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Abstract: Central serous chorioretinopathy (CSCR) is a retinal disease affecting the retinal pigment
epithelium (RPE) and the choroid. This is a recognized side-effect of glucocorticoids (GCs), ad-
ministered through nasal, articular, oral and dermal routes. However, CSCR does not occur after
intraocular GCs administration, suggesting that a hypothalamic-pituitary-adrenal axis (HPA) brake
could play a role in the mechanistic link between CSCR and GS. The aim of this study was to explore
this hypothesis. To induce HPA brake, Lewis rats received a systemic injection of dexamethasone
daily for five days. Control rats received saline injections. Baseline levels of corticosterone were
measured by Elisa at baseline and at 5 days in the serum and the ocular media and dexamethasone
levels were measured at 5 days in the serum and ocular media. The expression of genes encoding
glucocorticoid receptor (GR), mineralocorticoid receptors (MR), and the 11 beta hydroxysteroid
dehydrogenase (HSD) enzymes 1 and 2 were quantified in the neural retina and in RPE/ choroid.
The expression of MR target genes was quantified in the retina (Scnn1A (encoding ENac-α, Kir4.1 and
Aqp4) and in the RPE/choroid (Shroom 2, Ngal, Mmp9 and Omg, Ptx3, Plaur and Fosl-1). Only 10%
of the corticosterone serum concentration was measured in the ocular media. Corticosterone levels
in the serum and in the ocular media dropped after 5 days of dexamethasone systemic treatment,
reflecting HPA axis brake. Whilst both GR and MR were downregulated in the retina without MR/GR
imbalance, in the RPE/choroid, both MR/GR and 11β-hsd2/11β-hsd1 ratio increased, indicating MR
pathway activation. MR-target genes were upregulated in the RPE/ choroid but not in the retina. The
psychological stress induced by the repeated injection of saline also induced HPA axis brake with
a trend towards MR pathway activation in RPE/ choroid. HPA axis brake causes an imbalance of
corticoid receptors expression in the RPE/choroid towards overactivation of MR pathway, which
could favor the occurrence of CSCR.

Keywords: retina; central serous chorioretinopathy; glucocorticoid; mineralocorticoid

1. Introduction

Glucocorticoids (GC) remain amongst the most widely prescribed class of drugs in
many fields of medicine for their potent anti-inflammatory effects. The early recognition
of the severe side effects induced by cortisol [1] has led to the development of synthetic
or semi-synthetic cortisol derivates with increased anti-inflammatory effects and reduced
mineralocorticoid side-effects [2]. Indeed, hypertension and hydro-sodium retention have
been associated with the activation of the mineralocorticoid pathway [3] while beneficial
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anti-inflammatory effects have been associated with the activation of the glucocorticoid
receptor, leading to the classical potency glucocorticoids classification table [3–5].

The ocular side effects, such as cataract [6] and glaucoma [7,8] have also been recog-
nized at early stages [9] and are still associated with both systemic and local routes and are
not alleviated by synthetic GCs. Another less frequent ocular side-effect of GCs is central
serous chorioretinopathy (CSCR), a chorioretinal disease characterized by the occurrence
of serous retinal detachments (SRD) secondary to a focal disruption of the retinal pigment
epithelium (RPE) barrier and often associated with detachments of the pigment epithelium
(PED) and an increased choroidal thickness [10,11]. However, in contrast to the other
GCs-induced side effects, the route of GCs administration influences the risk of CSCR. The
nasal, articular, oral and dermal routes favor CSCR [12–21] but not the high and sustained
intraocular GCs [22,23]. This clinical observation led us to hypothesize that it is not the
increase in ocular GCs levels but rather a consequence of systemic corticosteroids on ocular
corticosteroids that may be the link between CSCR and corticosteroid therapy.

