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SUMMARY

The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare
with previously unseen levels of morbidity and mortality. In this study, we per-
formed large-scale integrative multi-omics analyses of serum obtained from
COVID-19 patients with the goal of uncovering novel pathogenic complexities
of this disease and identifying molecular signatures that predict clinical out-
comes. We assembled a network of protein-metabolite interactions through tar-
geted metabolomic and proteomic profiling in 330 COVID-19 patients compared
to 97 non-COVID, hospitalized controls. Our network identified distinct protein-
metabolite cross talk related to immune modulation, energy and nucleotide
metabolism, vascular homeostasis, and collagen catabolism. Additionally, our
data linked multiple proteins and metabolites to clinical indices associated with
long-term mortality and morbidity. Finally, we developed a novel composite
outcome measure for COVID-19 disease severity based on metabolomics data.
The model predicts severe disease with a concordance index of around 0.69,
and shows high predictive power of 0.83–0.93 in two independent datasets.
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INTRODUCTION

The novel coronavirus disease 2019 (COVID-19) has a broad spectrum of clinical features that range from

asymptomatic disease to acute respiratory distress syndrome (ARDS) (Guan et al., 2020; Arons et al., 2020).

COVID-19 ARDS can lead to refractory hypoxia, mechanical ventilation, prolonged intensive care unit (ICU)

stay and increased mortality (Zhou et al., 2020). Previous studies have shown a high incidence of concom-

itant organ failure in COVID-19, including acute kidney injury (AKI) (Hirsch et al., 2020), acute liver injury

(Zhang et al., 2020), thromboembolic events (Bilaloglu et al., 2020; Tang et al., 2020) and secondary infec-

tions contributing to a fatal outcome (Elezkurtaj et al., 2021).

Massive investigative efforts by multiple scientific groups have used proteomic and metabolomic ap-

proaches to begin to unravel disease mechanisms relevant to SARS-CoV-2 infection such as inflammation,

coagulation, and metabolism (Lucas et al., 2020). However, how COVID-19 specific protein-metabolite in-

teractions relate to the severity of disease and clinical outcomes remains poorly understood. Key study lim-

itations have included relatively small sample sizes, absence of protein-metabolite network analysis and the

focus on dichotomous outcome measures such as death and survival. These limitations have been difficult

to overcome and restrict our understanding of COVID-19 pathogenesis.

Here, we report the largest study to integrate targeted metabolomic and proteomic analyses of serum

samples obtained from hospitalized COVID-19 patients during SARS-CoV-2 infection compared to pa-

tients admitted during the same time period with symptoms related to COVID-19 and negative RT-PCR

for SARS-CoV-2 as controls (Figure 1). Through this work, we uncovered COVID-19-specific metabolite

and protein profiles, identified novel protein-metabolite modules, and defined the molecular signatures

of several clinical indices (CRP, ferritin, platelet count, AKI, and death). Additionally, we developed the first

clinical composite outcome prediction model in COVID-19, where the input of discrete metabolic profiles
iScience 25, 104612, July 15, 2022 ª 2022 The Authors.
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Figure 1. Study outline. Study population composed by COVID-19 patients and controls

Serum samples obtained from clinically indicated specimens during the first 72 h of admission. Metadata obtained from electronic medical records. We

obtained metabolomic and proteomic profiles, after which we integrated our findings into a single network describing the associations between

differentially expressed proteins and metabolites in COVID-19. We then correlated the metabolites and proteins with baseline characteristics, laboratory

parameters and clinical events. Finally, we developed a novel metabolite-based prediction model for a composite outcome measure comprised of key

clinical parameters including death, mechanical ventilation, initiation of dialysis, supplemental oxygen requirement, development of acute kidney injury, and

length of hospital stay.
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significantly improves our clinical insight into a broad range of outcomes known to plaguemany survivors of

severe COVID-19.

RESULTS

Study cohort and dataset

Our cohort was composed of 330 patients with confirmed SARS-CoV-2 RT-PCR, and 97 non-COVID-19 controls

with negative RT-PCR resultswhowere hospitalized at theNewYork-PresbyterianHospital/Weill CornellMedical

Center between March and April 2020. Serum samples were obtained within the first 3 days of admission. The

majority of COVID-19 patients had samples drawn at two or three different time points resulting in a total of 582

serum samples from the 330 COVID-19 patients, whereas all 97 controls had one sample drawn. Metabolomics

was measured for all available samples. Proteomics was measured for fewer samples (n = 189), also across

different time points for some patients. Notably, there were only minor time effects across the three days (Fig-

ure S1), and the repeated samples were thus treated as replicates using a linear mixed effect model, see STAR

Methods. A detailed description of the clinical and demographic characteristics of the cohort can be found in

Table 1, Tables S1 and S2. Of note, we excluded samples collected after intubation because we found that

the clinical act of intubation significantly alters a patient’s metabolic profile (Table S3).

