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Abstract
T and B cell activation are equally important in triggering and orchestrating adaptive host responses to design 
multi-epitope African swine fever virus (ASFV) vaccines. However, few design methods have considered the 
trade-off between T and B cell immunogenicity when identifying promising ASFV epitopes. This work proposed 
a novel Pareto front-based ASFV screening method PFAS to identify promising epitopes for designing multi-
epitope vaccines utilizing five ASFV Georgia 2007/1 sequences. To accurately predict T cell immunogenicity, four 
scoring methods were used to estimate the T cell activation in the four stages, including proteasomal cleavage 
probability, transporter associated with antigen processing transport efficiency, class I binding affinity of the major 
histocompatibility complex, and CD8 + cytotoxic T cell immunogenicity. PFAS ranked promising epitopes using a 
Pareto front method considering T and B cell immunogenicity. The coefficient of determination between the Pareto 
ranks of multi-epitope vaccines and survival days of swine vaccinations was R2 = 0.95. Consequently, PFAS scored 
complete epitope profiles and identified 72 promising top-ranked epitopes, including 46 CD2v epitopes, two p30 
epitopes, 10 p72 epitopes, and 14 pp220 epitopes. PFAS is the first method of using the Pareto front approach 
to identify promising epitopes that considers the objectives of maximizing both T and B cell immunogenicity. 
The top-ranked promising epitopes can be cost-effectively validated in vitro. The Pareto front approach can be 
adaptively applied to various epitope predictors for bacterial, viral and cancer vaccine developments. The MATLAB 
code of the Pareto front method was available at https://github.com/NYCU-ICLAB/PFAS.

Key points
• Proposing a Pareto front-based method for designing swine multi-epitope vaccine.

• The method maximizes T and B cell immunogenicity while ranking promising epitopes.
• Higher the epitope Pareto ranks leads to longer vaccination survival (R2 = 0.95).
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Introduction
African swine fever virus (ASFV) causes a lethal hemor-
rhagic disease and has become an epidemic swine viral 
disease in Asia. Simultaneous activation of T and B cells 
results in a better immune response and more immuno-
logical memory against ASFV than activation of one of 
the cell types alone (Bosch-Camos et al. 2020; Teklue et 
al. 2020). The development of subunit vaccines, especially 
multi-epitope vaccines, is more challenging than that of 
live-attenuated virus vaccines. However, live attenuated 
vaccines contain attenuated forms of pathogens that can 

infect individuals with weakened immune systems and 
may revert to more virulent strains. As a result, these 
vaccines are only appropriate for endemic areas. This 
highlights the need for a shift towards the development 
of multi-epitope vaccines, which have significant applica-
tions in non-endemic regions and are driving increased 
research and development efforts. (Teklue et al. 2020). 
However, there is currently no effective multi-epitope 
vaccine for the prevention of ASFV (Blome et al. 2020).

The selection of protein candidates for designing a 
multi-epitope vaccine should consider several factors, 
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including the conservation, abundance, extracellular 
localization, and cross-protection against various viral 
genotypes (Adamczyk-Poplawska et al. 2011; Alejo et al. 
2018; Kessler et al. 2018). CD2v is a hemagglutinin and 
the main antigen protein involved in regulating immune 
responses and cell adhesion (Burmakina et al. 2019; 
Gaudreault and Richt 2019; Jia et al. 2017). p30 is a struc-
tural protein involved in the attachment and internaliza-
tion of ASFV (Gomez-Puertas et al. 1996). p54 is the only 
membranous structural protein in the inner viral enve-
lope associated with viral attachment (Gomez-Puertas et 
al. 1998). p72 is a major structural protein (approximately 
31–33% of the entire virus) and an important antigenic 
protein owing to its high conservation and thermostable 
nature (Liu et al. 2019; Yu et al. 1996). pp220 is the larg-
est multi-precursor protein (Lokhandwala et al. 2019). 
For immunogenicity and protection, CD2v, p30, and 
p72 show both antigenicity and immunogenicity, while 
p54 has antigenicity but low immunogenicity. pp220 
displays immunogenicity and presents many peptides 
to CD8 + cytotoxic T cells (CTLs), triggering a strong 
antibody response (Bosch-Camos et al. 2020; Lokhand-
wala et al. 2019). In swine vaccine protection experi-
ments, CD2v did not confer protection, while p30, p54, 
and p72 showed partial protection. Selecting proteins 
targeting different aspects of the immune response can 
provide effective protection. In addition, the binding of 
attachment proteins (p30, p54) to dominant B and T cell 

epitopes (CD2v, p72) may enhance viral neutralization 
and clearance (Bosch-Camos et al. 2020; Jancovich et al. 
2018).