Cortisol binds with a similar affinity to both glucocorticoid receptor (GR) and to MR [2]
and in the eye, as no cortisol binding globulin is present [24], the availability of free cortisol
mostly relies on the cortisol/cortisone balance that is regulated by the activity of the 11-beta
hydroxysteroid dehydrogenase type 1 and 2 enzymes (HSD-1 and HSD-2) [25,26]. GCs
also activate MR at various intensities depending on the molecules, the drug doses and
on the level of expression and activity of MR in specific cells and tissues. In non-classical
MR sensitive tissues, MR activation can exert deleterious effects, as shown in the brain [27],
the vessels, the skin [28], the heart [29,30] and the retina [11,31,32]. Mineralocorticoid
receptor (MR) pathway activation by GCs or by cortisol has been proposed as a potential
mechanism linking GCs with CSCR since aldosterone and/or MR pathway activation in
animal models induce features of CSCR, although they do not completely recapitulate the
human disease [11,32,33]. However, there is no clinical evidence that MR is overactivated
in eyes with CSCR.

The reason why intraocular GCs is not a risk factor for CSCR as compared to systemic
administration remains unexplained and whether the hypothalamic-pituitary-adrenal axis
(HPA) brake and subsequent adrenal insufficiency, that is not induced by intraocular GCs
could be involved in CSCR pathogenesis has not been questioned. In the present study,
we studied the corticosterone ocular levels and the corticoid receptors balance upon a
brake of the hypothalamic-pituitary-adrenal axis after systemic dexamethasone treatment
in rats. Our results indicate that systemic GCs and endogenous corticosterone differentially
influence the expression of the gluco- and mineralocorticoid receptors in different ocular
tissues and promote an imbalance towards a hyper activation of the mineralocorticoid
pathway in RPE/choroid. Potential link with CSCR is discussed.

2. Results
2.1. Correlation between Serum and Ocular Corticosterone and Dexamethasone Levels

The mean corticosterone serum level in control untreated rats at baseline was
21.2 ± 6.5 ng/mL [14.7–32.04, n = 8]. As expected [34], after 5 days of dexamethasone
systemic injection, the serum corticosterone level significantly dropped to 1.2 ± 1.4 ng/mL
[0–3.8, n = 16, p < 0.0001]. Interestingly, in saline injected rats, serum corticosterone also
dropped to 13 ± 2 ng/mL [10.1–14.5, n = 4], a level that was not significantly lower than
baseline, but also not significantly different from the corticosterone level at day 5 in rats
treated with dexamethasone (p = 0.007) (Kruskal–Wallis test p < 0.0001, followed by Dunn’s
comparisons) (Figure 1A).

In ocular media, mean corticosterone level at baseline was 2.9 ± 1.2 ng/mL [1.3–5.4,
n = 7]. Significantly, it dropped to 0.4± 0.4 ng/mL [0–1.3, n = 8], 5 days after systemic
dexamethasone treatment, paralleling the serum drop (p < 0.002). In saline treated rats,
mean corticosterone ocular level non significantly dropped to 1.45 ± 1.3 ng/mL [0–2.9,
n = 4] (p = 0.46). Ocular corticosterone levels were not significantly different in saline and
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dexamethasone treated eyes (p = 0.5) (Kruskal–Wallis test p < 0.0006, followed by Dunn’s
comparisons) (Figure 1B).

There was a significant correlation between corticosterone serum levels and ocular
levels (Spearman correlation, r = 0,76, p = 0.0001), the ocular corticosterone level being
around 10% of the serum level (Figure 1C). The mean dexamethasone serum level after 5
days of dexamethasone systemic administration was 60.1 ± 18.9 ng/mL [18–83.9, n = 14]
and the ocular mean level was 10.7 ± 4.09 ng/mL [6.6–17.6, n = 7] (Figure 1D). There was
no significant correlation between dexamethasone ocular and serum levels, although a
tendency towards an inverse correlation was observed (Spearman correlation, r = −0.28,
p = 0.55) (Figure 1E).
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Figure 1. Corticosterone and dexamethasone levels in the rat serum and ocular media. Corticosterone
in the serum (A) and ocular media (B) at baseline (n = 7) and after 5 days of daily injection of
dexamethasone (D5) (n = 16) or saline (n = 5). Spearman correlation between corticosterone ocular
and serum levels (r = 0.76, p = 0.0001) (C). Dexamethasone serum (n = 14) and ocular media (n = 7)
after 5 days of daily injection of dexamethasone (D). Spearman correlation between dexamethasone
ocular and serum levels (r = −0.28, p = 0.55) (E), ** p < 0.001, *** p < 0.0001, ns non significant.

