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Abstract: An accurate and reliable positioning system (PS) is a significant topic of research due to its
broad range of aerospace applications, such as the localization of autonomous agents in GPS-denied
and indoor environments. The PS discussed in this work uses ultra-wide band (UWB) sensors to
provide distance measurements. UWB sensors are based on radio frequency technology and offer low
power consumption, wide bandwidth, and precise ranging in the presence of nominal environmental
noise. However, in practical situations, UWB sensors experience varying measurement noise due
to unexpected obstacles in the environment. The localization accuracy is highly dependent on the
filtering of such noise, and the extended Kalman filter (EKF) is one of the widely used techniques.
In varying noise situations, where the obstacles generate larger measurement noise than nominal
levels, EKF cannot offer precise results. Therefore, this work proposes two approaches based on EKF:
sequential adaptive EKF and piecewise adaptive EKF. Simulation studies are conducted in static,
linear, and nonlinear scenarios, and it is observed that higher accuracy is achieved by applying the
proposed approaches as compared to the traditional EKF method.

Keywords: extended Kalman filter; adaptive filtering; disturbed environment; measurement noise
covariance; nonlinear estimation

1. Introduction

An accurate and reliable positioning system (PS) is currently a significant topic of
research due to its broad range of applications, such as robotics, supermarkets, and acces-
sibility aids for the visually impaired. The positioning of objects depends on localization
techniques for active navigation. It can be defined as the concept of locating objects using
devices like cameras, ultrasonic sensors, or ultra-wide band (UWB) ranging sensors. This
study considers UWB sensors for the development of a robust PS. Generally, localization
performance is affected by measurement noise caused by environmental factors. This can
be improved with estimation techniques, and the Kalman filter (KF) is the most common
one. In the presence of obstacles, however, the measurement noise may increase beyond
the nominal environmental noise characteristics. The traditional approaches are typically
unable to estimate the system states accurately in such situations. In the presence of such
interference, the accuracy of localization and its robustness are the primary benchmarks of
concern for the performance improvement of a PS.

A number of studies have been conducted to improve the performance of estimation
techniques for localization and navigation in noisy environments. Choliz et al. [1] compared
the various localization methods, including least squares (LS) with distance contraction,
weighted LS with multi-dimensional scaling, extended KF (EKF), and particle filter (PF).
Banerjee [2] presented a scheme to improve the precision of UWB sensor measurements by
applying a PF to a noise model that attempts to identify the noise for a local PS. Assa and
Plataniotis [3] proposed an adaptive KF to approximate the measurement and process noise
covariance distributions through finite sampling under the assumption that it is not known
a priori. Nguyen and Guillemin [4] presented a similar approach using multiple KFs, and
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an LS is applied to estimate the process noise covariance. Akhlaghi et al. [5] applied the
adaptive filtering approach to estimate measurement and process noise covariance matrices
using the covariance matching technique. These studies concerning noise reduction lack
the consideration of random interference and the adaptive nature of the measurement noise
covariance matrix to account for the aforementioned random interference. Fu et al. [6]
proposed the application of three different estimation techniques based on the federated
KF structure. In this method, the measurement-based adaptive KF algorithm and the
improved Suge–Husa algorithm were proposed within the federated structure. Although
this method provides improved performance, the modeling of three different algorithms
for the purposes of localization in the field of robotics is undesirable due to the high
computational burden. Furthermore, this approach mainly focuses on the application
to ships in the absence of the satellite navigation system. Eroglu et al. [7] proposed the
updating of the measurement noise covariance matrix based on a scaling factor. However,
this approach mainly focused on the application to visible light communication-based
localization, where the number of anchors is constantly changing, and the method adapts
the measurement noise based on these changes. A fuzzy-based updating method was
proposed by Woo for the measurement noise covariance matrix based on a number of inputs
including the innovation vector of EKF, the position dilution of precision, and the number
of receivable satellites [8]. In fuzzy-based systems containing many inputs; however,
there are several rules and membership functions that need to be optimized to obtain a
generalized fuzzy system that offers consistent performance. Most of the above methods
focus on the estimation of the process and measurement noise covariance matrices leading
to a standard formulation for most of the adaptive estimation techniques. Furthermore,
to present substantial evidence as to why this standard formulation is unsuitable for
the estimation of noise covariance matrices, Dunik et al. [9] provided a summary of
the various methods for parameter estimation and prediction error-based correlation.
Geng et al. [10] proposed the adaptive cubature KF (CKF) for attitude and heading
estimation applied to indoor PSs based on the smart phone-embedded MARG sensors. The
core concept of the proposed approach is to apply fading and limited memory-weighted
methods to CKF. Although the proposed method provides improved performance over
the existing methods, the application of adaptive weights to estimate the noise covariance
matrices over the most recent measurements increases the computational burden of the
approach. Huang et al. [11] proposed the variational Bayesian method-based adaptive
KF for cooperative localization in scenarios with inaccurate prior information, where the
expectation–maximization algorithm is used to estimate the prediction error covariance
matrix. An alternate iteration strategy was also defined to further reduce the computational
complexity of the proposed method.