Bioinformatic methods using a machine learning 
approach serve as an effective strategy to identify vaccine 
candidates for human (Guo et al. 2022; Hajialibeigi et al. 
2021; Kibria et al. 2022) and swine pathogens, includ-
ing ASFV (Gao et al. 2021), influenza A virus (Baratelli 
et al. 2020; Fan et al. 2018), and porcine circovirus type 
2 (Bandrick et al. 2020). Machine learning methods used 
to identify epitopes in the design of multi-epitope vac-
cines consider the biological presentation and activation 
of ASFV epitopes. Figure  1 shows the presentation and 
activation of ASFV epitopes, and the correspondence 
between biological and computational processes. In viral 
infections, CTLs (mainly involved in viral T cell immu-
nity) support cell-mediated immunity against intracellu-
lar viruses, while B cells trigger humoral immunity and 
produce memory cells for future infection (Clem 2011).

The objective of vaccine design is to induce immune 
responses in both T and B cells. Existing computational 
methods for identifying ASFV epitopes screen potential 
epitopes by separately considering T and B cell immu-
nogenicity (Bosch-Camos et al. 2021; Lopera-Madrid 
et al. 2017; Ros-Lucas et al. 2020). The Pareto front is a 
popular approach used for obtaining a set of non-domi-
nated solutions to a bi-objective problem. Pareto-optimal 
methods have been used to dock proteins and peptides 

Fig. 1  Presentation and activation of ASFV epitopes, and the correspondence between biological and computational processes. (A) Illustration of the 
biological processing and presentation of the ASFV epitope. When infected by ASFV, four processing stages activate T cells in APCs and epitope presenta-
tion activates B cells in helper T cells. (B) The computational procedure of the Pareto front method. The input is a set of protein sequences. The outputs are 
prediction scores of T and B cell immunogenicity. The T cell score is the mean score of four stages: (1) proteasomal cleavage probability, (2) peptide-TAP 
transporter binding affinity, (3) peptide-MHC I binding affinity, and (4) CTL immunogenicity. CTL: Cytotoxic. T lymphocyte. APC: Antigen-presenting cell. 
TAP: the transporter associated with antigen processing. Images of figure were partly taken from ‘Smart Servier Medical Art’ (https://smart.servier.com/)
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(Masoudi-Sobhanzadeh et al. 2021) and improve amino 
acid and protein production in Yarrowia lipolytica (Jach 
et al. 2020). A study related to epitope-based vaccine 
design against human immunodeficiency virus used the 
Pareto front to simultaneously optimize cleavage and 
immunogenicity (Dorigatti and Schubert 2020). However, 
few studies have used the Pareto front method to simul-
taneously accommodate T and B cell immunogenicity.

This work proposes for the first time a novel Pareto 
front-based screening method PFAS to identify promis-
ing epitopes with high T and B cell immunogenicity for 
designing ASFV recombinant multi-epitope vaccines. 
First, PFAS used experimental T and B cell epitopes from 
the Immune Epitope Database (IEDB) to verify the state-
of-the-art computational methods and their parameter 
settings. Next, PFAS used the Pareto front technique to 
deal with T and B cell prediction scores as bi-objective 
ranks and identify the top-ranked epitopes. PFAS scored 
whole epitope profiles and identified 72 promising epi-
topes. Based on the three combinations of epitopes in 
pp220, p30, p72, and p54 for a vaccination study against 
ASFV, the determination coefficient of determination 
between the Pareto ranks of recombinant multi-epitope 
vaccines and swine survival was R2 = 0.95. The identi-
fied epitopes can be cost-effectively validated in vitro to 
design epitope-based ASFV vaccines.

