwise, the next step would be taken.

6) The fitness function values were compared to determine the

regenerated individuals of the population. Excellent

individuals were picked and reproduced manually and

added to the elite population to be saved. It was also

necessary to determine whether they were repeated. If so,

the repeated one would be eliminated and the selection

operation would start.

7) Crossover and mutation were carried out based on the

randomly generated probabilities of each subpopulation.

This was to obtain next generation of populations and

individuals.

8) A new generation of populations were generated by crossover

and mutation, and returned to step (3).

9) Iteration ceased and the results were exported when the

algorithm reached the predetermined accuracy. Otherwise,

crossover andmutation would continue in step (5) to produce

new individuals and populations. The least preserver algebra

in the elite population was determined until the preset

iterative cutoff value was met.

Figure 2 shows the MPGA structure diagram. Each

population was an independent evolution of standard genetic

algorithm (SGA), in which single-point crossover and site

mutation were used for global search, and roulette for

selection (Bouvier et al., 2019).

Data analysis

Excel 2016 was used to process the experiment’s preliminary

statistical data. Data and graphics were analyzed and processed

with Matlab 2016a, including the calculation of apparent

extinction coefficient (Fu and Sun, 2001; Yang et al., 2002; Fu

and Sun, 2006; Ding et al., 2020; Wrana et al., 2020),

regularization parameter and Mie scattering coefficient.

Matlab 2016a was used to inverse different algorithms for

calculating particle size distribution. Sauter average particle

size D32 (Han et al., 2021; Romanov et al., 2021; Tolosana-

Moranchel et al., 2021) was applied to assess the accuracy of the

measured samples.

Results and analysis

Model establishment and analysis of the
simulation experiment

First, numerous simulation experiments were used to verify

the accuracy and reliability of the algorithm. The commonly used

R-R function was adopted as the particle size distribution

function for the inversion with a dependent algorithm (Xu

and Nieto-Vesperinas, 2019; Liu et al., 2021; Li et al., 2022).

In other words, the characteristic parameters in the known

equation set was determined with optimal solution. The

volume frequency distribution function under unimodal and

bimodal conditions was as follows (Cai et al., 2010):

fRR−s(D) � K
�D
· (D�D)K−1

· e
[−(D

�D
)K]

(23)

fRR−b(D) � n
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣K1

�D1
· (D

�D1
)K1−1

· e
[−( D

�D1
)K1]⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + (1 − n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣K2

�D2
· (D

�D2
)K2−1

· e
[−( D

�D2
)K2]⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (24)

Where: RR − s and RR − b represented unimodal and bimodal

RR distributions, respectively. Moreover, �D, k, �D1, k1, �D2, k2
were the characteristic parameters, 0≤ n≤ 1.

The complex refractive index was set atm � 1.33 + 0.01i. The

simulation extinction values of incident wavelengths used 0.3838,

0.4598, 0.5163, 0.6269 and 0.77 μm. In SGA, the population size,

probability of selection, and mutation probability was set at 50,

0.7, and 0.05, respectively. The iteration times of unimodal and

bimodal distribution functions were set at 200 and 300,

respectively. In MPGA, the initial population number was set

at 10, population size 50, selection probability [0.7, 0.9], and

mutation probability [0.001.0.05]. The iteration times were the

same as in the SGA. The approximate range of distribution

parameters following RR distribution was

R − R: 1< k < 9; 1< �D< 9, which was inferred from the

particle size range of 0.1 ~ 10 μm. The inversion error was
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defined as follows (Doicu et al., 2019; Shcherbakov et al., 2019;

Zhang et al., 2019):

δ �
�������������������∑S

j�1[f(Dj) − F(Dj)]2√
������������∑S

j�1[f(Dj)]2√ (25)

First, the research verified the effect of regularization and

non-regularization objective functions on the reconstruction of

particle size distribution. It compared the results with 5% noise or

without noise with MPGA, respectively. Then, the least squares

error formula and the LS error with Tikhonov smooth function

constraint were used as the objective fitness functions. As a result,

the following regularization settings were specified for the latter:

The regularization parameters without noise and with 5% noise

were 9.329 × 10−6 and 6.142 × 10−4 under unimodal distribution

function, respectively. As for bimodal distribution function, the

parameters were 5.231 × 10−5 and 0.0028, respectively.

Figure 3 depicts the inversion results for the unimodal R-R

distribution, where Figure 3A under the condition of without

noise and Figure 3B under the condition of with 5% noise. When

no noise is added, the peak position and height of the volume

frequency distribution function curves generated by MPGA

inversion based on regularization and non-regularization

objective functions are very close to the set values, particularly

when the peak position of the regularization basically matches

the preset curve, despite the variation of the peak height.