This study does not primarily focus on the estimation of the noise covariance matrices,
instead it proposes an approach that can provide reliable estimates of the target object
location in a sensor-disturbed environment by updating the noise covariance. Regardless
of the inaccurate measurement due to the disturbances, uncertainty in the estimation
of states is reduced by updating the measurement noise covariance based on previous
measurements. Two methods are presented. The first one is the piecewise-adaptive EKF
(PA-EKF) technique. In this method, EKF adapts to the noise by updating the measurement
noise covariance matrix after a batch of measurements has been collected. The second
approach, the sequentially-adaptive EKF (SA-EKF) technique, shifts the batch by adding a
new measurement and removing the oldest one rather than waiting for a completely new
batch of measurements. In this way, the methods can adapt to the constantly changing
environments and offer a more robust estimation technique for all kinds of PSs. Another
primary advantage of these methods is that they are easily applicable to both KF and EKF
techniques. This allows such modification to be generalized for several different situations.
To validate the performance of the proposed approaches, multiple simulation studies are
conducted in different scenarios, such as static, linear, and nonlinear motions. Furthermore,
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some analysis has been researched on selecting the batch sizes for further improvement
in performance.

The paper is organized as follows: Section 2 provides a background on the preliminar-
ies for this paper. Section 3 introduces the proposed methodologies. Simulation studies for
validating the proposed approaches are defined in Section 4, and the corresponding results
are discussed in Section 5. Finally, the conclusions are drawn in Section 6.

2. Preliminaries

This section addresses the sensor and types of disturbances considered for this study
and the EKF structure.

2.1. UWB Sensors

With many major technology companies, such as Apple, Samsung, Decawave (Qorvo),
and Xiaomi investing heavily in the UWB technology, it has become a popular option
among the many ranging sensors available today. Indeed, UWB sensors outperform the
alternatives, like Bluetooth and Wi-Fi, due to their distinctive characteristics, such as low
cost, low power consumption, multi-path resistance, high data rate, and relatively accurate
precision [12]. The UWB sensor modeled in this study is based on the Decawave DWM1001
module. This sensor provides distance measurements between each tag and nearby anchors.
The sensors have a line-of-sight range of approximately 60 m with a nominal accuracy
of around 10 cm. The operating frequency range for these sensors is 3.5–6.5 GHz with a
data rate of up to 6.8 Mb/s. Although UWB sensors work well without any modification,
they are highly susceptible to measurement noise arising out of environmental factors,
such as obstacles [13] and weather [14]. In addition to the nominal noise, UWB sensors
experience much larger measurement errors when interfered with metallic structures, other
threatening objects, and other wireless systems [15,16]. Since these unanticipated errors
compromise the accuracy of measurement, the PS with UWB sensors lacks credibility in
such situations.

For the PS discussed in this study, the nodes are classified into tags and anchors. The
anchor is a stationary UWB sensor that has a manually set location in three-dimensional
(3D) space. On the other hand, the tag is the sensor attached to the object being tracked.
To estimate the position of a tag on the ground, for example, at least three anchors are
needed [17]. Therefore, in this study, three UWB sensors are used as anchors, and one
UWB sensor is used as a tag.

2.2. Disturbance Model

Normally, the nominal sensor noise νk is generally assumed to follow a Gaussian
distribution that has a zero mean. The noise is then defined based on some predefined
covariance (R) of the sensor measurement as given below: [18]

νk ∼ N(0, R). (1)

Therefore, for given distance measurements, the sensor generally gives bounded
disturbed measurements in the presence of nominal sensor noise as shown in Figure 1a.
Hereon, white noise will be used to refer to the aforementioned zero-mean white Gaussian
noise. Since the various environmental obstacles, such as metallic objects, can increase the
noise amplitude beyond the nominal specifications, the amplified disturbance affecting the
sensor measurement data is written as follows:

νk ∼ η × N(0, R), (2)

where η is the noise amplification factor. The disturbed measurement is then shown in
Figure 1b, and its comparison with the white noise shows the amplified errors in the
distance measurements.
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(a) (b)
Figure 1. Disturbed measurements. (a) White noise, (b) amplified disturbance.

2.3. Extended Kalman Filter

EKF is one of the most popular estimation techniques applied to localization and
navigation problems for the reduction of sensor measurement noise. It is a variation of the
traditional KF algorithm for nonlinear systems. It estimates a system’s state by predicting a
priori estimates and then updating these predictions by taking into consideration the new
measurements to obtain a posteriori estimates. The model considers the disturbance which
is generally modeled as zero-mean Gaussian white noise. The modeling equations for EKF
are given as [19]

xk+1 = f(xk, uk) + wk, wk ∼ N(0, Q), (3)

ỹk = h(xk) + νk, νk ∼ N(0, R), (4)

where f(xk, uk) and h(xk) are the nonlinear functions that make up the system model
definition, and wk and νk are the zero-mean white Gaussian noise vectors corresponding
to the process noise and the measurement noise. The EKF algorithm then operates in three
stages [19]. In the initialization stage, x̂(t0) indicates the initial state estimate, and P0 is
the initial error covariance matrix. Then, the estimation stage determines the a posteriori
estimates x̂+k and P+

k using the a priori estimates x̂−k and P−k . In order to do this, first
the Kalman gain Kk is determined at every time step. Based on the a posteriori estimates,
the a priori estimates for the next time step x̂−k+1 and P−k+1 are then determined in the
propagation stage.