Immunoinformatics-based reverse vaccinology 
approaches hold great promise for reducing the time 
and cost of vaccine development. Currently, several 
approaches can be used to optimize and validate multi-
epitope vaccines. These approaches include allergenicity 
assessment, protein structure verification, docking con-
formation, and in silico immune simulations of the vac-
cine structure (Bappy et al. 2021; Gul et al. 2022). The 
number of potential epitopes screened can be dynami-
cally adjusted using PFAS for subsequent validation in 
multi-epitope combination simulations. PFAS can be 
seamlessly integrated into immunoinformatics-based 
vaccine development pipelines to generate high-poten-
tial epitope combinations for biological experimental 
confirmation.

Materials and methods
Collection of ASFV protein sequences
The most lethal ASFV type, Georgia 2007/1 (GenBank: 
FR682468), was used as the target virus for screening. 
The protein sequences of Georgia 2007/1 were obtained 
from the NCBI, including CD2v (EP402R), p30 (CP204L), 
p54 (E183L), p72 (B646L), and pp220 (CP2475L). All 
sequences were cut into fragments using a sliding win-
dow. Finally, two datasets of ASFV proteins consisting 
of 9mer (Figure S1A) and 15mer (Figure S1B) fragments 
served as candidates for CTL and B cell epitopes, 
respectively.

Collection of validation datasets
To obtain the best parameter settings for PFAS, this 
work established two datasets from the IEDB, consist-
ing of experimentally validated CTL and B cell epitopes 
of swine. The CTL epitopes (n = 243) were annotated as 
Sus scrofa, infectious diseases, and Swine Leukocyte 
Antigen (SLA) class II. After simultaneously removing 
duplicate and uncertain sequences belonging to both 
positive and negative groups, the dataset contained 125 
swine 9mer CTL fragments, including 37 epitopes and 88 
non-epitopes.

Similarly, 1,700 validated swine B cell epitopes (BCEs) 
which were annotated as Sus scrofa and infectious dis-
ease were retrieved. Because IgG production is part of 
the secondary humoral immune response to an anti-
gen, we extracted 1,389 IgG epitopes. Among them, the 
15mer epitope was the largest in the dataset, followed by 
the 12mer epitope. Therefore, we established two datas-
ets: (1) 650 B cell 15mer epitopes, including 116 positive 
and 534 negative epitopes, and (2) 293 swine B cell 12mer 
epitopes, including 35 positive and 258 negative epitopes.

Proposed method PFAS
Figure  2 shows a flowchart of the proposed method 
PFAS. Five protein sequences from Georgia 2007/1 were 
obtained and cut into 9mer and 15mer fragments. The 
CTL epitope predictor estimates T cell activation of 9mer 
fragments in the four stages and averages the four scores 
to obtain a T cell immunogenicity score. Similarly, the 
BCE predictor estimates B cell activation of 15mer frag-
ments to obtain a B cell immunogenicity score. After nor-
malizing these two scores into the range of [0, 1], the two 
fragments were superimposed by the central amino acid. 
Consequently, the fragments were extended, and thus 
conserved sequences were obtained. The Pareto front 
method produced ranks of the conserved fragments. 
The top-ranked fragments were considered as promising 
epitopes.

Calculation of T and B cell scores
Good CTL epitopes are involved in viral processing 
and antigen presentation, with major histocompatibility 
complex (MHC) I molecules playing a major role. First, 
pathogen debris is degraded by proteasomal degradation 
in the cytosol of productively infected cells. NetCTL is 
based on the NetChop method and predicts the probabil-
ity of proteasomal cleavage (Larsen et al. 2007). Second, 
peptides are transported to the endoplasmic reticulum 
(ER) by a transporter associated with antigen process-
ing (TAP). To predict TAP transport efficiency, NetCTL 
and MHC I Processing in the IEDB use the stabilized 
matrix method, and TAPPred is based on a support vec-
tor machine (SVM) with 33 physical features of amino 
acids (Bhasin and Raghava 2004). Third, an antigen 
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is loaded onto MHC I and appears on the cell surface 
through vesicles. NetMHCpan (Reynisson et al. 2020), 
MHC I Processing, and NetCTL are the most widely 
used ANN-based methods to predict MHC I binding 
affinity using the BLOSUM50 matrix. Finally, the epit-
ope stimulates CTL activation and differentiation. MHC 

I immunogenicity in the IEDB (Calis et al. 2013) is based 
on an immunogenicity score model to predict immuno-
genicity. In general, these four predictive roles are equally 
important.

To identify promising T cell epitopes (TCEs), five web 
predictors were used, including NetCTL (https://services.