Metabolic profiles were assessed for all samples using liquid chromatography coupled with mass spec-

trometry (LC/MS). After quality control and data preprocessing, 125 metabolites were available for
2 iScience 25, 104612, July 15, 2022



Table 1. Demographics and clinical characteristics of the cohort

Characteristic Negative, N = 97a COVID-19, N = 330a p valueb

Demographics

Age 64 (51, 77) 64 (52, 75) 0.8

Sex 0.017

Female 48 (49%) 117 (35%)

Male 49 (51%) 213 (65%)

Race <0.001

Asian 10 (10%) 24 (7.3%)

Black 15 (15%) 40 (12%)

Not specified 16 (16%) 48 (15%)

Other 6 (6.2%) 71 (22%)

White 50 (52%) 147 (45%)

BMI 24.7 (21.7, 28.5) 27.4 (23.7, 31.0) <0.001

Risk Factors

CAD 23 (24%) 55 (17%) 0.2

DM 19 (20%) 89 (27%) 0.2

HTN 55 (57%) 182 (55%) 0.9

CKD/ESRD 17 (18%) 17 (5.2%) <0.001

Active cancer 40 (41%) 30 (9.1%) <0.001

Immunosuppressed state 29 (30%) 14 (4.2%) <0.001

Laboratories

Lymphocyte count 1.03 (0.50, 1.60) 0.80 (0.60, 1.10) 0.081

Platelet count 202 (132, 275) 191 (145, 252) 0.9

D-dimer 242 (150, 555) 386 (242, 667) 0.2

Alanine aminotransferase 22 (14, 40) 35 (23, 54) <0.001

Aspartate aminotransferase 25 (19, 38) 40 (28, 61) <0.001

Ferritin 727 (147, 1167) 769 (358, 1449) 0.4

C-reactive protein 3 (1, 7) 11 (6, 19) 0.006

Procalcitonin 0.43 (0.13, 1.06) 0.17 (0.08, 0.42) 0.007

Clinical Outcomes

Acute Kidney Injury (AKI) stage <0.001

0 89 (92%) 214 (65%)

1 4 (4.1%) 43 (13%)

2 0 (0%) 16 (4.8%)

3 4 (4.1%) 42 (13%)

Kidney replacement therapy 7 (7.2%) 26 (7.9%) >0.9

Acute respiratory failure

requiring intubation

11 (11%) 103 (31%) <0.001

Thromboembolic event 6 (6.2%) 22 (6.7%) >0.9

In-hospital mortality 13 (13%) 56 (17%) 0.6

Bold values indiciate p<0.05.
aStatistics presented: median (IQR); n (%).
bStatistical tests performed: Wilcoxon rank-sum test; chi-square test of independence; Fisher’s test with simulated p value;

Fisher’s exact test.
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comparative analysis. Targeted proteomic profiling was performed on a subset of 227 samples (173 from

COVID-19 patients and 54 controls) using the Olink inflammation, cardiovascular II and cardiovascular III

panels, which cover 266 unique protein biomarkers. These panels were selected, because it has previously
iScience 25, 104612, July 15, 2022 3
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Figure 2. Metabolomics and Proteomics changes associated with COVID-19

(A) Volcano plot showing differentially expressed metabolites between COVID-19 patients and controls at an adjusted p

value <0.05. In red, upregulatedmetabolites in COVID-19 patients. In blue, upregulatedmetabolites in the control group.
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Figure 2. Continued

(B) Top three differentially expressed metabolites in COVID-19 patients vs. controls based on adjusted p values. Y axis

shows log2 fold changes in relation to the mean of the control group.

(C) Number of significantly regulated molecules in KEGG pathways, top 15 shown.

(D) Volcano plot showing the differentially expressed proteins between COVID-19 patients and controls at an adjusted p

value <0.05.

(E) Top three differentially expressed proteins in COVID-19 patients vs. controls based on adjusted p values. Y axis shows

log2 fold changes in relation to the mean of the control group.

(F) Number of significantly regulated molecules in KEGG pathways, top 15 shown.
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been shown that inflammation and cardiovascular pathways are essential during COVID-19 pathogenesis

(Wiersinga et al., 2020).
Metabolomic and proteomic changes associated with COVID-19

Differential metabolomic analysis identified significant changes in abundance of 70 out of the 125 analyzed me-

tabolites between COVID-19 and controls at a false discovery rate (FDR) of 0.05 (Figure 2A). The top three differ-

entially expressed metabolites were involved in amino acid metabolism: N-acetyl-L-aspartic acid (p value =

9.19E-18), N-acetyl-aspartyl-glutamic acid (p value = 5.30E-15), and argininosuccinic acid (p value = 6.35E-12)

(Figure 2B). KEGG pathway mapping of the differentially expressed metabolites revealed an involvement of

various metabolic pathways (Figure 2C). These pathways included arginine and proline metabolism, glycine

and serine metabolism, alanine metabolism, methionine metabolism, sphingolipid metabolism, gluconeogen-

esis, and the TCA cycle pathway, demonstrating involvement of the broader categories of amino acid, lipid and

energy metabolism in COVID-19 pathogenesis. Our results confirm prior reports that reported altered phenyl-

alanine and tryptophan metabolism in severe COVID-19 patients compared to non-COVID-19 patients (Wu

et al., 2021; Thomas et al., 2020; Barberis et al., 2020). In addition, our data has shown that multiple metabolites

involved in sphingolipidmetabolism are significantly increased in COVID-19 patients, pointing toward other po-

tential targets for COVID-19 treatment (Törnquist et al., 2021).