3. Proposed Methodologies

EKF assumes that the measurement noise covariance is constant over time. In theory,
this assumption could be applicable under circumstances where the measurement noise
remains nominal which is generally provided as a sensor specification obtained via statis-
tical data analysis. Since this analysis provides a constant value known as the standard
deviation of the sensor’s noise, the measurement noise covariance has a constant value.
However, the measurements obtained from sensors can exhibit random interference due
to the presence of obstacles like metallic structures, other wireless systems, etc., causing
the standard deviation of the noise distribution to be different than what is stated. Thus,
the conventional techniques, where the measurement noise covariance is kept constant,
become unreliable. The proposed methods update the measurement noise covariance ma-
trix over time in two different ways. Figure 2 illustrates the basic principle of the proposed
methodologies. As evident from the figure, it must be noted that the update process is
independent of the choice of KF or EKF. In the following sections, one describes how the
measurement noise covariance is updated over time in both the proposed methodologies.
It is important to highlight that the proposed methods are not intended towards estimation
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of the covariance matrix, instead focused on updating the covariance matrix to obtain
better state estimates.

Figure 2. Proposed adaptive EKF approaches.

3.1. Piecewise-Adaptive Extended Kalman Filter

PA-EKF allows EKF to adapt to the noise by updating the measurement noise covari-
ance matrix after a certain number of measurements has been collected. These measure-
ments are referred to as a batch, and the number of measurements in a batch is indicated by
Np. This is known as a piece-wise batch, since the batch is updated after a fixed number of
measurements has been obtained as shown in Figure 2. Depending on the situation, Np can
be tuned to increase the performance of PA-EKF. Since the measurement noise covariance
is intentionally updated over time, it is indicated by R̂k instead of R to clearly distinguish
between the conventional and adaptive methods.
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The initial measurement error covariance matrix is expressed as follows:

R̂0 = Iσ2
m, (5)

where I ∈ Rn×n is an identity matrix with n equal to the number of measurements, and
σm is the standard deviation of nominal measurement noise. It is important to note that
PA-EKF does not provide an estimate corresponding to every measurement. After every
Np measurement, the measurement error covariance is calculated as

R̂k =



σ(εd1 , εd1) σ(εd1 , εd2) σ(εd1 , εd3)

σ(εd2 , εd1) σ(εd2 , εd2) σ(εd2 , εd3)

σ(εd3 , εd1) σ(εd3 , εd2) σ(εd3 , εd3)


k−Np :k

, if k mod Np = 0,

R̂k−1, if k mod Np 6= 0,

(6)

where ε =
[
εd1 εd2 εd3

]T denotes the measurement residual of the three distance measure-
ments, and ŷk = h

(
x̂+k
)
. Moreover, the expression for covariance is given as follows:

σ(a, b) =
1

n− 1

n

∑
i=1

(ai − ā)(bi − b̄), (7)

where a and b are two random variables containing n number of data values, and ā and
b̄ represent their mean. The remaining expressions of EKF remain unchanged. After the
measurement noise covariance is updated, the Kalman gain can be calculated similar to
EKF by replacing R with R̂k.

PA-EKF method works best when the measurement update rate is high. When the
new measurements come at slow time intervals, waiting for the new batch can cause
the measurement noise covariance to worsen and have a negative impact on the state
estimation. This is the reason why PA-EKF is preferred for sensors where the measurements
are obtained at small time intervals. For example, if the measurement rate is 0.01 Hz, then
with a batch size of 50, it updates the measurement noise covariance after every 0.5 s. On
the other hand, if the update rate of a given sensor is 1 Hz, it has to wait for every 50 s to
update PA-EKF making it unsuitable for real-time application for that sensor.

3.2. Sequentially-Adaptive Extended Kalman Filter

When compared to PA-EKF, SA-EKF method resolves the update problem by modify-
ing the algorithm to shift the batch sequentially rather than obtain a new batch for every
Np measurements. As it can be seen in Figure 2, the shifting batch size is indicated by Ns to
avoid confusion. This approach operates by dropping the oldest measurements and adding
the latest one, always keeping constant Ns measurements in the sequential batch. The
initial measurement error covariance matrix is expressed similarly as given in Equation (5).
In SA-EKF, after obtaining Ns measurements, R̂k is updated corresponding to every new
measurement and is defined as

R̂k =


R̂0, if k < Ns,σ(εd1 , εd1) σ(εd1 , εd2) σ(εd1 , εd3)

σ(εd2 , εd1) σ(εd2 , εd2) σ(εd2 , εd3)

σ(εd3 , εd1) σ(εd3 , εd2) σ(εd3 , εd3)


k−Ns :k

, if k ≥ Ns.
(8)

Similar to PA-EKF, the Kalman gain is calculated as before by replacing R with R̂k.
Note that both PA-EKF and SA-EKF highlight the straightforward nature of the approaches
in being able to modify the conventional EKF approach by updating the measurement
noise covariance matrix.