Fig. 2  The flowchart of PFAS. This flowchart includes three main parts: epitope prediction of T and B cell fragments, Pareto rank of fragments, and promis-
ing epitopes of multi-epitope vaccines

 

https://services.healthtech.dtu.dk/service.php?NetCTL-1.2
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healthtech.dtu.dk/service.php?NetCTL-1.2), IEDB MHC 
I Processing (http://tools.iedb.org/processing/), TAPPred 
(https://webs.iiitd.edu.in/raghava/tappred/index.html), 
NetMHCpan (https://services.healthtech.dtu.dk/service.
php?NetMHCpan-4.0), and IEDB MHC I Immunogenic-
ity. NetCTL was used to predict proteasome processing, 
TAP transport efficiency, and MHC I binding affinity. To 
examine conserved epitope candidates that cover mul-
tiple MHC loci, including A1, A2, A3, A24, A26, B7, B8, 
B27, B39, B44, B58 and B62, we used sequences as inputs 
and applied ensemble learning with 12 supertype mod-
els. After averaging all predictive values in the 12 mod-
els, we obtained three estimated values: binding affinity, 
proteasome cleavage, and the TAP score. The IEDB 
MHC I Processing tool was used to estimate TAP trans-
port efficiency and MHC I binding affinity. We used all 
45 SLA I alleles (including 12 SLA1, 16 SLA2, 12 SLA3, 
and 5 SLA6) and set nine as the peptide length for each 
allele to obtain a file with the average predictive values, 
including the TAP and MHC scores in all sequence frag-
ments. PFAS used TAPPred to predict the peptide-TAP 
transporter binding affinity based on SVM with validated 
sequences and obtained the prediction score. NetMHC-
pan was used to predict the binding affinity of peptide-
MHC I. To obtain effective epitopes, we considered all 
75 SLA alleles (including 23 SLA1, 26 SLA2, 21 SLA3, 
and five SLA6) and set nine as the peptide length for 
each allele. The binding affinity scores were estimated 
with mean scores for all fragments. This work used IEDB 
MHC I Immunogenicity to predict CTL immunogenicity 
considering all CTL active factors and obtained scores of 
all sequence fragments.

BCEs can induce the differentiation of naïve and 
memory B cells into plasma cells, including antigen pro-
cessing, peptide-MHC II presentation, and cytokine pro-
motion. In studies on BCE presentation, LBtope (Singh et 
al. 2013), iBCE-EL (Manavalan et al. 2018), IgPred (Gupta 
et al. 2013), and ABCpred (Saha and Raghava 2006) 
are sequence-based predictors. LBtope uses the sparse 
matrix and amino acid property profile features and is an 
SVM-based Weka Classifier using 38,197 IEDB experi-
mental epitopes. iBCE-EL is based on ensemble learning 
using amino acid composition characteristics and pro-
portions of 5,550 experimentally validated BCEs. IgPred 
uses 14,725 BCEs in different types of specific epitopes 
using physicochemical properties (PCPs) features and 
is based on Weka Classifiers. ABCpred is based on PCP 
features and the neural network method with a balanced 
BCE database. Among the aforementioned predictors, 
LBtope uses the largest dataset with ensemble learning.

To estimate the B cell immunogenicity score of 
15mer and 12mer fragments, five online predictors 
(LBtope_Variable, LBtope_Confirm, iBCE-EL, IgPred, 
and ABCpred) were utilized and validated. Epitope 

probabilities and IgG scores were determined using 
the iBCE-EL and IgPred prediction tools, respectively. 
LBtope is based on multiple peptides from prediction 
models using two variable-length epitope models. The 
LBtope_Variable model was trained using 38,197 pep-
tides. The LBtope_Confirm model was reported in at 
least two studies and contained 2,837 peptides. By sub-
mitting multiple fragments, the probability of epitopes 
was obtained along with the physical property score. As 
ABCpred exclusively accepts an even number of epitope 
lengths and continuous amino acid sequences as submis-
sions, PFAS used only one 12mer dataset with param-
eters containing a threshold of zero and an overlapping 
filter to obtain the predicted scores.