2.2. Corticosteroid Receptors and HSDs Expression in Ocular Tissues after
Dexamethasone Treatment

In the neural retina, at 5 days after systemic treatment, Nr3c1 encoding GR expression
was significantly reduced both after the administration of saline (p < 0.001) and dexametha-
sone (p < 0.01) as compared to untreated rats. Expression of Nr3c2 encoding MR expression
was also significantly downregulated in saline and dexamethasone groups (p < 0.001). The
Nr3c2/Nr3c1 (referred as MR/GR) expression balance did not change significantly. In
the retina of rats treated with dexamethasone, a significant down-regulation in 11β-hsd1
(p > 0.01) and an up-regulation in 11β-hsd2 gene expression (p < 0.001) was measured. A
non-significant trend towards a similar regulation was observed after saline treatment
(Figure 2A).
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In the RPE/choroid complex, the non-significant up-regulation of Nr3c2 expression
translated into a significant increase in the Nr3c2/Nr3c1 ratio in eyes of rats treated with dex-
amethasone (p < 0.01). Whilst 11β-hsd1 expression was down-regulated in the RPE/choroid
from saline treated rats (p < 0.01), 11β-hsd2 expression was significantly up-regulated in
dexamethasone-treated rats (p < 0.0001) (Figure 2B) (analyses were performed using the
non-parametric Kruskal–Wallis ANOVA test followed by a Dunn’s comparison test).

Taken together, these data indicate that in the RPE/choroid from rats treated with
systemic dexamethasone, the transcriptional regulations of corticoid receptors and HSD
enzymes favor a balance towards an activation of MR pathway and a reduction of GR
pathway activation. In rats treated with saline, a similar trend is observed suggesting
that these regulations could result, at least in part, from reduction of serum corticosterone
levels in both saline and dexamethasone treated rats. In saline-treated rats, the very low
corticosterone ocular levels together with a down-regulation of GR indicate a low activity
of glucocorticoid pathway.
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Figure 2. Corticoid receptors and hydroxysteroid dehydrogenase gene expression in the retina
and RPE/choroid. (A) neural retina: Nr3c1, encoding GR, Nr3c2 encoding MR and 11β-hsd1 and
2 expression at baseline (n = 7), after 5 days of daily injection of dexamethasone (n = 16), or saline
(n = 6); (B) RPE/choroid: Nr3c1, encoding GR, Nr3c2 encoding MR and 11β-hsd1(HSD1) and 2 (HSD2)
expression at baseline (n = 7), after 5 days of daily injection of dexamethasone (n = 16), or saline
(n = 6), * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

In the iris/ciliary body complex, only dexamethasone treatment induced a significant
down-regulation of Nr3c1 (p < 0.01) and a higher Nr3c2/Nr3c1 ratio, together with a signifi-
cant increase in 11β-hsd2 expression (p < 0.01) (Figure 3) Saline treatment did not induce
significant changes in Nr3c1, Nr3c2, 11β-hsd1 or 11β-hsd2 expression.
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Figure 3. Corticoid receptors and hydroxysteroid dehydrogenase gene expression in the iris/ciliary
body. Nr3c1, encoding GR, Nr3c2 encoding MR and 11β-hsd1 and 2 expression at baseline (n = 7),
after 5 days of daily injection of dexamethasone (n = 16), or saline (n = 6), * p < 0.05, ** p < 0.01.