Sensors 2021, 21, 8304 7 of 22

SA-EKF is advantageous compared to PA-EKF, in the sense that it provides better
performance independent of the measurement update rate. SA-EKF works by taking the
last Ns measurements at every time step to update the measurement noise covariance
matrix after obtaining the first batch. Contrary to PA-EKF, when the measurement rate is
high, SA-EKF may lead to a higher computational burden and does not necessarily need
to update the noise covariance at high update rates. For example, if the update rate of
the sensor is 100 Hz, then the updating process will happen every 0.01 s after the first
0.5 s. This may be unnecessary for several applications. However, SA-EKF still has the
advantage of being operational and efficient in all kinds of scenarios independent of the
sensor update rate.

4. Simulation Study

Figure 3 represents a 2D environment modeled for this work consisting of three
anchors and one tag. The three anchors are kept in an equilateral triangular formation to
observe similar trends when the anchors are subjected to amplified disturbances. Figure 3
contains three representations for each of the simulation cases discussed in Section 4.1.
The sensor characteristics like the measurement update rate, process noise, and nominal
measurement noise are chosen to model the Decawave UWB sensor [20]. For the amplified
disturbances affecting the measurement signal, the noise amplification factor (η) is chosen
as 4, so as to observe noticeable trends between the traditional and the proposed adaptive
EKF approaches [21]. See Appendix A for further analysis regarding the performance of
the proposed approaches with different values of η.

Furthermore, the batch size for the proposed approaches should be selected consider-
ing several factors as follows:

• One of the important factors is the measurement update rate. If the measurement update
rate is low, then a large batch is required for SA-EKF. However, if a large batch size is
selected, the performance of PA-EKF is reduced as updating process of the algorithm
will be delayed.

• The acceptable delay before the first update of the measurement noise covariance matrix
also impacts the choice of the batch size. When the batch size is too big, the time taken
for the first update can increase, especially if the measurement update rate is not high.

• Another important factor is the available system memory. Usually these sensors are
connected to micro controller units (MCUs), which have limited system memory [22].
Therefore, the large batch size is dependent on the available memory to store and
process the measurement data.

(a) (b) (c)

Figure 3. Simulation environments. (a) Static tag, (b) tag in linear motion, (c) tag in nonlinear motion.
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Generally, the type of problem helps the user determine the correct batch size. In
the current problem, performance is impacted by the above factors as the bigger batch
size can delay the first update rate and a small batch size does not preserve the historical
measurement information. Furthermore, the limited system memory does not allow for
bigger batch sizes in practical situations. Therefore, through the aforementioned analysis,
the values for Ns and Np are chosen as 50 to compensate for the acceptable delay, the
update rate, and the available system memory in most MCUs [22]. The various parameters
that define the sensor characteristics considered are summarized in Table 1.

Table 1. Simulation parameters.

Description Unit Value

Measurement Update Rate Hz 10
Simulation Final Time s 300

Process Noise (σp) m 10−4

Nominal Measurement Noise (σm) m 0.04
Noise Amplification Factor (η) − 4.0

Anchor 1 Position m (0, 0)
Anchor 2 Position m (20, 0)
Anchor 3 Position m (10, 17.3205)
PA Batch Size (Np) − 50
SA Batch Size (Ns) − 50

4.1. Simulation Cases

Three simulation cases are considered: static, linear, and nonlinear. In all cases, the
anchor positions are kept constant, and the nominal sensor noise characteristics remain the
same. Furthermore, the sensors are modeled to experience certain disturbances during the
operation, which leads the measurement noise to be amplified by a certain η. It should be
noted that, in the following cases, the initial value for the state error covariance matrix (P0)
is arbitrarily chosen to depict some initial confidence in the estimation model.

4.1.1. Case 1: Static Tag

In the static case, the tag remains at a constant position [xk yk]
T ; and therefore, the

control input vector applied to the system is expressed as uk = [0 0]T . Due to the nature of
the static tag (See Figure 3a), the components of EKF are written as follows:

f(xk, uk) =
[
xk yk

]T , (9)

h(xk) =

d1k
d2k
d3k

 =


[
(x1 − xk)

2 + (y1 − yk)
2]1/2[

(x2 − xk)
2 + (y2 − yk)

2]1/2[
(x3 − xk)

2 + (y3 − yk)
2]1/2

. (10)

Here, the given expressions for the aforementioned system lead to the following state
transition and observation matrices:

Φk =

[
1 0
0 1

]
, (11)

Hk =


xk−x1

d1k

yk−y1
d1k

xk−x2
d2k

yk−y2
d2k

xk−x3
d3k

yk−y3
d3k

. (12)
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The system is then represented as given in Equations (3) and (4), where the mea-
surements are the noisy distance values corresponding to each anchor with the following
initial conditions:

x̂0 =
[
10 m 10 m

]T ,

P0 = diag(
[
10−4 10−4]),

R̂0 = σm
2I3×3,

Q = σ2
pI2×2.