Immunogenicity prediction of T and B cell fragments
The CTL activation prediction has four important stages: 
proteasomal cleavage probability, TAP transport effi-
ciency, MHC I binding affinity, and CTL immunoge-
nicity. These predictions help identify potential TCE 
candidates. PFAS combined all the prediction values 
obtained from the online prediction tools in the four 
stages. The probability of proteasomal cleavage was esti-
mated using NetCTL1.2. The TAP transport efficiency 
score is the mean score of NetCTL1.2, IEDB MHC I Pro-
cessing, and TAPPred values. The peptide-MHCI bind-
ing affinity score is the mean score of NetCTL1.2, IEDB 
MHC I Processing, and NetMHCpan predictive values. 
The CTL immunogenicity score is obtained using IEDB 
MHC I Immunogenicity. After combining and normal-
izing the scores of each category using a combination 
of weights, PFAS compiled four stage score for the TCE 
prediction.

For the BCE prediction, the best predictor was evalu-
ated and used to obtain B cell immunogenicity scores. 
After compiling the results of the prediction values from 
the web tools, the output values were normalized into 
the range of [0, 1] and B cell immunogenicity scores were 
compiled.

Pareto rank of fragments
The Pareto front is the set of all efficient solutions to bi-
objective problems. In this study, a fragment Frag belong-
ing to the Pareto front means that no other fragment has 
both larger T and B cell scores than Frag. The T and B cell 
scores of all fragments which were represented by their 
central amino acids were used as inputs of the Pareto 
front method to determine the Pareto rank of fragments. 
The Pareto front method iteratively removes the Pareto 
fronts, and Pareto rank of the fragments was the serial 
number of the removed front. For instance, the segments 
belonging to the initial Pareto front have a rank one. 
After removing the Pareto front, the fragments belonging 
to the new Pareto front have a rank two, and so on.

https://services.healthtech.dtu.dk/service.php?NetCTL-1.2
http://tools.iedb.org/processing/
https://webs.iiitd.edu.in/raghava/tappred/index.html
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0
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Promising epitopes of the multi-epitope vaccine
This work extended the fragments to a length of 16–20 
amino acids and obtained the epitope profiles with the 
average Pareto rank of the extended fragments. The 
average rank was defined as the sum of the Pareto ranks 
divided by the total number of fragments included in the 
extended fragments. Moreover, to select conserved epi-
topes, PFAS estimated protein variability using the Pro-
tein Variability Server (PVS) (Garcia-Boronat et al. 2008). 
PVS contains three methods, the Shannon entropy, the 
Simpson diversity index, and the Wu–Kabat variabil-
ity coefficient method, which can be used as indicators 
of variability. In this study, the Shannon entropy greater 
than two was considered as the variability point. Accord-
ingly, PFAS removed the variable fragments that con-
tained highly variable sequences. Finally, in the 16mer 
to 20mer epitope profiles, PFAS ranked conserved frag-
ments according to the average Pareto rank, and the 
top-ranked promising epitopes were provided to the bio-
logical decision makers for in vitro validation.

Results
Estimation of T and B cell immunogenicity scores
After T cell online prediction, the T cell score was the 
weighted sum of four scores in the four stages: protea-
somal cleavage probability, TAP transport efficiency, 
MHC I binding affinity, and CTL immunogenicity scores. 
For each stage, the scores were normalized and averaged. 
To validate the weights of four scores, the experimentally 
validated swine 9mer CTL epitopes from the IEDB were 
used. Figure S2A shows a good performance with an area 
under the receiver operating characteristic curve (AUC) 
of 0.71, and the largest AUC was reached when using 
the top 30% epitopes (Figure S3). The set of four equal 
weights 1/4, 1/4, 1/4, and 1/4 in determining the T cell 
score is the most stable one. This result is consistent to 
the previous hypothesis that the importance of the four 
stages in the swine immunogenicity prediction is equal.

In B cell immunogenicity prediction, previous studies 
have revealed that the use of sequence-based predictors, 
such as LBtope (Singh et al. 2013), iBCE-EL (Manava-
lan et al. 2018), IgPred (Gupta et al. 2013), and ABCpred 
(Saha and Raghava 2006) is an efficient approach to iden-
tifying BCEs. Owing to different aims of the training 
dataset and machine learning approaches, the predic-
tion results were different from these methods. There-
fore, PFAS used LBtope, the largest experimental dataset 
with ensemble learning, as a prediction model to iden-
tify BCEs. Experimentally validated swine 15mer and 
12mer BCEs were used to validate this hypothesis, the 
validation pipeline consistent with that used for TCE pre-
diction. Figure S2B shows performance of the four meth-
ods: iBCE-EL, IgPred, LBtope with a variable dataset, 
and LBtope with a confirmed dataset. LBtope with the 

variable dataset achieved an AUC of 0.86. When using 
the top-ranked 30% epitopes, LBtope with a confirmed 
dataset was better than the other methods (Figure S4–5). 
These results were in good agreement with the hypoth-
esis, showing that LBtope is an appropriate method for 
predicting ASFV BCEs.