2.3. Regulation of MR-Induced Genes in the Retina and RPE/Choroid

To evaluate whether the imbalance of expression in the Nr3c2/Nr3c1 and 11β-hsd1/11β-
hsd2 ratio translate into transcriptional consequences, we have quantified the expression
of genes known to be regulated by GR/MR pathways in the neural retina such as Scnn1A
encoding the Na+ channel ENac-aplha the K+ channel Kir4.1, as well as the water channel
Aqp4 [35,36]. As shown in Figure 4, the three genes were significantly down-regulated in
the neural retina in rats after 5 days of dexamethasone treatment and Scnn1A and Aqp4
were significantly down-regulated also after saline injection, which is in line with the
downregulation of genes encoding both GR and MR after both treatments, but without
MR/GR imbalance.
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Figure 4. Regulation of MR-induced genes in the neural retina. Scnn1A encoding ENac-α Kir4.1 and
Aqp4 expression at baseline (n = 7), after 5 days of daily injection of dexamethasone (n = 16), or saline
(n = 6), * p < 0.05, *** p < 0.001.

In the RPE/choroid complex, the expression of Plaur (p < 0.01) and Fosl-1 was sig-
nificantly up-regulated after dexamethasone treatment, whilst Ptx3 was instead down-
regulated after saline treatment Omg was significantly down-regulated in dexamethasone
treated rat (Figure 5). Other genes such Shroom2, Ngal, and Ptx3 were up-regulated in
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dexamethasone-treated rats as compared to saline only (Figure 5) (analysis were performed
using the non-parametric Kruskal–Wallis ANOVA test followed by a Dunn’s compari-
son test).

These results indicate that genes were shown to be regulated by MR pathway activation
in RPE cells [37], following the same regulations in the RPE/choroid of dexamethasone
treated rats.
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Figure 5. Regulation of MR-induced genes in the RPE/choroid. Expression of Shroom 2, Ngal, Mmp9
and Omg, Ptx3, Plaur and Fosl-1 in the RPE/choroid of rats at baseline (n = 7), after 5 days of daily
injection of dexamethasone (n = 16) or saline (n = 6), * p < 0.05, ** p < 0.01.

3. Discussion

In this paper, we have measured the corticosterone levels in ocular media of rats at
baseline and after 5 days of systemic treatment with dexamethasone at 1 mg/kg to mimic a
frequent clinical situation, in which systemic corticotherapy causes adrenal insufficiency.
At baseline, corticosterone level in ocular media is around 1/10 of the serum level and it
correlates well with the serum level. Similar results were found in dogs, in which 61% of
the variation in aqueous humor cortisol levels could result from plasmatic variations [31].
Since only the free fraction of cortisol can cross the blood-ocular barriers, it is expected
to measure lower cortisol or corticosterone in ocular media as compared to blood. The
level of corticosterone measured in the ocular media of rats was in the range of previous
studies [24,32]. In the eye, the activity of cortisol is regulated by the HSD-1 and 2 enzymes,
that are both expressed in the rat retina, RPE/choroid [33,38] and iris/ciliary body [32].
In the rat, after 5 days of dexamethasone treatment, the hypothalamo-pituitary-adrenal
axis brake is identified by the very low level of corticosterone in the serum. Similarly, in
the ocular media, corticosterone levels are very low, even below detectable levels in some
rats. Corticosterone levels also decreased, although to a lesser extent after repeated daily
injection of saline in awaken rats, submitted to repeated restraint stress at a fixed hour for
5 days, which corresponds to a chronic but familiar stressor. Indeed, under such stress
conditions, corticosterone was shown to decrease, as compared to an unfamiliar stressor that
could have an inverse effect on corticosterone levels [39,40]. Such low corticosterone levels
also suggested by low salivary amylase activity in rats submitted to similar stressor [41]
indicate changes in the activity of the HPA axis in response of a chronic stress, which could
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mimic the administration of exogenous GC. Paralleling the serum drop, corticosterone level
also decreased in the ocular media.

In the iris/ciliary body of dexamethasone treated rats, the transcriptional regulations
tend to favor a reduction of the GR pathway activation with a reduction in Nr3c1 expression
and an increased 11β-hsd. In these tissues, more exposed to the systemic circulation, Nr3c2
was not significantly regulated in dexamethasone or in saline injected rats suggesting
that specific regulation of the corticoid receptors expression might occur in various ocular
tissues and even cells.