4.1.2. Case 2: Linear Motion

In the linear motion case, the tag moves in a straight line with a constant velocity[
vxk vyk

]T (See Figure 3b). Similar to the static case, there is no control in the linear case.
The relationship between position and velocity is linear due to constant velocity; and
therefore, the state vector is chosen as:

xk =
[
xk yk vxk vyk

]T . (13)

Identical to the previous case, the distance values obtained using the UWB sensors
are used as the measurement vector; and therefore, the system model components are
written as

f(xk, uk) =


xk + vxk ∆t
yk + vyk ∆t

vxk

vyk

, (14)

where ∆t = tk − tk−1 is the time step. The corresponding state transition and observation
matrices are found as

Φk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

, (15)

Hk =


xk−x1

d1k

yk−y1
d1k

0 0
xk−x2

d2k

yk−y2
d2k

0 0
xk−x3

d3k

yk−y3
d3k

0 0

. (16)

The system is then represented as given in Equations (3) and (4) with the following
initial conditions:

x̂0 =
[
1 m 1 m 0.1 m/s 0.1 m/s

]T ,

P0 = diag(
[
10−4 10−4 10−5 10−5]),

Q = σ2
pI4×4.

4.1.3. Case 3: Nonlinear Motion

In this scenario, the tag moves in a circular path, which is a nonlinear trajectory; and
therefore, the heading angle (θ) is introduced as a new state component (See Figure 3c).
The state vector is then written as

xk =
[
xk yk θk

]T . (17)
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The measurements again contain the distance information obtained from the UWB
sensors. The control input vector applied to the system is expressed as

uk =
[
v ω

]T , (18)

where v is the constant translational velocity, and ω is the constant angular velocity applied
to the model. Based on this, the system model is represented as given in Equations (3) and (4)
with the following nonlinear components:

f(xk, uk) =

xk + v ∆t cos(θk)
yk + v ∆t sin(θk)

θk + ω ∆t

. (19)

These are then used to determine state transition and observation matrices:

Φk =

1 0 −v∆t sin θk
0 1 v∆t cos θk
0 0 1

, (20)

Hk =


xt−x1

d1k

yt−y1
d1k

0
xt−x2

d2k

yt−y2
d2k

0
xt−x3

d3k

yt−y3
d3k

0

, (21)

with the following initial conditions:

x̂0 =
[
10 m 5 m 0 rad

]T ,

u0 =
[
0.1571 m/s 0.0314 rad/s

]T ,

P0 = diag(
[
10−4 10−4 10−3]),

Q = σ2
pI3×3.

4.2. Disturbance Scenarios

In addition to the aforementioned simulation cases, three disturbance scenarios are
considered to compare the results between the proposed methods and the traditional
EKF technique. Here, the disturbances are not specified, instead, the study focuses on
the disturbed measurements. The amplitude of the disturbed measurement signal (η) is
defined by the amount of noise generated by the environmental obstacles. See Appendix A
for further analysis. Note that these disturbances refer to the disturbed measurement
signals; and therefore, they have the same frequency as the measurement signal (10 Hz).
Furthermore, the width of the disturbance is determined by environmental factors like
obstacles and how long do they disturb the sensor which can be random. The simulation
study is conducted by applying the proposed methodologies to all simulation cases with
anchors subjected to the following types of disturbances.

4.2.1. Nominal Disturbance

The nominal disturbance scenario is defined as anchors being subjected to the white
noise without any amplified disturbances caused by obstacles in the environment. Figure 4
shows the white noise-affected distance measurements from the three anchors.
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(a) (b) (c)

Figure 4. Nominal disturbance-based measurements. (a) Anchor 1, (b) anchor 2, (c) anchor 3.

4.2.2. Isolated Disturbance

In this scenario, all of the anchors are subjected to isolated amplified disturbances
meaning that at a given point of time, only one anchor is subjected to such disturbance as
shown in Figure 5. Starting from anchor 1, the disturbance is then removed from anchor 1
and shifted to anchor 2, and so on. Each sensor is disturbed for 40 s at different times. This
can be a representation of a single obstacle moving through the environment.

(a) (b) (c)

Figure 5. Isolated disturbance-based measurements. (a) Anchor 1, (b) anchor 2, (c) anchor 3.

4.2.3. Simultaneous Disturbance

The final scenario is the simultaneous disturbance scenario, where all anchors are
subjected to the amplified disturbance in a sequential manner. First, anchor 1 is disturbed
followed by anchor 2 while anchor 1 is being subjected to disturbance. Then, anchor 3 is
disturbed while anchors 1 and 2 are still being disturbed. This is followed by disturbance
being removed from these anchors one by one. The duration of the disturbed measurements
is 150 s each starting at 30 s, 75 s, and 125 s for anchors 1, 2, and 3, respectively. This
scenario is selected to observe a definitive trend caused by an environment affected by a
large amount of disturbance. The disturbance-affected distance measurements from the
three anchors are shown in Figure 6.

(a) (b) (c)

Figure 6. Simultaneous disturbance-based measurements. (a) Anchor 1, (b) anchor 2, (c) anchor 3.
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5. Results and Discussion

For the three simulation cases described along with the three disturbance scenarios, a
total of nine settings are simulated. The results of the traditional and the proposed methods
are compared to highlight the improvement offered by PA-EKF and SA-EKF as opposed to
the traditional EKF.

