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Abstract

The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners,

that represents a complete tissue sample or cytological specimen at microscopic level.

While Whole Slide image analysis is recognized among the most interesting opportunities,

the typical size of such images—up to Gpixels- can be very demanding in terms of memory

requirements. Thus, while algorithms and tools for processing and analysis of single micro-

scopic field images are available, Whole Slide images size makes the direct use of such

tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed

with the objective to seamlessly extend the application of image analysis algorithms imple-

mented in ImageJ for single microscopic field images to a whole digital slide analysis. The

plugin has been complemented by examples of macro in the ImageJ scripting language to

demonstrate its use in concrete situations.

Introduction

The digitalization of full glass slides containing tissue samples for microscopic analysis is a

reality that is becoming stronger and opens to many opportunities [1]. The digital slide, or

Whole Slide Image, is a digital image, acquired with specific scanners, that represents a com-

plete tissue sample or cytological specimen at microscopic level. Having such samples in digital

form brings many advantages such as the immutability of the sample along time as well as

the possibility to analyze it more automatically using many different image analysis methods.

However, digital slides are acquired at resolutions up to 0.2 μ/pixel, thus consisting of up to bil-

lions of pixels. Image size is one of the reasons why they are not yet commonly used in routine.

While Whole Slide Imaging can be applied in any microscopy-based area, Pathology is

the=specialty with most attention to digital slides. As a matter of fact, under the term “digital

pathology” now many digital slide applications are collected, including in particular telemedi-

cine [2] and image analysis [3]. In particular, image analysis over digital pathology samples is

aimed at tissue classification [4], quantification of biomarkers [5], identification of rare events

like mitoses [6], etc.

ImageJ is a well known and long-lived open source software for biomedical image analysis

[7]. It allows for the most important image processing and analysis procedures on a variety of
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image formats and sources, but it also allows for its extension and customization through add-

ons such as macros and plugins. Macros (that is, interpreted software programs written in the

internal scripting language) can be programmed for implementing specific functions not

already available or to combine existing functions to be automatically executed. Furthermore,

plugins (external software modules that can be run from a menu or inside macros) can be also

implemented using the Java language, for faster and more complex functionalities. A large

community of developers, which often are dedicated users with biological background, contin-

uously enhances ImageJ by addressing bugs and particularly developing plugins and macros

[8]. This eventually led to the birth of a project, “Fiji”, aimed at enhancing ImageJ architecture

and update mechanism [9]. By means of its extensions, ImageJ may become a platform that

can be specialized for usage in specific image processing and analysis areas. Among those

areas, microscopy-originated images [10,11] have been one of ImageJ targets since the very

beginning [12], although normally processing occurs on selected microscopic fields, instead of

the whole slide.

The advent of digital slides is however posing one major issue, correlated with the size of

the images which could be in the order of hundreds of Mpixels. ImageJ—and almost any other

generic biomedical image processing software—is made for processing images that can be

fully loaded in the main memory, with limitations coming from both the memory manage-

ment side and the internal data structures (e.g., with a defined maximum number of pixels)

since are not aimed at very large images. Processing large images can only be done by loading

portions of them into memory, one at a time, until the complete image has been treated. In

fact, digital slides image formats allow this by using tiles (i.e., small sub-images) as means to

store the whole slide, at different magnifications according to a pyramidal scheme. Tiles can be

individually extracted and eventually processed. Each format typically stores a number of

image series (consisting in a group of tiles), each one representing a different magnification, or

also a slide thumbnail, or even the label part of the slide. Tile size can be different among for-

mats or even inside the same format.

Among ImageJ plugins, one notable contribution of interest for digital slides is Bio-For-

mats [13], a Java library for accessing many different biological image formats including a

number of digital slide formats too. With Bio-Formats, one can read a full digital slide at a

magnification sufficiently small to have a manageable image, or also extract crops at any

magnification and of any (manageable) size. This allows to use ImageJ also for processing

digital slides. Since in a number of algorithms the basic workflow is always the same (that is:

extraction of a tile, execution of a procedure on it, iterated on the whole slide), one further

abstraction step is to free the developer from the implementation of the common parts of

this workflow.

Thus, the present paper describes the design, implementation and test of a plugin that,

exploiting Bio-Formats basic input capabilities, enables to automatically run an ImageJ macro,

possibly developed and tested on a single image, on a full digital slide.

In our knowledge only three works with similar aims but different implementation strate-

gies are described in literature. Deroulers et al. [14] described an open source tool for splitting

Hamamatsu digital slides (NDPI format) in tiles, that then could be processed with any other

tool, including ImageJ. Nelissen et al. [15], with their SlideToolkit, implemented a similar

workflow abstraction layer but based on the CellProfiler software [16]. A similar concept is

proposed by Haak et al. [17], although again specialized on NDPI format, in the form of a Ima-

geJ plugin that unfortunately is not available. Our proposal allows flexibility regarding the

input image format, while directly focusing on ImageJ, with the possibility of exploiting every-

thing from it through macros.