In the neural retina, the expression of both Nr3c1 and Nr3c2 is down-regulated not
only in the group of rats treated with dexamethasone, but also in the group of rats treated
with saline, indicating that the downregulation does not result from ocular dexamethasone
but could result from the decrease in ocular corticosterone levels. In cell cultures as well
as in vivo, cortisol and synthetic glucocorticoids were shown to induce the regulation of
GR in a differential manner and with different kinetics [42–44]. It cannot be discounted
that the downregulation of Nr3c1 in saline-treated rats is a consequence of a transient
increase in corticosterone that could have preceded the reduction of serum corticosterone
observed at the end of the experiment since a return to the basal state can take several
days. Similarly, the mechanisms of MR down-regulation are unclear. In amphibian kidney
cells, dexamethasone was shown to down-regulate MR [35] and in LPS-induced uveitis
model, we showed that MR down-regulation in iris/ciliary body coincided with high
corticosterone levels together with an increase expression of 11β-hsd1 [32] suggesting
that both endogenous and exogenous corticoids could also regulate MR expression. On
the other hand, in the Goto-Kakizaki diabetic rat model, we observed both a reduced
cortisone/cortisol ratio and an increased MR expression in the neural retina [36] showing
that the ligand levels and the GR and MR expression levels might not be regulated in a
simple manner. In our experiments, Nr3c2 was also downregulated in the neural retina of
rats treated with saline, in which corticosterone levels are reduced in the ocular media and
in the serum but in which no dexamethasone could influence Nr3c2 or Nr3c1 expression.
Other mechanisms such as chronic stress and potential associated inflammation could
explain these regulations [37].

In the neural retina, the Nr3c2/Nr3c1 balance remained stable after dexamethasone
treatment, although both GR and MR were down-regulated, which was reflected in the
down-regulation of genes such as Scnn1A (encoding ENac-alpha), Kir4.1 and Aqp4 that
are up-regulated by both GR and MR activation in glial Müller cells and in rat retinal
explants [35]. In dexamethasone-treated rats, the low levels of ocular dexamethasone
could have partially counterbalanced the downregulation of Scnn1A, Kir4.1 and Aqp4. It
cannot be excluded that other mechanisms, unrelated to GR/MR pathway and directly
linked to systemic sodium levels, could have played a role in the ion and water channels
regulations observed in the neural retina of saline injected rats. This hypothesis requires
further explorations.

In the RPE/choroid complex, the slight Nr3c2 expression increase in dexamethasone
treated rats translates into a significant imbalance towards a higher Nr3c2/Nr3c1 ratio. The
reduced 11β-hsd1/11β-hsd2 balance and the increased Nr3c2/Nr3c1 indicate a potential MR
pathway overactivation in the RPE/choroid complex. To further confirm this imbalance
towards MR activation, we tested the expression of genes that we previously identified as
MR-target genes in human RPE cells derived from iPSc using an unbiased transcriptomic
approach [37]. In the RPE/choroid, Plaur and Fosl1 were upregulated and Omg was down-
regulated as previously shown by RPE cells, stimulated by aldosterone or by cortisol + GR
antagonists to mimic the effects of cortisol on MR [37]. FOS such as 1 AP-1 transcription
factor subunit protein controls the expression of Plaur (uPAR) [45]. The uPAR is expressed
at the basolateral membrane of RPE cells [46] and activation of uPA-uPAR pathways favors
choroidal neovascularization [47] and induces RPE epithelial to mesenchymal transition
and proliferation [39]. The upregulation of this pathway could be involved in the RPE
barrier breakdown, that is, one of the cardinal features of CSCR. Shroom2 is a protein
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involved in the pigmentation and of RPE cells [48] and pigmentary changes are part of CSCR
phenotype. The down regulation of Omg in RPE cells, which encodes oligodendrocyte-
myelin glycoprotein, could indicate a role for the RPE in the maintenance of choroidal
nerves, which control the choroidal blood flow [49] through a secreted isoform of OMG [50].
Alteration of choroidal vasculature is the other cardinal feature for CSCR.