5.1. Static Case

Figures 7–9 represent the estimation results for the static tag case with the anchors
subjected to nominal, isolated, and simultaneous disturbances, respectively. It can be
observed that, in Figure 7, during the period of nominal disturbance or white noise, EKF,
PA-EKF, and SA-EKF perform equivalently, showing the similarities between the three
methods. It is only under the effect of amplified disturbances that the proposed methods
adapt to the situation and perform better than expected as represented by the EKF results.
In Figure 8, it can be seen that the proposed methods have small residuals that lie within the
3σ boundaries whereas the EKF residuals go outside the 3σ boundaries. This is noticeable
especially in Figure 8a between 140 and 180 s and in Figure 8b during the third disturbance
between 230 and 270 s. Furthermore, under the influence of simultaneous disturbances,
where all sensors are subjected to amplified disturbances at the same time, the proposed
methods perform considerably better as shown in Figure 9. In Figure 9a, EKF cannot
handle the situation where all three anchors are disturbed, and the errors stay outside
the 3σ boundaries consistently. Even when the first and second anchors are disturbed
together at around 75 s, the EKF residuals go outside the confidence region, whereas the
residuals via the proposed methods stay well within the boundaries. In addition to the
small residuals, it can be observed that the 3σ boundaries for PA-EKF and SA-EKF adjust
based on the changes in the measurement noise. A trend can be observed where the 3σ
boundaries first increase with the number of disturbed sensors, and then decreases as the
disturbances are withdrawn. Even though the disturbances are applied in a static case
where the tag does not move, EKF is unable to provide consistent results as compared to
the proposed methods.

(a)

(b)

Figure 7. Estimation results for static tag with anchors subjected to nominal disturbances. (a) Error
in x–direction, ex, (b) error in y–direction, ey.
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(a)

(b)

Figure 8. Estimation results for static tag with anchors subjected to isolated disturbances. (a) Error in
x–direction, ex, (b) error in y–direction, ey.

(a)

(b)

Figure 9. Estimation results for static tag with anchors subjected to simultaneous disturbances.
(a) Error in x–direction, ex, (b) error in y–direction, ey.
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5.2. Linear Case

The estimation results for the linearly moving tag with the anchors subjected to
nominal, isolated, and simultaneous disturbances are shown in Figures 10–12, respectively.
In the first observation, it can be seen that the results for the nominal case follow the same
trend like the static tag case where all three approaches work similarly. It can be seen in
Figures 11 and 12 that during the period of amplified disturbances, the proposed methods
adapt to the situation much better than EKF, similar to the static tag case. In Figure 11a, it
can be seen that the error in x–position for the linearly moving tag, the proposed methods
have errors within the 3σ boundaries. On the other hand, the errors within the EKF model
are consistently high and go outside the 3σ boundaries especially when the amplified
disturbance is applied to the three anchors at around 60 s, 140–170 s, and 260 s. This can
also be seen in Figure 11b for the error in y–position during the second and third anchor
disturbance scenarios at around 165 s and 240 s. Apart from the worse performance of
EKF compared to the proposed methods, it can also be observed that PA-EKF residuals
also go outside the confidence region sometimes, around 135 s in Figure 11a, and 32 s
and 135 s in Figure 11b. This can largely be attributed to the slow update rate of PA-EKF
compared to SA-EKF as the residuals of SA-EKF consistently stay within the 3σ boundaries.
Moreover, since PA-EKF updates the measurement noise covariance matrix every 5 s, it
starts adjusting to the amplified disturbance after some time, and then the residuals stay
within the 3σ boundary.

(a)

(b)

Figure 10. Estimation results for linear tag with anchors subjected to nominal disturbances. (a) Error
in x–direction, ex, (b) error in y–direction, ey.
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(a)

(b)

Figure 11. Estimation results for linear tag with anchors subjected to isolated disturbances. (a) Error
in x–direction, ex, (b) error in y–direction, ey.

(a)

(b)

Figure 12. Estimation results for linear tag with anchors subjected to simultaneous disturbance.
(a) Error in x–direction, ex, (b) error in y–direction, ey.
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When the anchors are subjected to amplified disturbances at the same time, the
proposed methods perform considerably better as shown in Figure 12. In Figure 12a, when
only the first anchor is disturbed at around 55 s, the EKF residuals go outside the 3σ
boundaries. When the second anchor is disturbed at 75 s, both EKF and PA-EKF fail to
adjust to the sudden changes, and therefore the residuals are bigger. Once adjusted, PA-
EKF displays more robustness to the disturbance-caused measurement noise. On the other
hand, SA-EKF consistently outperforms both methods as it stays within the 3σ boundaries.
A similar trend can be observed for the y–position error, Figure 12b, as PA-EKF initially
takes some time to adjust when all three anchors are disturbed. However, EKF cannot
adjust properly; and therefore, larger errors are observed. Furthermore, the adaptive nature
of the proposed methods can be seen in the simultaneous disturbance scenario as the 3σ
boundaries first increase with the increasing disturbances in the environment, and then
accordingly decrease as the disturbances are discontinued from individual anchors.