Comparative proteomic analysis identified significant changes in the expression of 48 out of the 266 analyzed

proteins between COVID-19 and controls at an FDR of 0.05 (Figure 2D). The top three differentially expressed

proteinswereC-X-Cmotif chemokine ligand 10 (CXCL10) (p value= 5.09E-13), galectin 9 (Gal-9) (p value= 5.49E-

10), andmonocyte chemoattractant protein 3 (MCP-3) (p value = 2.85E-09) (Figure 2E). KEGG pathway mapping

revealed that these proteins participated in various protein pathways (Figure 2F), including the interleukin 17 (IL-

17), tumoral necrosis factor (TNF) and JAK-STAT signaling pathways. Detailed results of the differential analysis

and pathwaymappings can be found in Table S4. Of note, the utility of the JAK inhibitors baricitinib or ruxolitinib

has already been demonstrated in a clinical trial for selected patients with severe or critical COVID-19 patients

(Kalil et al., 2020; Iastrebner et al., 2021). Basedonour data, clinical trials further targeting IL-17 andTNF signaling

in COVID-19 may lead to additional therapeutic approaches for treating COVID-19.

Global principal component analysis (PCA) on the metabolomics and proteomics data revealed no clear

separation of COVID-19 and control groups (Figure S2). This is an effect that we have commonly observed

in previous studies of blood data (Roberts et al., 2021; Valdés et al., 2022; Meoni et al., 2021; Overmyer

et al., 2021; Di et al., 2020; Gisby et al., 2021), where omics profiles only separated groups in a specific (sin-

gle molecules and pathways) rather than a global fashion.
Protein-metabolite networks identify potential mediators of COVID-19 pathology

To obtain further mechanistic insight into the biology of COVID-19, we developed a comprehensive, data-

driven network for the integrative analysis of our multi-omics dataset. We first generated a Gaussian graph-

ical model (GGM) of correlated metabolites and proteins from our COVID-19 cohort (Data S1). GGMs are

correlation-based network models that we have previously demonstrated to accurately reconstruct biolog-

ical pathways from blood-based omics data (Krumsiek et al., 2011, 2012; Benedetti et al., 2017). A minimum

spanning tree-based algorithm was then used to identify a focused subnetwork that connects the most

significantly correlated metabolites and proteins from the original network (Figure 3). The subnetwork

included 13 proteins from the Olink inflammatory panel, 32 proteins from the Olink cardiovascular panels

II and III, and 70 metabolites. From this subnetwork, we selected four network modules to query the inter-

play between metabolism, inflammation, and vascular dysfunction in COVID-19 patients.
iScience 25, 104612, July 15, 2022 5
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Figure 3. Protein-metabolite networks in COVID-19

Gaussian graphical model (GGM) representing the significant partial correlations between all the measured metabolites

and proteins, generated by a minimum spanning tree (MST) based reduction combined with a shortest paths-based

approach. The network includes all differentially expressed metabolites and proteins between COVID-19 patients and

controls. Squares indicate proteins and green circles indicate metabolites. Inflammatory proteins are colored in purple,

whereas vascular injury proteins are colored in red. Shadows represent molecule modules.
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Inflammation-related network modules

Module 1. Our network identified hexanoylcarnitine as a key metabolite associated with inflammatory

cytokines in COVID-19 illness. The module contained IFN-gamma, CXCL10 and CXCL11 that were all up-

regulated in COVID-19 and associated with hexanoylcarnitine. IFN-gamma, CXCL10 and CXCL11 are

proinflammatory cytokines which regulate T cell immunity (Tokunaga et al., 2018), whereas hexanoylcarni-

tine is a medium-chain fatty acid conjugate that plays a critical role in energy metabolism and mitochon-

drial fatty acid b-oxidation (Figure 3) (Stanley et al., 1992). Levels of other carnitine species (L-carnitine

and caprylic acid) were also elevated in COVID-19 patients, suggesting a role for inflammation, dysregu-

lated fatty acid b-oxidation and mitochondrial dysfunction in COVID-19 pathogenesis (Wajner and Amaral,

2015; Thomas et al., 2020; León et al., 2021; Soliman et al., 2020).

Module 2. In a second inflammation-related module, cytosine was another key metabolite linked with

inflammatory cytokines during COVID-19. The module consisted of a group of macrophage-derived cyto-

kines, including MCP-2, MCP-3 and GRN, which were all upregulated in COVID-19 and positively associ-

ated with cytosine (Figure 3). This finding is consistent with the hyperinflammatory state of COVID-19 infec-

tion in which cytokine storms are often observed (McGonagle et al., 2021). Cytosine, a pyrimidine-class

nucleotide that is an essential metabolite for cell proliferation and survival, is commonly upregulated in

the host response during viral infection and is furthermore an important mediator of viral replication

(Hoelzer et al., 2008). Prior reports have shown cytosine levels to be elevated in COVID-19 patients (Liu

et al., 2019), which was corroborated in our own cohort. Taken together, cytosine may be a key metabolite

linking viral replication to SARS-CoV-2 induced inflammation.
6 iScience 25, 104612, July 15, 2022
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Figure 4. Associations of molecules with clinical indices in COVID-19

(A) Lollipop plot representing the number of alteredmetabolites for each analyzed parameter (*Diabetes mellitus, **C-reactive protein, ***Acute respiratory

distress syndrome, represented by whether patients were intubated).

(B) Heatmap indicating the number of differentially expressed metabolites associated with each clinical parameter and its significance. We included four

clinical parameter categories: demographics, comorbidities, clinical events, and laboratory parameters.

ll
OPEN ACCESS

iScience 25, 104612, July 15, 2022 7

iScience
Article



Figure 4. Continued

(C) Volcano plot showing detailed metabolic changes correlated with death, kidney disease and C-reactive protein.

(D) Lollipop plot representing the number of altered proteins for each analyzed parameter.