However, the identification of particle size distribution is

unaffected, although the curve distribution of non-

regularization moves smoothly. Despite the fact that the peak

position is deviated, resulting in judgment errors in the particle

size distribution, the total effect is within the error range. When

5% noise is added, the regularization curve modifications are not

apparent, which is consistent with the preset distribution curve.

Although the peak height varied slightly, it is still within an

acceptable range, demonstrating that the inversion algorithm

with regularization is strongly noise resistant. The function curve

with non-regularization has a great peak position and height

offset as the noise increases, while the reconstruction effect is low,

showing that the noise resistance of the inversion algorithm

without regularization is inadequate.

Figure 4 illustrates the inversion results following for the

bimodal R-R distribution, where Figure 4A under the condition

ofwithout noise and Figure 4B under the condition of with 5%noise.

As can be observed, the volume frequency distribution function

curves produced by MPGA inversion based on regularization

objective function are highly consistent with one another in the

absence of noise. The error is acceptable despite slightly higher

peaks. The peak positions are basically identical, which does not

affect the particle size distribution identification. However, the

overall curve deviation of non-regularization is quite large, and

the height deviation of the first peak and the position deviation of the

second peak are obvious. Additionally, the inversion impact was

reduced due to the complexity of the bimodal distribution function,

demonstrating that an inversion algorithm with regularization

outperforms the one with non-regularization in complex function

inversion. Even when 5% noise is added, the overall effect of the

regularization curve is still better than that of non-regularization. As

the noise rises, the peak heights of the inversion curve for both

objective functions grow, indicating that the overall inversion impact

is proportional to the bimodal distribution function’s complexity.

However, the curve produced by the inversion algorithm with

regularization is closer to the preset distribution curve, suggesting

that the inversion algorithm with regularization is still more noise-

resistant than that with non-regularization even under complex

bimodal distribution function.

Next, the research then calculated the inversion of the

particle size distribution with MPGA and SGA with effects

compared to verify the reliability of improved genetic

FIGURE 2
MPGA structure diagram.
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algorithm based MPGA. Figure 5 shows the changing rules of the

fitness function value as it varies with iteration times under the

unimodal distribution function for SGA and MPGA, where the

fitness function is regularization objective function. Figure 5

shows that iteration results using SGA stabilize after

65 iterations, despite the fact that the findings are not unique.

Comparatively, MPGA iteration outcomes stabilized after

25 rounds, yielding consistent final findings.

Figures 6, 7 show the volume frequency distribution function

curve calculated based on the inversion of particle size distribution

after unimodal and bimodal R-R functions with MPGA and SGA,

where Figures 6A, 7A under the condition of without noise and

Figures 6B, 7B under the condition of with 5% noise. Without noise,

the inversion results of both algorithms for unimodal and bimodal

functions agree with the predetermined values, and the peak

position and height could be rebuilt effectively. Among them, the

early peak heights of the bimodal distribution function deviates to a

certain degree, however, the peak height deviates further with SGA

due to the immature convergence of SGA in the complex objective

function situation. The immature convergence of SGA exacerbated

by the addition of 5 percent noise, and both the unimodal and

bimodal functions exhibit substantial deviations. The inversion

effect of MPGA is slightly superior to that of SGA. Although the

peak location and height vary, they are still acceptable and the overall

effect is superior to that of SGA, indicating that the anti-noise ability

of MPGA is outperforms the capability of SGA.

Experimental results and analysis

Considering the light absorption of liquid medium, milk fat

particles were employed as the research object in actual

FIGURE 3
Inversion results following unimodal R-R distribution without
noise and with 5% noise.

FIGURE 4
Inversion results following bimodal R-R distribution without
noise and with 5% noise.
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measurements to further validate the paper’s algorithm. Table 1

displays the extinction levels measured at various wavelengths

determined by the mean value of 20 experimental data groups.

Table 2 Displays the inversion data obtained from five

inversion tests with SGA and MPGA. According to Table 1,

the k values of both algorithms are relatively substantial,

indicating that the particle size distribution of the simulation

solution of milk fat in the experiment is relatively concentrated

and consistent with narrow band distribution. The results of the

inversion indicate that the final average values of the two

algorithms are quite similar. In contrast, in many trials, the

final iteration’s SGA findings are variable, whereas MPGA results

are consistent. This demonstrates that MPGA is more robust and

effective at optimizing systems and addressing complicated

issues.

Figure 8 illustrates the particle size results obtained with SGA

and MPGA. In Figure 8, the Sauter average particle sizes D32 are

4.8206 μm and 4.8962 μm, respectively, while the relative errors

are -5.01% and -3.52%, respectively, meeting the national

standard of ±8%.