5.3. Nonlinear Case

For the nonlinear case, the three methods follow a consistent trend for the nominal
case, similar to the static and linear cases as all three methods perform similar to each other
in Figure 13. In Figure 14a, during the period of the first amplified disturbance between
40 s and 80 s, the proposed methods display robustness to the disturbance while the EKF
residuals for the x–position go outside the 3σ boundaries. The amplified disturbance to the
second anchor again causes the EKF residuals to go outside the 3σ boundaries at around
150 s. For the y–position errors, as shown in Figure 14b, the EKF residuals follow the same
trend as the model is unable to adapt, and the residuals are large during the period of the
second and third disturbances at around 150 and 250 s; and therefore, the residuals are not
contained within the confidence interval.

(a)

(b)

Figure 13. Estimation results for nonlinear tag with anchors subjected to nominal disturbances.
(a) Error in x–direction, ex, (b) error in y–direction, ey.
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In the simultaneous disturbance scenario, the advantages of the proposed methods
are clearly evident again as the 3σ boundaries highlight the adaptive nature based on the
changing disturbances in the environment. As soon as the disturbances are introduced
to the first anchor, the EKF residuals magnify whereas SA-EKF and PA-EKF are able to
keep the positioning errors close to zero. This is evident clearly in Figure 15a as the EKF
residuals regularly go outside the confidence interval whereas the proposed methods show
robustness to all stages of disturbances. In Figure 15b, once all three anchors are disturbed
at 125 s, the EKF residuals consistently drop outside the 3σ boundaries, whereas PA-EKF
and SA-EKF are able to attune to the new disturbances as the residuals stay small and
within their respective 3σ boundaries.

It is interesting to notice, however, that the SA-EKF residuals also momentarily go
outside the 3σ boundaries at around 30 s in Figures 14b and 15b. Even though this behavior
coincides with the start of disturbance to anchor 1, it can be attributed as an outlier situation
as the same can also be observed in Figure 13b. Furthermore, there is no other evidence of
SA-EKF being unable to adapt to the disturbance.

(a)

(b)

Figure 14. Estimation results for nonlinear tag with anchors subjected to isolated disturbances.
(a) Error in x–direction, ex, (b) error in y–direction, ey.
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(a)

(b)

Figure 15. Estimation results for nonlinear tag subjected to simultaneous disturbances. (a) Error in
x–direction, ex, (b) error in y–direction, ey.

5.4. Monte Carlo Simulations

To validate the performance of the approaches proposed, the results of the static, linear,
and nonlinear scenarios are simulated 1000 times in all disturbance cases. Note that the
batch size for SA-EKF and PA-EKF (Ns and Np) and the noise amplification factor (η) are
the same as given in Table 1. To compare the performance, the following root mean square
error (RMSE) is used as a metric:

RMSE(x, y) =

√∑N
k=1(xk − x̂k)

2

N
,

√
∑N

k=1(yk − ŷk)
2

N

, (22)

where xk and yk are the true position values, x̂k and ŷk are the estimated position values at
time k, and N is the total number of estimates.

Tables 2–4 show the results of the Monte Carlo simulations. Here, each entry denotes
the RMSE in x and y positions as (RMSE(x), RMSE(y)). As listed in Table 2, all algorithms
perform similarly with a maximum error of the order of 10−1 mm in the presence of white
noise-affected measurements. In the presence of isolated and simultaneous disturbances,
however, PA-EKF and SA-EKF perform much better compared to EKF as the RMSE values
decrease consistently. Similar trends are observed in the linear case (Table 3), where the
RMSE reduction is of the order approximately 4 mm between EKF and SA-EKF. One
can also observe that SA-EKF performs better compared to PA-EKF as in the changing
disturbance conditions, SA-EKF adapts faster at each time step as compared to PA-EKF
which waits for a complete batch of measurements before updating the measurement noise
covariance matrix. In the nonlinear case (Table 4), similar observations can be made that,
in the presence of white noise, all three approaches perform with similar RMSE values,
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whereas, for the isolated and the simultaneous disturbance cases, PA-EKF performs better
than EKF, and SA-EKF outperforms both of them as evident by the reduction in RMSEs.

Table 2. Monte Carlo simulations for static case (all values in mm).

White Noise Isolated Disturbance Simultaneous
Disturbance

EKF (1.76, 1.76) (2.77, 2.74) (4.13, 4.00)
PA-EKF (1.83, 1.82) (2.20, 2.18) (2.85, 2.64)
SA-EKF (1.83, 1.82) (1.91, 1.88) (2.45, 2.33)

Table 3. Monte Carlo simulations for linear case (all values in mm).

White Noise Isolated Disturbance Simultaneous
Disturbance

EKF (5.26, 5.48) (10.27, 9.05) (13.62, 13.24)
PA-EKF (5.37, 5.59) (7.27, 6.89) (11.75, 11.08)
SA-EKF (5.37, 5.61) (6.40, 6.20) (10.83, 10.03)

Table 4. Monte Carlo simulations for nonlinear case (all values in mm).