WSI automated processing with SlideJ
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Material and methods

Requirements

In the process of designing the plugin, a number of requirements have been identified to

assure the robustness of the plugin in a variety of usage scenarios.

The main scenario is the independent execution of a macro on each tile. This can be consid-

ered useful for quantifying tissue fractions, evaluating simple immunohistochemistry, etc.

However, when looking for rare events like mitoses, objects falling on the boundary between

adjacent tiles may be lost. This can be avoided by allowing some overlap between adjacent

tiles. Another scenario is when the macro cannot be run in a totally independent way on each

tile, for example when previously processed tiles are needed for some reason (backtracking,

adaptive algorithms, etc). Finally, another scenario is when different magnifications should be

processed.

The requirements that have been identified are the following:

• The plugin should be usable with different digital slide formats. Using Bio-formats as input

library already allows for this, but robustness over internal parameters of different formats,

such as series position or tile size, has also to be guaranteed. Thus, the plugin should contain

also configurable parameters.

• The macro to be executed should be stored in a file, which position is not fixed but passed as

a parameter.

• Even if the macro is independent from the image being processed, the developer should be

able to recognize the coordinates of the sub-image itself.

• Overlap between adjacent tiles should be configurable through a parameter.

• Tiles extracted from the digital slide can be automatically deleted after macro execution or

left in a temporary folder, according to user preferences. The latter possibility allows for

their availability even after their processing.

• It should be possible to invoke the plugin with its parameters, from another macro too, to

further automate execution.

Experimentation

Three experiments have been made to demonstrate the effectiveness of SlideJ:

• To evaluate compatibility with common digital slide formats, we applied the plugin to all

demo files hosted at the Openslide web site, which in turn are used to demonstrate Open-

slide features [18].

• Together with the plugin, we developed a number of example macros to demonstrate how

SlideJ can be used for digital slide processing, starting from the typical problem of nuclear

biomarkers quantification, with hematoxylin and diaminobenzidine (H/DAB) stained

samples.

• The last experiment has been carried out to evaluate performance of the system according to

tile size. For this, 10 digital slides from breast cancer core biopsies, immunohistochemically

stained for progesterone, have been randomly selected from a previously available set. They

were acquired with an Aperio CS scanner, at 20x magnification and thus with a spatial reso-

lution of 0.5μm. At first, an attempt to open and process the slides as they are has been

made, to evaluate how many could be directly processed with ImageJ, in spite of their size.

WSI automated processing with SlideJ
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Then, a macro has been repeatedly executed on each slide, by means of SlideJ changing tile

size from 2048 to 16384 pixels per side to study the differences in performance, expressed as

throughput (MPixels/minute). While we recognize that throughput heavily depends on the

implemented algorithm, this experiment gives an idea to users on which tile sizes are better

to address their implementations.

All experiments have been carried out on a personal computer configured in an almost typ-

ical way, though towards the high end: an Apple MacBook Pro with i7 processor, 4 cores at

2.2GHz, with 16GB of RAM and SSD disk. ImageJ v2.9.9-rc-43/1.51k, embedded in Fiji, has

been set with 8192MB of maximum heap memory.

Results

Implementation

The SlideJ plugin has been implemented in Java, using Bio-formats as input library and the

fiji-lib.jar for the interface. The latter is provided with the Fiji distribution of ImageJ, but it can

also added to a standard ImageJ installation. It can be run on any operating system in which

ImageJ can be run.

The interface of the plugin is a modal dialog (Fig 1) that resembles the one implemented in

ImageJ for batch macro execution. The user is allowed to process multiple images present in a

folder and store the eventual results in a different folder by setting up paths in the “Input. . .”

and “Output. . .” fields, respectively. Since digital slide processing could be a time consuming

task, the plugin allows the user to launch very long series of unsupervised tasks, which can be

performed in free time (overnight or week end).

In the main dialog window, apart of input and output folders setting, a macro selection but-

ton allows the user to choose the file containing the macro to be executed on the tiles.

Most digital slide files are pyramidal, i.e., each resolution level is memorized as a tile series.

However, the order in which series appear into the file is not the same for all formats. Thus, a

“Series” parameter has been introduced to select the position in the file of the series that has to

be processed (e.g., 1 for the highest resolution in SVS files).

Internal tile sizes are normally dependent on the system used for acquisition and are usually

small (240x240, or similar sizes). The plugin instead provides a parameter to set the size

according to user needs. Typical sizes will depend on the algorithm that has to be applied and

on the memory available. In addition to that, another parameter defines the overlap between

tiles, identical for X and Y directions.