Discussion

Comparative analysis of the inversion
results of different objective functions

The least square error is frequently used as the objective

function in particle size inversion calculations. In their book

(Cai et al., 2010), Cai et al. elaborated on the solution of

objective functions and emphasized that the least squares

error is used as the objective function for inversion

calculations. In practical calculation, however, the

extinction coefficient determines the linear equation of the

extinction spectrum, primarily because the linear equation

resulting from the highly ill-conditioned coefficient matrix is

unstable as a result of the glitches generated during the initial

calculation process. If we directly solve the least-squares

solution as an objective fitness function, the calculation

results may not be unified with a reduced level of precision.

Therefore, the introduction of Tikhonov regularization into

the creation of objective functions can effectively solve the

problem of ill solutions. The main goal of Tikhonov

regularization is to modify the relative weight between

residual and regularization terms and to reduce the ill-

condition of the objective function by the introduction of

smooth constraints, hence optimizing the stability of the

FIGURE 5
Change rule of the fitness function value varying with
iteration times with SGA and MPGA.

FIGURE 6
Inversion results following unimodal distribution with
different algorithms.
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function to be measured. The approach changes the problem

into a solution for least-squares problems with penalty factors.

By introducing regularization parameters, the literature

(Yang, 2016; Wang et al., 2019; Zhou et al., 20212021)

efficiently addresses the problem of coefficient matrix

pathology encountered during the development of objective

functions.

Table 3 compares the characteristic parameters and inversion

errors (using MPGA for inversion) for unimodal and bimodal

distribution functions calculated using the inversion algorithm

with regularization, non-regularization, and 5% noise. As shown

in Table 3, the inversion errors of the objective function built by

regularization and non-regularization under the unimodal R-R

distribution function are 0.0402 and 0.0974, respectively, without

noise, and 0.0799 and 0.1450, respectively, with 5% noise. Non-

regularization under the bimodal R-R distribution function

yields the following results: the inversion errors are

0.0539 and 0.1085 without noise, and 0.0917 and 0.1473,

respectively, with 5% noise.

The simulation experiment compares the inversion

errors under two different objective functions. By

comparing the regularization and non-regularization

objective functions, it was discovered that the inversion

error with the regularization objective function was

significantly smaller than that with the non-regularization

objective function, regardless of whether the distribution

functions were unimodal or bimodal. The regularization

inversion error with 5% noise was even lower than the

non-regularization inversion error without noise,

indicating that the regularization had a positive effect on

alleviating the ill condition of the discrete complex

coefficient matrix, enhancing the accuracy of particle size

distribution inversion results, and effectively reducing the

complexity of the objective function and enhancing the

stability. In addition, research data (Wang, 2013; Zhang,

2015; Zhao et al., 2015) indicate that the inversion of the

regularization goal function yields excellent results.

Comparative analysis of different inversion
algorithms

This work compares the inversion outcomes of SGA and

MPGA by calculating the inversion of the particle size of milk

fat. We initially examined the iteration times. MPGA times

were significantly less than those of SGA because MPGA

utilised multiple populations simultaneously in the initial

population setting, and the populations were both

FIGURE 7
Inversion results following bimodal distribution with different
algorithms.

FIGURE 8
Comparison of volume frequency distribution maps obtained
from inversion with SGA and MPGA.
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independent and interconnected. In addition, the optimal

individuals from each population were preserved in the

elite population for repeat selection and to avoid loss,

thereby drastically lowering the number of iterations

required to locate the optimal individuals. However, SGA

only had one population per iteration for optimal

individual selection, which was insufficient to assure loss

and repeated selection. Through MPGA, the literature

(Yang et al., 2022) significantly enhances the algorithm’s

speed. In addition, MPGA’s final iteration findings were

consistent, indicating that MPGA’s target parameter search

was more accurate and exhaustive. It was mostly owing to the

fact that the control parameters in optimal individual

selection were distinct. In SGA, the crossover and mutation

probabilities were fixed. The crossover and mutation

operations determined the global and local search

capabilities of the algorithm, while the probability setting

influenced the algorithm’s overall search capability. The

optimization results for various selections differed

considerably. MPGA made up for SGA’s deficiency by

randomly generating probability parameters within the

specified range to distinguish the crossover and mutation

probabilities for each subpopulation. In the meantime,

populations evolved synchronously, covering both global

and local searches of the algorithm. The problem of

inconsistent experimental results is solved by MPGA in the

literature (Guo et al., 2020; Shi et al., 2021).