White Noise Isolated Disturbance Simultaneous
Disturbance

EKF (2.52, 2.81) (3.74, 3.79) (7.38, 6.35)
PA-EKF (2.59, 2.89) (2.89, 2.92) (5.64, 5.17)
SA-EKF (2.59, 2.89) (2.64, 2.72) (5.03, 4.50)

6. Conclusions

In this work, two adaptive approaches for EKF were proposed that update the mea-
surement noise covariance matrix based on the past measurements. The first approach,
PA-EKF, updates the measurement noise covariance matrix once a batch of measurements
is obtained. After that, it waits for Np measurements to update the covariance matrix.
SA-EKF works similar to PA-EKF, as it first waits for Ns measurements and sequentially
updates the batch as new measurements are obtained. This way, SA-EKF updates the
measurement noise covariance matrix after each new measurement, while maintaining Ns
measurements in the batch, whereas PA-EKF updates the measurement after each batch
of Np measurements. These approaches were directly incorporated within the EKF algo-
rithm and were validated through static, linear, and nonlinear scenarios in the presence of
three types of disturbances: nominal, isolated, and simultaneous. As a result, it is shown
that both the proposed approaches have provided better state estimation performance
compared to EKF in all the scenarios that were considered. It can be seen from the results
that both PA-EKF and SA-EKF are more robust and can adapt to an environment with
ever-changing disturbances caused by factors like weather, obstacles, etc. To validate the
accuracy of the results, Monte Carlo simulations were conducted with 1000 simulations
of all approaches with the tag under static, linear, and nonlinear motion in all three dis-
turbance environments (white noise, isolated disturbance, and simultaneous disturbance).
To compare the results, the root mean square error was used as a metric. It can be seen
from the results that the proposed approaches offer an improvement in the performance
of localization of the UWB sensors. Furthermore, the proposed approaches provide an
option to engineers to select a proper algorithm based on a trade-off between computa-
tional burden and accuracy. Therefore, further research will be conducted to combine
both approaches into a single approach to make the most of the advantages of each model.
Moreover, a study on the noise characteristics, especially the noise amplification factor,
will be conducted to understand and improve the model based on actual sensor behavior
in the presence of sensor disturbance or interference caused by obstacles. In the future, a
methodology may be devised to obtain an optimal batch size for both methods.
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Appendix A. Further Analysis

The noise amplification factor (η) may vary from low to very high values depending
on the obstacle material, shape, and size [21]. This work considers the value of η = 4
to compare the performance of the proposed approaches in different environments. η
may change in different environments and, therefore, to validate the proposed approaches
against the traditional EKF method, this study considers a Monte Carlo simulation of the
three techniques applied to a static tag in the presence of isolated and simultaneous distur-
bance cases as defined in Section 2.2. η is increased from 2 to 7 [21], and the corresponding
RMSE performance of the three approaches is compared in Tables A1 and A2. The results
are simulated 100 times to validate the accuracy of the results. Table A1 compares the
performance of the three approaches in the presence of isolated disturbances, and Table A2
compares the performances in the presence of simultaneous disturbances.

Table A1. Monte Carlo simulations for variation of η in isolated disturbance case (all values in mm).

η EKF PA-EKF SA-EKF

2 (2.09,2.00) (2.02, 1.88) (1.99, 1.91)
3 (2.41, 2.36) (2.10, 2.05) (1.93, 1.91)
4 (2.82, 2.86) (2.18, 2.35) (1.96, 2.01)
5 (3.43, 3.33) (2.44, 2.54) (1.85, 2.01)
6 (3.71, 3.69) (2.61, 2.64) (1.96, 2.02)
7 (4.42, 4.27) (2.96, 2.91) (1.99, 1.95)

In Table A1, it can be observed that when η is low, the difference in the performance
of the three approaches is much less. However, when η is increased from 2 to 7, the
performance of EKF reduces as evident through the increase in the RMSE. Similarly, the
performance of PA-EKF also decreases; however, the RMSE values are less compared
to EKF. On the other hand, in SA-EKF, one can observe that the performance remains
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consistent and the RMSE at η = 7 is half of the RMSE of EKF. This highlights the consistent
and improved performance compared to EKF.

Table A2. Monte Carlo simulations for variation of η in simultaneous disturbance case (all values
in mm).

η EKF PA-EKF SA-EKF

2 (2.46, 2.45) (2.26, 2.21) (2.16, 2.17)
3 (3.08, 3.21) (2.51, 2.49) (2.34, 2.35)
4 (4.02, 3.93) (2.86, 2.58) (2.45, 2.30)
5 (5.05, 4.90) (3.48, 2.93) (2.77, 2.44)
6 (6.16, 5.81) (3.74, 3.21) (2.72, 2.50)
7 (7.13, 6.81) (3.89, 3.64) (2.73, 2.43)

In Table A2, similar trends can be observed, as in the case of EKF, the RMSE increases
from 2.46 to 7.13 mm in the x–position. However, in the case of PA-EKF, it only increases
up to 3.89 mm and in the case of SA-EKF, it remains under 3 mm throughout the variation
of η.
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