(E) Heatmap indicating the number of differentially expressed proteins on each clinical parameter and its significance, using the same four categories

described above. Proteins are marked according to Olink panels.

(F) Volcano plot showing detailed protein changes correlated with death, platelet count and ferritin levels.
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Vascular-related network modules

Module 3. Although COVID-19 presents itself mainly as a respiratory disease, autopsy reports have addi-

tionally described significant vascular injury because of endothelial cell damage, microcirculatory thrombi,

and impaired cellular junction integrity (Varga et al., 2020). Our network uncovered the coordination of

MERTK, RAGE and thrombomodulin (TM) with the metabolite 4-hydroxyproline in COVID-19 (Figure 3).

MERTK, RAGE and TM are proteins key to maintaining features of endothelial homeostasis, and hydroxy-

proline is a major component of collagen (Xu et al., 2019). MERTK, a member of the TAM family of receptor

tyrosine kinases (RTKs), and RAGE, a pro-coagulant and inflammatory molecule were upregulated, whereas

TM was downregulated, suggesting induction of a pro-coagulant and inflammatory vascular state in

COVID-19. Notably, the coordination of these proteins centered around alterations in levels of hydroxypro-

line, where downregulation of TM directly correlated with hydroxyproline levels. A link between TM and

hydroxyproline has been described, where administration of TM had anti-fibrotic effects on lung and kid-

ney murine models (Takeshita et al., 2020). Taken together, these data link the pro-coagulant and fibrotic

state of COVID-19 through thrombomodulin and hydroxyproline.

Module 4. In a second vascular-related module, we found that cathepsin D (CTSD), a lysosomal protease

known to disrupt endothelial cell junctions and increase vasopermeability, was associated with a group of

glycolytic metabolites including D-glucose, glycerol-3-phosphate, and lactic acid (Monickaraj et al., 2018).

Notably, increased vascular permeability and glycolysis are known features of a pro-angiogenic state

(Leung and Shi, 2021). Although dysregulated angiogenesis occurs in COVID-19 patients (Ackermann

et al., 2020), how these events are coordinated remains poorly understood. Here, we report the concom-

itant upregulation of cathepsin D and intermediate products of glycolysis (D-glucose and lactic acid) in our

COVID-19 cohort, which position this enzyme as a potential driver of the COVID-19 phenotype. Of note,

elevated plasma activity of cathepsin D has been found in patients with type 2 diabetes, suggesting a

link between abnormal vasculature and the dysregulated glucose metabolism seen in our higher risk dia-

betic COVID-19 patients (Chen et al., 2020). Taken together these data suggest that the disruption of

vascular and glucometabolic homeostasis in COVID-19 is mediated by cathepsin D.
Serum metabolites and proteins associate with clinical indices in COVID-19

Serummetabolites and proteins within the COVID-19 patient groupwere assessed for correlation with rele-

vant clinical indices including: i) demographics (sex, age, and BMI), ii) concurrent comorbidity (hyperten-

sion, preexisting kidney disease, diabetes mellitus [DM], severity of illness [SOFA]), iii) laboratory markers

of inflammation (C-reactive protein [CRP], d-dimer, lymphocyte count, platelet count, ferritin), and iv) future

clinical events (ARDS, death) (Figures 4A and 4D). Preexisting kidney disease was found to be associated

with the highest number of both metabolites and proteins. Other clinical parameters including ARDS,

death, BMI, gender, age, SOFA score, hypertension, DM, and d-dimer levels were associated with

numerous metabolites but only few proteins. Conversely, platelet count and ferritin level were associated

with a large number of proteins but relatively few metabolites. Detailed association results are provided in

Tables S5 and S6.

Hierarchical clustering of clinical indices by their correlation with metabolites revealed two broad clusters:

one predominantly related to laboratory markers of inflammation, and a second largely related to non-lab-

oratory indices (Figure 4B). Volcano plots of three representative indices (death, preexisting kidney disease

and CRP) are shown in Figure 4C. Seventy-five metabolites were significantly associated with death, 96 with

preexisting kidney disease and 37 with CRP level. 69 metabolites were associated with both death and kid-

ney disease and 20 were associated with death, kidney disease and CRP levels. Key metabolites associated

with each of the three selected clinical indices are depicted in Figure 4C. Remarkably, hexanoylcarnitine

and cytosine, which we earlier showed to be upregulated in COVID-19, were among the 20 metabolites
8 iScience 25, 104612, July 15, 2022
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associated with all three of these clinical indices. This finding supports the potential utility of hexanoylcar-

nitine and cytosine not only as biomarkers for COVID-19 but also as predictors of disease severity.

Clustering of clinical indices according to their correlation with proteins also revealed two broad clusters

(Figure 4E) that were notably similar to the metabolite-derived clusters, except that age and kidney disease

clustered together with laboratory markers of inflammation. Volcano plots of three representative indices

(death, ferritin level and platelet count) are depicted in Figure 4F. Seventeen proteins correlated with

death, 26 with platelet count and 29 with ferritin. Six proteins were associated with both death and ferritin

level, 9 with death and platelet count, and 5 (ANGPT1, PDGF subunit A, PDGF subunit B, LAP TGF-beta-1,

CXCL5) with death, ferritin level and platelet count (Figure 4F). ANGPT1, PDGF subunit A and PDGF sub-

unit B are markers of endothelial injury and platelet dysfunction, whereas LAP, TGF-beta-1, and CXCL5 are

markers of inflammation. The fact that these proteins correlated with known clinical indices of COVID-19

mortality and morbidity corroborates the importance of vascular injury and inflammation in COVID-19

pathogenesis, which we observed in our network analysis above.
Metabolomics signature predicts clinical outcomes in COVID-19

We devised a novel hierarchical composite outcome measure for COVID-19 severity which incorporates a

series of clinical events, ranked in order of severity, that characterize both acute COVID-19 and some of the

sequelae of COVID-19 seen in post-acute COVID-19 syndrome (PACS) (Nalbandian et al., 2021): in-hospital

mortality, mechanical ventilation (MV) at discharge, kidney replacement therapy (KRT) at discharge, pro-

longed organ failure support (mechanical ventilation and/or kidney replacement therapy for more than

2 weeks), supplemental oxygen requirement, acute kidney injury and length of hospital stay (Figure 5A).