Epitopes identification using the Pareto front method
Given that both T and B cell activation are equally 
important for mobilizing adaptive immunity, we applied 
the Pareto front method to identify potential epitopes. To 
rank and identify fragments simultaneously, the Pareto 
front method iteratively determined 116 Pareto ranks 
(Figure S6). T and B cell scores in the bi-objective prob-
lem were converted into Pareto ranks to identify epitope 
candidates.

Figure 3  shows 15mer epitope profiles for the five 
ASFV proteins. A higher average Pareto rank indicates 
a more promising epitope. Table S1 shows the results 
of the selected fragments in the five proteins, including 
346 fragments of CD2v, 187 fragments of p30, 170 frag-
ments of p54, 632 fragments of p72, and 2462 fragments 
of pp220. In short, Table 1 shows the Pareto ranks of the 
top three fronts. The best protein is CD2v, which has the 
most selected and continuous fragments in the rank one 
Pareto front.

Evaluation of screening efficiency
To evaluate the screening efficiency of PFAS, two valida-
tion datasets were used consisting of 30 experimentally 
validated and 34 predicted epitopes of T or B cells anno-
tated in previous studies and the IEDB database (Bosch-
Camos et al. 2021; Ivanov et al. 2011; Ros-Lucas et al. 
2020). PFAS selected the top 30% fragments as promising 
epitopes. Table 2 lists the public epitopes with the Pareto 
ranks. PFAS identified 17 epitopes from 30 experimen-
tal ones and 24 epitopes from 34 predicted ones. Figure 
4 revealed scatter points of experimental, predicted and 
PFAS selected epitopes. Since animal studies can prove 
the actual antigenicity and immunogenicity of epitopes, 
the top-ranked epitopes may be superior to the published 
epitopes. Three recombinant multi-epitope vaccines with 
synthesized epitope groups were used to determine the 
determination coefficient between the predicted ranks of 
PFAS and swine immunization (Ivanov et al. 2011). The 
combinations 1, 2, and 3 consisting of four pp220 epit-
opes, six p30 and p72 epitopes, and two p54 epitopes, 
respectively. The Pareto ranks of peptides in each com-
bination were determined using the Pareto front method. 
Figure 5  indicates a significant coefficient of determina-
tion with R2 = 0.95 between the mean Pareto ranks of the 
recombinant vaccine and swine survival days in a vac-
cination study. The higher the combination Pareto rank, 
the longer the survival days of the pig (Table S2). These 
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results reveal that PFAS is an efficient approach to epit-
ope identification.

Identification of promising epitopes for multi-epitope 
vaccines
Clustering epitopes into hotspots (high-ranked epit-
opes) would be an effective method to obtain vaccine 
candidates in the multi-epitope vaccine design. The 
results shown in Table 1 are consistent to previous stud-
ies in which highly-ranked sequences were continuous. 
Accordingly, PFAS extended the fragments to sequences 
of 16–20 amino acids and produced epitope profiles with 
the average Pareto ranks of extended fragments (Figure 
S7–11). The higher the front rank, the greater potential of 
the epitope. Enrichment of potential epitopes is consid-
ered as an epitope hotspot.

Additionally, epitope variability is important for biolo-
gists in identifying vaccine candidates. To obtain con-
served epitopes, PFAS calculated the variability of the 
five proteins using PVS (Table S3). A total of 45 sites 
were identified, including two CD2v sites and 43 p54 
sites, which can be regarded as sites with high variabil-
ity because their Shannon entropy was greater than two 
(Figure S12). Similarly, if a fragment contained highly 
variable sites, it was regarded as a highly variable region. 
After removing 69 highly variable fragments (Table S4), 
3728 fragments were obtained, including 341 CD2v frag-
ments, 187 p30 fragments, 106 p54 fragments, 632 p72 
fragments, and 2462 pp220 fragments. After conserva-
tion verification, the mean Pareto rank of the extended 