Other genes encoding proteins involved in inflammation and oxidative stress such
as pentraxin 3 and lipocalin 2 were mostly down regulated in RPE/choroid from saline-
injected rats. Interestingly, we found that systemically low lipocalin levels could be a
biomarker for CSCR in cohorts of patients that were not under GCs treatments [51]. Since
dexamethasone is a known inducer of pentraxin 3 and lipocalin 2 expression [52], a partial
counter-balance could have compensated their reduced expression due to low GR/MR
expression in eyes from dexamethasone treated rats.

These results indicate that chronic systemic dexamethasone treatment causes an over-
activation of the MR pathway, specifically in the RPE/choroid complex and not in the retina.
In a mouse transgenic model that overexpresses the human MR, we observed pathologic
changes in the RPE/choroid that mimic the pachychoroid phenotype, without pathologic
changes in the neural retina. These results indicate that chronic systemic dexamethasone
treatment causes an overactivation of the MR pathway, specifically in the RPE/choroid
complex and not in the retina [33,53,54].

We acknowledge weaknesses in our study. Aldosterone could not be measured due
to the low volume of ocular media and methods used in this study. Further studies will
use mass spectrometry to provide a broader analysis of all neurosteroids and aldosterone
in the ocular media. We have not yet validated the regulated target genes at the protein
level using either immunohistochemistry or western-blotting, which will be the subject of
another study, that will include many other controls including various concentrations of
salt in the vehicle.

Taken together, our results show that systemic chronic treatment with dexamethasone,
at a dose that induces HPA axis brake, induces variable imbalance in Nr3c2/Nr3c1 and
11β-hsd1/11β-hsd2 gene expression in ocular tissues, with a trend towards MR pathway
overactivation in RPE/choroids, where pathologic changes are observed in patients under
glucocorticoids, who develop CSCR. This is in line with the surprising finding that the local
instillation of glucocorticoid drops, together with MR antagonists could have beneficial
effects in some of severe CSCR patients [40] and could support the beneficial effects of MR
antagonists observed by some authors in CSCR patients [55–57].

In the ophthalmic literature, stressful psychological events that favor the occurrence
of CSCR episodes [11], have been intuitively linked to high systemic cortisol, creating the
link with GCs-induced CSCR. Interestingly, none of the studies could identify high serum
cortisol levels in CSCR patients and hair-cortisol was not increased in this population [58].
We postulate that under chronic stress conditions, a rumination and depression state,
frequently observed in CSCR patients [41], and associated with a reduced activity of the
HPA axis [33,59,60], low endogenous cortisol could favor the occurrence of the disease in
predisposed patients. In other words, the link between exogenous systemic GCs treatment
and psychological stress in patients with CRSC could be a reduction of systemic cortisol, or
a deregulation of its circadian production and not an increase in systemic cortisol (Figure 6).
Such adrenal suppression could translate into an imbalance in MR/GR pathway activation
in the RPE/choroid and subsequent deleterious consequences, leading to CSCR (Figure 6).
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4. Material and Methods
4.1. Animals

All experiments were performed in accordance with the European Communities
Council Directive 86/609/EEC and French national regulations and approved by local
ethical committees (#4488 and #2541, Charles Darwin). Animals were kept in pathogen-free
conditions with food, water and litter, and housed in a 12-hour/12-hour light/dark cycle.

Lewis rats (Ecully, France) between 8 and 12 weeks-old were divided into three groups,
the control group that was only observed, the placebo group receiving saline sub-cutaneous
injections, and the treatment group receiving subcutaneous dexamethasone injections.