The last parameter defines whether the tiles are deleted or not after each processing step. In

fact, running the plugin, with this parameter set to “no”, and a void macro, produces a set of

tiles that could be further used in some other processing environment, similarly to Deroulers

method [14].

Tiles are stored in TIFF format with a file name that reflects their position on the overall

digital slide according to the following template:

<OriginalFileName.ext>__<series>_<X origin>_<Y origin>.tif

Stored slides can then be reopened after their main processing step, since they are always

identifiable (if not automatically deleted). This may enable multiresolution processing, back-

tracking algorithms, etc. The file name can be accessed also during processing, with techniques

usual in ImageJ macro programming (i.e., reading and parsing the window title). This allows

to know at any time which tile is being processed, in which series and of which slide. However,

since those data are often useful, in provided macro examples we defined a function that

returns that data.
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The called macro should be designed to work on the opened image, and is responsible to

close it and eventually any other window at the end of the execution.

One potential limitation is that each run of the macro on a tile is independent. Thus, in

principle is impossible to pass variables from one step to the other. However, ImageJ allows to

save data in its Results table, which provides persistence among tile processing steps, as dem-

onstrated in the example macros.

Compatibility

SlideJ has been tested on the files hosted on the OpenSlide demo site [18], and it successfully

processed slides in the following formats: Aperio SVS, Leica SCN, Hamamatsu .NDPI, Mirax,

Generic tiled TIFF and regular TIFF. Unfortunately Ventana/Roche .BIF format at present

cannot be correctly opened with Bio-Formats, and thus neither with SlideJ.

Example macros

Quantification of nuclear biomarkers in slides immunohistochemically stained with Hematox-

ylin and diaminobenzidine for peroxidase (H/DAB) has been taken as reference problem for

the development of example macros. In fact, we at first developed a rough algorithm for that,

based on colour deconvolution [19], then we also adapted ImmunoRatio, an ImageJ plugin

that has been validated for that [20]. However, we did not aim at a robust implementation for

clinical use, but just as demonstration of usage and functionality. Thus, the implemented mac-

ros do not discriminate normal and stromal tissue, and in-situ components.

In the macro examples we also implemented a set of functions to store variables or arrays.

They can be used as they are or as the basis for more complex storage schemas. In Table 1 we

list the macros developed for different H/DAB stained sample analysis.

Fig 1. The SlideJ configuration dialog. Folder and file parameters can be selected by browsing the file

system.

https://doi.org/10.1371/journal.pone.0180540.g001
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Digital slide test set

The ten digital slides for the test set ranged from 460Mpixel to 3.179 Gpixels. While not aimed

at validation, the positivity calculated with the algorithm implemented in SlideJDemo2 achieved

a Pearson correlation of 0.93 with expert evaluated positivity. Fig 2 shows a sample slide.

A macro with the same algorithm of SlideJDemo2, but adapted to be applied to an entire

slide, has been developed to check whether digital slides of the progesterone test set could

Table 1. Example macros. File name and a short summary of macro content has been provided for each

example macro.

File name Description

SlideJdemo1.ijm Simulates a basic evaluation of H/DAB positivity for each tile of each slide in the input

folder. Its output is a Results table with a row for each processed tile, showing blue and

brown area, and their positivity percentage.

SlideJdemo2.ijm This macro is similar to SlideJdemo1.ijm, but it directly calculates the overall H/DAB

positivity of each slide. Its output is a Results table with a row for each slide, showing

blue and brown area, and their positivity percentage.

SlideJdemo3.ijm This macro is used to demonstrate the use of more than one Results table to store

data. It calculates H/DAB positivity using a modified version of the ImmunoRatio plugin,

which outputs now not only an annotated image, but also a row in the Results table.

This row is in turn read by the macro and stored in a differently named Results table.

CallerDemo1.ijm It calls SlideJ with SlideJdemo1.ijm and then shows the tile with maximum H/DAB

positivity. This example shows how to access previously stored tiles after a preliminary

processing of the slide.

CallerDemo2.ijm This is the macro used for performance tests. It calls SlideJ with SlideJdemo2.ijm

macro, to enable batch mode before any other operation

CallerDemo3.ijm It calls SlideJ with SlideJdemo3.ijm, to enable batch mode before any other operation

for the sake of performance.

SlideJfunctions.txt This file contains the same SlideJ specific functions used in the demo macros but put

alone.

https://doi.org/10.1371/journal.pone.0180540.t001

Fig 2. Sample slide. Overall view of a sample slide and one high magnification detail.

https://doi.org/10.1371/journal.pone.0180540.g002
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be directly processed without SlideJ. In fact, it depends from the algorithm and from mem-

ory available to ImageJ, and thus we set our system for using a large amount of RAM for it

(8GB). However, 6 out of 10 slides—the largest ones- could not be processed directly due

to out of memory errors, as expected. This even if the implemented algorithm is very

simple. With our memory setting, the threshold for exhausting memory was put around

700Mpixels, with degrading processing speed in slides slightly below threshold, likely due to

swapping.