Table 4 compares the characteristic characteristics and

inversion errors (using regularization goal function for

inversion) of particle size distribution functions produced

by MPGA and SGA inversion without noise and with 5%

noise. According to Table 3, the inversion results of MPGA

and SGA under unimodal R-R distribution function are as

follows: the inversion errors are 0.0402 and 0.0563,

respectively, without noise; 0.0799 and 0.1158, respectively,

with 5% noise; and under bimodal R-R distribution function,

the inversion errors are 0.0539 and 0.0665, respectively,

without noise; and 0.0917 and 0.1384, respectively, with 5%

noise.

According to the analysis, MPGA has better inversion

effects than SGA, indicating that MPGA has stronger anti-

noise capabilities. The inversion error comparison

suggests that MPGA reconstruction is more precise than

SGA reconstruction. Errors in SGA reconstruction could be

decreased further, but doing so would require additional

iterations and increase computation costs. SGA requires

more search into random points, but MPGA effectively

eliminates this drawback. Based on the outcome of this

single operation, MPGA was able to better match the

specified particle size distribution with high reconstruction

TABLE 1 Extinction values measured at different wavelengths.

0.3838 μm 0.4598 μm 0.5163 μm 0.6269 μm 0.77 μm

Average value 0.5137 0.5101 0.5127 0.4964 0.4851

TABLE 2 Comparison of inversion results between SGA and MPGA.

Serial number SGA( �D,k) MPGA( �D,k)

01 (5.0202.17.7576) (5.0793.17.3047)

02 (4.9958.17.7161) (5.0793.17.3047)

03 (5.0049.17.7135) (5.0793.17.3047)

04 (4.9928.17.6846) (5.0793.17.3047)

05 (4.9704.17.7103) (5.0793.17.3047)

Average value (4.9968.17.7164) (5.0793.17.3047)

TABLE 3 Comparison of the characteristic parameters and the inversion errors under unimodal and bimodal distribution functions.

Distribution function Objective
function

Noise (%) Inversion value Inversion error

Unimodal R-R distribution (3.5, 7.55) Regularization 0 (3.5903.7.3387) 0.0402

5 (3.3278.7.6257) 0.0799

Non-regularization 0 (3.7278.7.8257) 0.0974

5 (3.2103.8.2039) 0.1450

(2.5.3.0.6.5.5.0.0.3) Bimodal R-R distribution (2.5, 3.0, 6.5, 5.0, 0.3) Regularization 0 (2.5468.3.1385.6.3201.5.2904.0.3270) 0.0539

5 (2.5832.3.4374.6.2069.5.3846.0.3385) 0.0917

Non-regularization 0 (2.4463.3.2053.6.7364.5.4334.0.3432) 0.1085

5 (2.4136.3.5233.6.1804.5.6306.0.3403) 0.1473
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accuracy under the same conditions, resolving the premature

convergence of SGA. MPGA has faster iteration speed and

higher inversion accuracy than SGA, hence avoiding the issue

of SGA’s premature convergence.

Conclusion

1) The combination of MPGA and Tikhonov smooth

function supports particle size inversion calculations

with the total light scattering method in an efficient

manner. Due to their high dependability and stability,

both functions reconstruct the particle size distribution

in a liquid absorption medium.

2) Integrating Tikhonov regularization and apparent optical

parameters into the construction of the objective

function can effectively resolve the high ill condition of

the objective function caused by the first type of

Fredholm integral equation with the total light

scattering method, as well as reduce the medium’s light

absorption.

3) Compared to conventional genetic algorithms, the approach

suggested in this study achieves a detection error of -3.52%

with a greater detection accuracy, thereby providing a

dependable method for milk molecular identification. The

algorithm is ubiquitous and applicable to other domains

as well.
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TABLE 4 Comparison of characteristic parameters and inversion errors of particle size distribution under unimodal and bimodal distribution
functions.

Distribution function Inversion
algorithm

Noise (%) Inversion value Inversion
error

Unimodal R-R distribution (3.5, 7.55) MPGA 0 (3.5903.7.3387) 0.0402

5 (3.3278.7.6257) 0.0799

SGA 0 (3.6294.7.2882) 0.0563

5 (3.2302.6.8374) 0.1158

(2.5.3.0.6.5.5.0.0.3) Bimodal R-R distribution (2.5, 3.0, 6.5,
5.0, 0.3)

MPGA 0 (2.5468.3.1385.6.3201.5.2904.0.3270) 0.0539

5 (2.5832.3.4374.6.2069.5.3846.0.3385) 0.0917

SGA 0 (2.4427.3.1973.6.2949.5.4367.0.3332) 0.0665

5 (2.3463.3.1833.6.3234.5.8306.0.3453) 0.1384
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