4.2. Experimental Scheme

A blood sample was obtained at baseline from all rats between 9 and 10 AM. The
subcutaneous injections were administered daily at 9 AM in the morning for five consec-
utive days. Rats were then sacrificed at day 5 in the afternoon (between 4 and 5 PM, at a
time expected to be the corticosterone peak [50]). Blood samples were obtained at the time
of sacrifice, and the eyes were enucleated and dissected to recover intraocular fluids and
ocular tissues [Figure 7]. Aqueous humor and vitreous from both eyes of each rat were
pooled, whereas the iris and ciliary body complex, neural retina, choroid and RPE complex
were carefully dissected and isolated separately from each eye. Samples were snap-frozen
in liquid nitrogen and stored at −80 ◦C for adequate tissue preservation.

Dexamethasone phosphate sodium 4 mg/mL (Mylan, Paris) was injected subcuta-
neously with a dosage of 1mg/kg/day for five days in the treatment group. We chose a high
dose of dexamethasone for 5 consecutive days because it was previously published that
corticosterone drop secondary to adrenal atrophy was observed in rats already 5 days after
systemic treatment [34]. This treatment regimen could thus mimics the adrenal insufficiency
potentially occurring in patients treated with systemic, nasal, intraarticular administration,
although high variability may occur in the HPA axis response in humans [62]. A saline
solution (NaCl 0.9%) volume was added to normalize the injected volume to 200 µL. In
the placebo group, rats received an injection of 200 µL of saline solution. The route and
mode of administrations were identical. Rats in the treatment and control groups were
anesthetized by intramuscular injection of ketamine (40 mg/kg) and Xylazine (4 mg/kg)
at baseline and a blood sample was retrieved from the major vein at the base of the tail
to obtain serum samples (Figure 7). Rats in the control group were sacrificed at baseline,
blood samples were collected immediately after the death of the animal.
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Figure 7. Schematic representation of the experiments. Serum was extracted from blood samples,
intraocular fluids include aqueous humour and vitreous from each eye. Ocular tissue dissection
separated the iris-ciliary body complex, the neural retina, the retinal pigment epithelium (RPE)-
choroid complex or each eye separately.

4.3. Corticosterone and Dexamethasone Quantification

The Elisa corticosterone kit (KGE009, R&D Systems, Abingdon Science Park Abingdon,
OX14 3NB) 96-wells was used to determine the concentration of the total corticosterone,
both bound and free, according to the manufacturer instructions. Rasd1 (Ras related
dexamethasone induced 1) Elisa (OKEH06148, Aviva Systems Biology) was used to quantify
indirectly dexamethasone in rat serum and ocular fluids as Rasd1 is a small GTPase protein
that is induced by dexamethasone [63].

4.4. Quantitative PCR

Total RNA was isolated from tissues using the RNeasy Mini Kit (Cat. Nb. 74106,
QIAGEN) including DNase I treatment (Cat. Nb. 79254, QIAGEN) according to man-
ufacturer’s instructions. First-strand complementary DNA was synthesized from the
total mRNA using random primers (ThermoFisher Scientific) and SuperScript II reverse
transcriptase (ThermoFisher Scientific). Transcript levels were analyzed by quantitative
real-time PCR performed in QuantStudio™ 5 Real-Time PCR (Applied Biosystems, Foster
City, CA, USA) with SYBR Green detection. Delta CT threshold calculation was used for
relative quantification of results.

We have analyzed the expression of the gene Nr3c2 (encoding MR), Nr3c1 (encoding
GR), 11β-hsd1, 11β-hsd2 in the neural retina, the RPE/choroid complex and the iris/ ciliary
body complex.

In the neural retina, we tested the expression of genes known to be regulated by MR
and GR activation in the retina such as Scnn1A, encoding the Na+ channel ENac-, the K+
channel Kir4.1, as well as the water channel Aqp4 [33,64].