Our measure represents each patient on a continuous spectrum of severity to provide more information

than a dichotomous classification such as mortality. Details on the design of this score and patient numbers

in each group can be found in Figure S3.

A machine learning algorithm based on an ordinal response mixed effect model with LASSO regularization

was used to generate our prediction model of the composite outcome measure using serum metabolic

profiles and baseline patient demographics (age, sex and BMI) as combined inputs (Figure 5B). Proteins

were not included in the model, because our study had around three times more metabolomics samples

than proteomics samples. The final model included 32 metabolites and achieved an average concor-

dance-index of d = 0.69 (SE = 0.017, 95% CI of [0.65, 0.72]), which is equivalent to a receiver operating char-

acteristics area under the curve (ROC-AUC) on a binary outcome. This was a significant improvement (p

value = 3E-5) over a baseline model containing only age, sex, and BMI, which had a performance of d =

0.59 (SD = 0.02, 95% CI of [0.56, 0.64]). The 32 metabolites in the final model included 14 amino acids,

six nucleotides, six lipids and two metabolites related to energy metabolism (Figure 5C). Interestingly,

our metabolite-based model showed improvement over the baseline model not only for predicting the

composite outcome, but also for predicting some of its individual components (i.e., intubation, AKI, sup-

plemental oxygen requirement, and length of hospital stay, Figure 5D).

We assessed the tradeoff between the number of metabolites incorporated into the model and the

model’s prediction performance across a range of included metabolites. Our analysis revealed that

most of the predictive power (d � 0.68) was already achieved with the first six metabolites (cis-aconitic

acid, hydrocinnamic acid, pantothenic acid, 7-methylguanosine, citrulline, methionine sulfoxide), after

which prediction performance did not significantly improve (Figure S4). This finding suggests that a tar-

geted assay of six metabolites could predict disease severity with this accuracy, although independent vali-

dation in other datasets remains to be established.

As a validation step, we tested the performance of our reduced six-metabolite model on blood metabo-

lomics data from two previously published studies by Su et al. (2020) and Shen et al. (2020) (Figure 5E).

The Su study reported COVID-19 severity using a WHO-based score with seven ordinal levels from mild

to severe. Our model achieved a concordance index of d = 0.83, again outperforming a model that just

consisted of age, sex, and BMI (Figure 5E, left). The Shen study differentiated two groups of COVID-19 pa-

tients, mild and severe. That study also developed a prediction model, and we extracted their patient pre-

diction scores from the paper to be able to calculate a concordance index for comparison. The models

were tested on two test cohorts, called ‘C2’ and ‘C3’ from the original publication (Figure 5E, right). Our

6-metabolite model consistently outperformed both the score from Shen et al. as well as the baseline
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Figure 5. Metabolomics signature predicts clinical outcomes of COVID-19

(A) Scheme of the hierarchical composite outcome ranging from in-hospital mortality to length of hospital stay and disposition (MV: Mechanical ventilation,

KRT: Kidney replacement therapy).

(B) Dot plot comparing the predictive performance (Concordance index) of a baseline model using age, sex, and BMI and a model including baseline plus

metabolites. The results show that the prediction accuracy improves when adding metabolites to the model. Dots represent median values and shaded

areas are 95% confidence intervals.

(C) Bar plot showing the main altered metabolic groups included in the composite outcome score.

(D) Dot plots showing individual outcome analysis, comparing the baselinemodel and baseline plus metabolites added. Metabolites improve the prediction

accuracy of ARDS, AKI, supplemental oxygen requirement and prolonged hospitalization.

(E) Replication analysis of our model in two independent datasets by Su et al. (Su et al., 2020) and Shen et al. (Shen et al., 2020). This analysis was performed

on the reduced 6-metabolite model. The Shen et al. study developed their own model, which is plotted in black (Shen et al., 2020).
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model with age, sex, and BMI. Notably, overall concordance scores in the Shen dataset were substantially

higher than in our own dataset, both as reported in the original paper as well as in the validation of our own

model on their data. We believe this effect occurs because of the complex nature of our composite

outcome score as opposed to a simple yes vs. no classification of severity, the small sample size in Shen

et al., and the reporting of an unvalidated training set AUC of 0.95 in their study. Overall, this analysis dem-

onstrates that the model replicates in independent datasets with varying definitions of severity, and that

our model provides slightly better results compared to the previously reported prediction model.
DISCUSSION

The novel coronavirus has ravaged the global healthcare system because of its high transmissibility and un-

predictable clinical course that often affects multiple organ systems. Moreover, the long-term conse-

quences of COVID-19 infection remain poorly understood. A full understanding of the pathogenesis of

COVID-19 will require an unraveling of the mechanisms of inflammation, immune dysfunction, endothelial

cell injury and dysregulated coagulation that underlie this disease.
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In our study, we used an integrative proteomic-metabolomic analysis to identify global molecular signa-

tures specific to the acute illness of COVID-19, whereas many prior metabolomic and proteomic studies

have not assessed the interplay between proteins and metabolites. Our analyses establish associations

of specific inflammation and vascular injury-related proteins with various metabolites during COVID-19,

which appear to link inflammation with mitochondria-dependent energy metabolism and viral replication,

as well as coagulation with fibrogenesis and glycolysis.