Performance

The SlideJdemo2 macro, called from CallerDemo2, has been executed on the progesterone slide

set, changing tile size in the following steps: 2048, 3072, 4096, 6144, 8192, 10240, 12388, 14336,

16384. Maximum throughput obtained was slightly above 125 Mpixel/minute. Fig 3 shows

throughput for each tile size. No out of memory errors have been recorded during execution

of SlideJ.

As it can be seen, smaller tile sizes result in slower processing, due to the overhead in access-

ing the original file and saving tiles. However, anything above 6144 pixels of tile size (that is,

36Mpixels tiles) is almost equivalent in terms of speed. In the experiment setting, at 6144 pixels

of tile size, the average time needed for processing one slide is 9.5 minutes.

Fig 3. Performance of SlideJ execution. Throughput (MPixels/minute) by tile size is shown for the example macro SlideJdemo2, run in “batch mode” on

series 1. Data is presented as box and whiskers plot (minimum, 1st quartile, median, 3rd quartile, maximum).

https://doi.org/10.1371/journal.pone.0180540.g003
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Conclusion

Whole slide images cannot always be directly opened and processed with ImageJ and similar

software, due to the need of being fully loaded in main memory, which is not often practically

possible.

SlideJ provides a method to automatically process digital slides inside ImageJ. In principle,

any digital slide format supported by Bio-formats now or in the future can be opened and pro-

cessed using SlideJ. No specific workflow has been implemented, except the iterative loading

of tiles from the digital slide. Processing and analysis are left to a macro written in the ImageJ

scripting language, which is applied to each tile. No other plugins implement this function at

present.

There are however some limitations. Persistence of partial results is implemented using

Results Tables of ImageJ, which is a sort of workaround, although known to ImageJ users. Fur-

thermore, at present we do not consider digital slides with more than one focal plane or time

point. Finally, performance of macro-based processing is far from the needs of images as large

as digital slides in production environments. However, the intended use of SlideJ is mainly

rapid prototyping and testing of processing algorithms on digital slides aimed at research, that

could then be translated in Java code or other implementations.

The plugin with Java source, examples macros and other programming examples can be

found at the address https://github.com/MITEL-UNIUD/SlideJ as open source.
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20. Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available

web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR),

and Ki-67. Breast Cancer Res. 2010; 12(4):R56. https://doi.org/10.1186/bcr2615 PMID: 20663194

WSI automated processing with SlideJ

PLOS ONE | https://doi.org/10.1371/journal.pone.0180540 July 6, 2017 9 / 9

http://www.ncbi.nlm.nih.gov/pubmed/25991255
https://doi.org/10.1007/s00428-015-1865-x
http://www.ncbi.nlm.nih.gov/pubmed/26481244
https://doi.org/10.4103/2153-3539.112693
http://www.ncbi.nlm.nih.gov/pubmed/23858383
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://doi.org/10.1002/mrd.22489
http://www.ncbi.nlm.nih.gov/pubmed/26153368
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1002/wdev.260
https://doi.org/10.1002/wdev.260
http://www.ncbi.nlm.nih.gov/pubmed/27911038
https://doi.org/10.1007/s10916-011-9737-7
https://doi.org/10.1007/s10916-011-9737-7
http://www.ncbi.nlm.nih.gov/pubmed/21584771
http://www.ncbi.nlm.nih.gov/pubmed/17936939
https://doi.org/10.1083/jcb.201004104
https://doi.org/10.1083/jcb.201004104
http://www.ncbi.nlm.nih.gov/pubmed/20513764
https://doi.org/10.1186/1746-1596-8-92
http://www.ncbi.nlm.nih.gov/pubmed/23829479
https://doi.org/10.1371/journal.pone.0110289
https://doi.org/10.1371/journal.pone.0110289
http://www.ncbi.nlm.nih.gov/pubmed/25372389
https://doi.org/10.1002/0471142727.mb1417s109
https://doi.org/10.1002/0471142727.mb1417s109
http://www.ncbi.nlm.nih.gov/pubmed/25559103
https://doi.org/10.4103/2153-3539.119005
https://doi.org/10.4103/2153-3539.119005
http://www.ncbi.nlm.nih.gov/pubmed/24244884
http://www.ncbi.nlm.nih.gov/pubmed/11531144
https://doi.org/10.1186/bcr2615
http://www.ncbi.nlm.nih.gov/pubmed/20663194
https://doi.org/10.1371/journal.pone.0180540