fragments for each protein was determined. CD2v had 
the highest average rank among the five proteins, and 
p30, p72, p220, and p54 ranked second, third, fourth, and 
fifth, respectively. Furthermore, we estimated all con-
served fragments (Table S5). Biological decision makers 
can flexibly choose the appropriate epitope length and 
sample size for experimental validation in vitro (Tables 
S6–10). For example, Table  3 shows 72 promising epi-
topes with an average Pareto rank of four, including 26 
16mer epitopes, 16 17mer epitopes, 12 18mer epitopes, 
10 19mer epitopes, and 8 20mer epitopes. In addition, 
these epitopes came from four proteins, including 46 
CD2v epitopes, two p30 epitopes, 10 p72 epitopes, and 
14 pp220 epitopes.

Discussion
Since ASFV is a complex and lethal multi-antigen virus, 
it originated in Africa but has recently caused an emerg-
ing epidemic in Asia. With advances in computational 
biology and machine learning in the field of immunology, 
computational epitope prediction provides a new oppor-
tunity to improve ASFV multi-epitope vaccines. Sev-
eral studies have demonstrated that ASFV enhances or 
modulates the host immune response through multiple 
proteins. Therefore, a recombinant multi-epitope vaccine 
has a potential to be an excellent ASFV vaccine.

In this work, we have analyzed five proteins: CD2v, p30, 
p54, p72, and pp220. Variation in MHC polymorphisms 
would induce different immune responses (Opriessnig 
et al. 2021), which plays an important role in identifying 

Fig. 3  Epitope profiles of the five ASFV proteins. Each 15mer fragment has an average Pareto rank represented by the central amino acid. The higher 
Pareto rank indicates greater epitope potential. The light pink background indicates the epitope hotspot. (A) CD2v. (B) p30. (C) p54. (D) p72. (E) pp220. 
ID, identification
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potential epitopes. Human epitopes have been widely 
used to build prediction models. However, very few swine 
epitopes and prediction models are available. To identify 
potential epitopes for swine vaccine, PFAS used state-of-
the-art predictors with promising parameter setting to 
calculate T and B cell scores. Even when experimentally 
validated porcine epitopes were used for parameter vali-
dation, cross-species prediction models may still reduce 
prediction accuracy.

Although both the T and B cell immunogenicity are 
important, there must be a trade-off in identifying prom-
ising epitopes for conventional prediction methods. 
Therefore, the Pareto front method was proposed to cope 
with the bi-objective problem by converting both the T 
and B cell scores of a fragment into a single Pareto rank 
that vaccine designers can easily determine the number 

of promising epitopes for biological experiments. The 
validation of ASFV recombinant multi-epitope vaccines 
reported suggests that the Pareto front method would 
be a potentially useful approach to identifying promising 
epitopes in the design of multi-epitope vaccines against 
ASFV.

Because ASFV has multiple antigens and complex 
immune interactions with the host immune system, 
ASFV recombinant multi-epitope vaccines require a 
multi-epitope combination. Therefore, we analyzed the 
protein features of the top-ranked epitopes in five poten-
tial proteins, and some results were consistent to those 
of the biological studies. Some studies have shown that 
CD2v exhibits serological specificity, participates in 
immune evasion, enhances viral replication, and damages 
lymphocyte functions (Sanna et al. 2017). In this work, 

Table 1  Fragments of the top three fronts using PFAS
Front Protein ID Fragment T cell score B cell score Rank
Rank 1 CD2v 236 KHVEEIESPPPESNE 0.16 0.97 1

CD2v 237 HVEEIESPPPESNEE 0.13 1.00 1
CD2v 238 VEEIESPPPESNEEE 0.27 0.93 1
CD2v 240 EIESPPPESNEEEQC 0.43 0.90 1
CD2v 276 YSRYQYNTPIYYMRP 1.00 0.73 1
p72 360 KLASQKDLVNEFPGL 0.85 0.88 1
p72 454 KLMSALKWPIEYMFI 1.00 0.33 1
pp220 623 WKATVSAIELEYDVK 0.90 0.84 1
pp220 626 TVSAIELEYDVKRRF 0.41 0.92 1
pp220 2195 FRTQLEDTRREVNNL 0.56 0.90 1