Our discovered network modules not only provide a better understanding of disease pathogenesis, but

also facilitate novel potential therapeutic targets for COVID-19. The modules identified various proteins

and metabolites involved in inflammatory and vascular injury processes, such as MMP 12, Cathepsin D

and RAGE which, to the best of our knowledge, have not yet been studied as targets for therapeutic

intervention in COVID-19. Of note, our modules contained IL-6, which is already a mainstay of treatment

for severe disease (Brown et al., 2021), and several other molecules such as carnitine, niacinamide and

IFN-gamma which others have been studying in the context of COVID-19 therapies (Li et al., 2021; van Laar-

hoven et al., 2021; Fu et al., 2021).

There is increasing evidence that evaluating symptoms andmultiple clinical outcomes during acute disease

is crucial in determining the risk of long COVID-19 (Sudre et al., 2021). To the best of our knowledge, we are

the first group to develop a composite outcome measure in COVID-19 using multiple clinical indices in a

prediction model that assesses not only COVID-19 disease severity but also the sequelae of COVID-19 that

characterize post-acute COVID-19 syndrome (PACS). Compared to dichotomous outcome measures

such as death and survival, our composite outcome score reflects a broader, more holistic assessment of

COVID-19 morbidity in the hospital setting. Moreover, we were able to validate the model in two indepen-

dent studies, thereby demonstrating its generalizability and translational potential.

Several key strengths underlie our study cohort. As opposed to the use of healthy controls reported in other

COVID-19 studies (Shen et al., 2020; Arunachalam et al., 2020; Overmyer et al., 2021; Lucas et al., 2020; Su

et al., 2020), our use of non-COVID patient samples, in the same hospital during the same period between

March and April 2020, allowed us to investigate the interactions highly relevant to COVID-19 pathogenesis

and clinical course. Additionally, we analyzed a relatively larger cohort compared to other studies, with

hundreds of samples available for both metabolomic and proteomic analysis.

In conclusion, our investigation has sought to not only define themetabolomic and proteomic signatures of

COVID-19, but also to explore interactions between metabolites and proteins that can serve as a roadmap

for future mechanistic studies. We have furthermore proposed a novel clinical composite outcome score

that can be used in a clinical prediction model for COVID-19. Ultimately, a better understanding of the

pathophysiology of COVID-19 at the molecular level may lead to short-term and long-term targeted

therapies.
Limitations of the study

As alterations in proteome and metabolome were analyzed in sera but not in lung tissues or bronchoalveo-

lar lavage fluid, our results may not reflect what occurs at tissue-specific cellular levels. Furthermore, based

on the current study design and methodology, the correlative relationships we report between metabolo-

mic, and proteomic alterations and SARS-CoV-2 outcomes should be interpreted as purely correlative

rather than causal in nature. Additional studies are required to define the mechanistic roles of individual

molecules highlighted in this paper. Finally, as our study was only a single center investigation, our results

will need to be validated in other cohorts.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human Serum Samples Weill Cornell Medicine IRB Protocol #19-

10020914 – NewYork-Presbyterian Core

Laboratory

N/A

Chemicals, peptides, and recombinant proteins

Methanol (LC/MS grade) Fisher scientific A456-4

Water (LC/MS grade) Fisher scientific W6-4

Acetonitrile (LC/MS grade) Fisher scientific A955-4

Ammonium acetate Fluka 631-61-8

Ammonium hydroxide solution Sigma-Aldrich 338818-100ML

Deposited data

Metabolomics, proteomics, and clinical data https://doi.org/10.6084/m9.figshare.

19115972

N/A

Software and algorithms

XCalibur 4.1 ThermoFisher Scientific N/A

Other

Q Exactive Orbitrap mass spectrometer ThermoFisher Scientific N/A

Vanquish UPLC system ThermoFisher Scientific N/A

SeQuant ZIC-pHILIC column Millipore Sigma 1504600001
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jan Krumsiek.
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Code: Code to reproduce all the statistical results presented in this paper is available at https://github.

com/krumsieklab/covid-omics.

d Data: The data used in this study can be downloaded at https://doi.org/10.6084/m9.figshare.19115972.

v1
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort description and ethical approvals

This is a single-center prospective analysis of one cohort comparing hospitalized COVID-19 patients and

non-COVID-19 controls. Our cohort was comprised of 330 patients with confirmed SARS-CoV-2 RT-PCR,

and 97 non-COVID-19 controls with negative RT-PCR results who were hospitalized at the NewYork-Pres-

byterian Hospital/Weill Cornell Medical Center between March and April 2020. Remnant serum samples

were matched with selected patients after which patients were deidentified. Controls were randomly

selected patients admitted to the hospital with symptoms suspicious for COVID-19, but with negative