In RPE/ choroid complex, we quantified the expression of genes shown to be up-
regulated by aldosterone or MR pathway activation in human RPE cells derives from iPS
such as Plaur encoding the urokinase plasminogen activator receptor (uPAR) and Fosl1
encoding the FOS like 1 AP-1 transcription factor subunit protein, Ptx3 encoding pentraxin
3 and Omg that encodes the oligodendrocyte myelin glycoprotein and that was down-
regulated by aldosterone or Cortisol+ RU486 [65]. We also tested genes showed to be
upregulated in the RPE/choroid complex after intravitreal injection of aldosterone such as
Ngal encoding lipocalin 2 and Mmp9 and the Shroom Family Member 2 Shroom2, that is
implicated in amiloride-sensitive sodium channel activity [66]. Hprt1, Ubc, 18S were used
as reference genes (Table 1).
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Table 1. Shows the list of primers used in this study.

Gene Name Forward/Reverse Sequences

18S Forward TGCAATTATTCCCCATGAACG
18S Reverse GCTTATGACCCGCACTTACTGG
Ubc Forward ATCTAGAAAGAGCCCTTCTTGTGC
Ubc Reverse ACACCTCCCCATCAAACCC

Hprt1 Forward GCGAAAGTGGAAAAGCCAAGT
Hprt1 Reverse GCCACATCAACAGGACTCTTGTAG
Nr3c1 Forward AACATGTTAGGTGGGCGTCAA
Nr3c1 Reverse GGTGTAAGTTTCTCAAGCCTAGTATCG
Nr3c2 Forward TAAGTTTCCCCACGTGGTTC
Nr3c2 Reverse ATCCACGTCTCATGGCTTTC

11b-Hsd1 Forward GAAGAAGCATGGAGGTCAAC
11b-Hsd1 Reverse GCAATCAGAGGTTGGGTCAT
11b-Hsd2 Forward TGCTGGCTGGATCGCGTTGTC
11b-Hsd2 Reverse CACAGTGGCCAGCACCGTGAA

Aqp4 Forward CGGTTCATGGAAACCTCACT
Aqp4 Reverse CATGCTGGCTCCGGTATAAT
Kir4.1 Forward CAAAGAAGAGGGCTGAGACG
Kir4.1 Reverse TTGAGCCGAATATCCTCACC

Scnn1A Forward TCATGCTGCTACGCCGGTTCC
Scnn1A Reverse TCCATCAGTTTACAAGGGAG

Ngal Forward TCACCCTGTACGGAAGAACC
Ngal Reverse GGTGGGAACAGAGAAAACGA

Mmp9 Forward CTGCCTGCACCACTAAAGG
Mmp9 Reverse GAAGACGAAGGGGAAGACG
Omg Forward CAACACAATGCAGCTGAGCA
Omg Reverse CCATCAAAGCCATAATGTCGTCT
Ptx3 Forward TACCCGCAGGCTGTGAAAC
Ptx3 Reverse GGGTTCCACTTGGTGCCATA
Plaur Forward CTGAAGTGCTGCAACTTCAC
Plaur Reverse AGCACATCTAAGCCTGTAGC
Fosl1 Forward GAGAAAATATGTCCCTCTGC
Fosl1 Reverse TTCTAGGCTAGTTAAAGGGC

Shroom2 Forward CCTATTATAGCACATCAGCC
Shroom2 Reverse TGAGCTCTTGCTTCTTAATG

4.5. Statistical Analysis

Quantitative data were expressed as mean ± SE. Statistical analysis was made using
the Graphpad Prism 5 program (Graphpad Software, San Diego, CA, USA). P < 0.05 was
considered significant. Groups were compared using Kruskal-Wallis test followed by a
Dunn’s multiple comparison test. P< 0.05 was considered significant.

5. Conclusions

In conclusion, although systemic exposures to exogenous GCs have been considered
as risk factors for the development of CSCR, the mechanisms of this risk remain poorly
understood. The fact that intraocular injection of glucocorticoids does not increase the
risk of CSCR suggests that the consequences of the HPA axis regulations for ocular tissues
may be involved. Our results are in line with this hypothesis, and they suggest that it
could be rather a lack of activation of the glucocorticoid pathway and an imbalance in
favor of activation of the mineralocorticoid pathway in RPE/choroid, observed in response
to the HPA axis brake that could favor CSCR. Further studies are needed to confirm this
hypothesis.
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