SARS-CoV-2 RT-PCR. Seventy nine percent of control group patients had shortness of breath, fever, cough

or chest pain which are commonly seen in COVID-19. Children (less than 18 years old) and pregnant women
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(confirmed by a positive beta-HCG test and/or medical records) were excluded. A full description of the

cohort can be found in Tables 1, S1 and S2. The collection and analysis of the data and human samples

satisfied the principles outlined in the Declaration of Helsinki and were approved by the local IRB (Weill

Cornell Medicine IRB, protocol #19-10020914), with a waiver of informed consent.
METHOD DETAILS

Data collection

Data were obtained from the Weill Cornell Medicine COVID Institutional Data Repository (COVID-IDR),

which is a high-quality registry of COVID-19 patients at NewYork-Presbyterian - Cornell with laboratory

confirmed SARS-CoV-2 RT-PCR. The COVID-IDR houses both manually and automatically extracted Elec-

tronic Health Record (EHR) data. Demographics, comorbidities, and important dates of patients’ hospital

course (admission, intubation, extubation, discharge, death) were extracted by a team of medical profes-

sionals and stored in the COVID-IDR. Laboratory tests, ventilation parameters, vital signs, and respiratory

variables were additionally available via automated extraction through theWeill Cornell-Critical Care Data-

base for Advanced Research (WC-CEDAR) within the COVID-IDR.WC-CEDAR (Schenck et al., 2021) is a crit-

ical care database originally designed to automatically extract, transform, and store EHR data on Intensive

Care Unit (ICU) patients; it was expanded to include all hospitalized patients during New York City’s

COVID-19 surge. Data not available within WC-CEDAR were manually extracted and recorded in REDCap.
Sample handling

Standard practices for serum collection and storage at the NewYork-Presbyterian/Weill Cornell Medical

College include collecting venous blood into a serum-separating tube (SST), and serum is obtained by

centrifuging at 1,500g for 7 minutes as soon as possible with a maximum time limit of 2 hours from the

time of collection. The specimens are typically stored at 4�C for 1 to 5 days before coded/de-identified

and then transferred into a �80�C freezer. Samples were thawed and inactivated in different ways: for

the metabolomic analysis, x3 sample volume of HPLC grade ethanol were added; for the proteomic anal-

ysis, the samples were heat-inactivated in a water bath of 56�C for 15 minutes. After these processes, the

samples were stored again at �80�C until the analyses were performed.
Metabolomic profiling

Targeted metabolite profiling was performed according to a method described in a previous publication

(Chen et al., 2016). For metabolite extraction, 80 mL of pre-chilled methanol (�80 �C) was added to 20 mL of

serum. The sample was vortexed for 1 min and then incubated at �80 �C for 2 hours before it was centri-

fuged at 20,000 g for 15 min at 4 �C to remove the pellet. The supernatant was transferred to a new Eppen-

dorf tube and dried completely with a Speedvac for 30 min (with heat off). The dried sample was redis-

solved in HPLC grade water before it was applied to the hydrophilic interaction chromatography LC-MS.

The sample injection order was randomized.

Metabolites were measured on a Q Exactive Orbitrap mass spectrometer (Thermo Scientific), which was

coupled to a Vanquish UPLC system (Thermo Scientific) via an Ion Max ion source with a HESI II probe

(Thermo Scientific). A Sequant ZIC-pHILIC column (2.1 mm i.d. 3 150 mm, particle size of 5 mm, Millipore

Sigma) was used for separation of metabolites. A 2.1 3 20 mm guard column with the same packing ma-

terial was used for protection of the analytical column. Flow rate was set at 150 mL/min. Buffers consisted of

100% acetonitrile for mobile phase A, and 0.1% NH4OH/20 mM CH3COONH4 in water for mobile phase B.

The chromatographic gradient ran from 85% to 30%A in 20min followed by a wash with 30%A and re-equil-

ibration at 85% A. The column temperature was set to 30 �C and the autosampler temperature was set to

4 �C. The Q Exactive was operated in full scan, polarity-switching mode with the following parameters: the

spray voltage 3.0 kV, the heated capillary temperature 300 �C, the HESI probe temperature 350 �C, the
sheath gas flow 40 units, the auxiliary gas flow 15 units. MS data acquisition was performed in the m/z range

of 70–1,000, with 70,000 resolution (at 200 m/z). The AGC target was 3,000,000 and the maximum injection

time was 100 ms. The MS data was processed using XCalibur 4.1 (Thermo Scientific) to extract the metab-

olite signal intensity for relative quantitation. Metabolites were identified using an in-house library estab-

lished using chemical standards. Identification required exact mass (within 5ppm) and standard retention

times. As a quality control, a mixture of standard compounds was injected thirteen times throughout the

LC-MS data acquisition process for monitoring of the stability of LC retention time, the MS mass accuracy

and the signal intensity. The median coefficient of variation for metabolite quantitation based on the
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quality control sample was 0.061. The data from the serum samples showed that both retention time and

mass accuracy were highly stable throughout the experiment (Figure S5).
Proteomic profiling

Proteomics analysis was performed using the Olink platform (Uppsala, Sweden) at the Proteomics Core of

Weill Cornell Medicine-Qatar, according to manufacturer’s instructions. We used the Inflammation, Car-

diovascular II and Cardiovascular III panels. High throughput real-time PCR of reporter DNA lined to pro-

tein specific antibodies was performed on a 96-well integrated fluidic circuits chip (Fluidigm, San Francisco,

CA). Each sample was spiked with quality controls to monitor the incubation, extension, and detection

steps of the assay. Additionally, samples representing external, negative, and inter-plate controls were

included in each analysis run. From raw data, real time PCR cycle threshold (Ct) values were extracted using

Fluidigm reverse transcription polymerase chain reaction (RT-PCR) analysis software at a quality threshold

of 0.5 and linear baseline correction. Ct values were further processed using the Olink NPX manager soft-

ware (Olink, Uppsala, Sweden). Here, log2-transformed Ct values from each sample and analyte were

normalized based on spiked-in extension controls and scale-inverted to obtain Normalized log2-scaled

Protein Expression (NPX) values. NPX values were adjusted based on the median of inter plate controls

(IPC) for each protein and intensity median scaled between all samples and plates.

Each metabolite and protein was annotated with pathways from the Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) database (Kanehisa et al., 2021).
Data preprocessing

Children, pregnant women, and samples after intubation were excluded from all analyses. The metabolo-

mics data was measured in three different batches. For each batch, data was preprocessed by filtering out

samples with more than 50% missing values, followed by filtering out metabolites with more than 25%

missing values, probabilistic quotient normalization (Dieterle et al., 2006), and log2 transformation. Two

extreme outlier metabolites were manually removed (phosphorylcholine and adenosine monophosphate).

The next step was to merge the different batches into a joint dataset. Batch 3 contained only control pa-

tients and could thus not be simply added by batch correction. To avoid issues created by this imbalanced

experimental design, batches 2 and 3 contained an overlapping set of samples which were used for an an-

chor-based normalization by dividing each metabolite in batch 3 by the mean fold change of the overlap-

ping samples. The anchor samples from batch 3 were then deleted and the batches combined using me-

dian-based batch correction (Do et al., 2018). Overall, this procedure eliminates batch effects and allows for

a batch that only contains control samples. Missing values were then imputed using the k-nearest neighbor

approach (Do et al., 2018).

Proteomics data preprocessing included the same steps of filtering, quotient normalization, logging, and

missing value imputation with identical parameters as for the metabolomics data. Ten proteins were

measured as duplicates on the Olink platform, so their expression values were averaged.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Differential expression of metabolites and proteins for both the COVID-19 vs. control analysis as well as the

clinical parameter analysis within the COVID-19 cohort was assessed using the following linear mixed effect

model:

met prot � outcome + time+
�
1
��patient

�
;

wheremet_prot is each individual metabolite or protein, outcome is either COVID-19 yes/no or the value of

a clinical parameter, time is the day of sample taking as a factor, and (1|patient) is a random effect per pa-

tient to account for repeated measurements. P-values are reported for the significance of the outcome

term.

Data preprocessing and statistical analysis was performed using the ‘‘maplet’’ toolbox for R (Chetnik et al.,

2021) (https://github.com/krumsieklab/maplet).
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Network construction

The dataset was first reduced to the samples that overlap betweenmetabolomics and proteomics (n = 227),

and corrected for age, sex, BMI, and COVID-19 status (yes/no). A Gaussian Graphical Model (GGM) based

network was then constructed using the GeneNet algorithm (Schäfer and Strimmer, 2005) and drawing an

edge for all partial correlations with an FDR smaller than 0.2. In a second step, this network was condensed

to highlight the connections between molecules that were significantly different between COVID-19 and

controls. To this end, a shortest-path distance matrix between all molecules was constructed and subset

to the significant molecules. A minimum spanning tree (Prim, 1957) of this matrix was then constructed

to visualize a simplified network.
Composite outcome

A detailed description of the construction of the composite outcome along with patient numbers in each

group can be found in Figure S3.
Regularized linear mixed effect ordinal regression model

A new regression model was developed to deal with an ordinal outcome, repeated measurements, and

feature selection with regularization. Repeated measurements are handled as a random effect, while

age, sex, BMI, and metabolites are treated as fixed effects. The metabolites are penalized using an L1
LASSO-type regularization to obtain a sparse solution. The model is fitted using an mixed-effect ordinal

regression model with complementary log-log link function (McCullagh, 1980), using maximum likelihood

(ML) estimation as proposed by Ripatti and Pamgren (Ripatti and Palmgren, 2000). An optimal LASSO pen-

alty parameter was estimated through an iterative algorithm for maximizing the Laplace approximation of

the integrated model likelihood. This approach was adapted from Therneau (Therneau, 2020), which was

originally developed for mixed effect Cox models. To obtain an unbiased estimate of the model perfor-

mance, leave-one-out-cross-validation across the entire dataset was performed. The added value of me-

tabolomics data over baseline clinical data was assessed by comparing the final model with a model

only consisting of age, sex, and BMI.
Validation datasets

Metabolomics data were downloaded from Su et al. (2020) (n = 121) and Shen et al. (2020) (containing two

validation sets, n = 10 and n = 19). The Su dataset contained all six metabolites from our reduced model as

well as age, sex and BMI as baseline parameters. The Shen study also covered age, sex and BMI, and the

first test dataset (‘‘C2’’) contained all six metabolites. The second test dataset (‘‘C3’’) was measured using a

targeted assay of only 7 metabolites and 22 proteins, and the metabolites did not overlap with our model

metabolites. Thus, we had to follow a more complex procedure for validation. We first applied our risk

score in their training cohort, which contained all metabolites. In the training cohort, this score was then

regressed on the available measurements in C3, i.e. modeling ‘score �metabolite1 + . + metabolite7 +

protein1 + .+ protein22’. The coefficients from this model were then used in C3 to derive a surrogate

severity score, which we evaluated in Figure 5.
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