Rank 2 CD2v 94 TYQVVWNQIINYTIK 0.93 0.72 2
CD2v 147 FVKYTNESILEYNWN 0.96 0.69 2
CD2v 233 KRKKHVEEIESPPPE 0.38 0.90 2
CD2v 235 KKHVEEIESPPPESN 0.31 0.90 2
CD2v 265 PSPREPLLPKPYSRY 0.71 0.85 2
p30 140 LAQKTVQHIEQYGKA 0.99 0.52 2
p72 168 GTKNAYRNLVYYCEY 0.99 0.64 2
p72 363 SQKDLVNEFPGLFVR 0.75 0.84 2
p72 364 QKDLVNEFPGLFVRQ 0.83 0.73 2
pp220 785 SPLQIYKTLLEYLQH 0.79 0.79 2
pp220 1453 QSSERFEQYGRVFSR 0.64 0.86 2

Rank 3 CD2v 230 SLRKRKKHVEEIESP 0.71 0.81 3
CD2v 234 RKKHVEEIESPPPES 0.34 0.89 3
CD2v 261 SIHEPSPREPLLPKP 0.64 0.84 3
CD2v 264 EPSPREPLLPKPYSR 0.24 0.90 3
CD2v 277 SRYQYNTPIYYMRPS 0.77 0.77 3
p30 63 VKSARIYAGQGYTEH 0.87 0.68 3
p30 79 AQEEWNMILHVLFEE 0.71 0.83 3
p30 80 QEEWNMILHVLFEEE 0.79 0.76 3
p30 160 VIRAHNFIQTIYGTP 0.95 0.59 3
p54 3 SEFFQPVYPRHYGEC 0.83 0.68 3
p72 86 LGNKLTFGIPQYGDF 0.96 0.59 3
p72 555 SKFCSSYIPFHYGGN 0.93 0.66 3
pp220 1450 NNPQSSERFEQYGRV 0.79 0.74 3
pp220 1452 PQSSERFEQYGRVFS 0.36 0.85 3

Scores are normalized into the range of [0, 1]. ID, identification of fragments
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we observed that CD2v had the highest average rank of 
extended fragments and the highest proportion (n = 46) 
of the top 72 epitopes. These results are consistent to 
the findings of existing studies revealing that CD2v plays 
an important role in activating adaptive host immune 
responses (Jia et al. 2017). CD2v may be a potential pro-
tein candidate in the ASFV vaccine due to its high rank-
ing. p30, a phosphoprotein involved in ASFV entry, is 
synthesized in the early phase and continues to be syn-
thesized during the late phase of viral infection. Although 
p30 is an antigenic and conserved structural protein, the 
immune response triggered by p30 alone is insufficient 
for antibody-mediated protection. However, combin-
ing it with other proteins, such as hemagglutinin, can 
increase humoral and cellular responses (Argilaguet et al. 
2012). In this work, p30 had the second highest average 

rank, and p30 had two of the top 72 epitopes. It appears 
that p30 can be an important part of multi-epitope vac-
cine. p54 is important for the recruitment of envelope 
precursors to assembly factories and induces apoptosis 
during the early phase of infection (Hernaez et al. 2004; 
Rodriguez et al. 1996). p54 is an antigenic structural 
protein that induces the production of specific antibod-
ies. However, protein variability analysis demonstrated 
that there is a highly variable region in the C-terminus 
of the p54 protein. Accordingly, p54 had the lowest aver-
age rank among the five proteins in this work, and these 
show that the p54 epitope selection may depend on the 
target swine species and predominant MHC type. p72 
is conserved and essential for viral icosahedron forma-
tion during viral infection (Cobbold and Wileman 1998); 
therefore, p72 has the characteristics of high antigenicity 

Table 2  The Pareto rank of the epitopes in the top 30% fragments for the experimentally validated and predicted epitopes
Protein Experimental epitope Rank Protein Predicted epitope Rank
CD2v KPCPPPKPCPPPKPC 21 CD2v CTYLTLSSNYFYTFFKLYYIPL –
CD2v PPKPCPPPKPCPPPK – p30 SQVVFHAGSLY 6
CD2v YSPPKPLPSIPLLPN 14 p30 AQEEWNMIL 3
CD2v SPPKPLPSIPLLPNI 14 p54 YTHKDLENSL –
CD2v PPKPLPSIPLLPNIPPLSTQNISLI – p72 AAIEEEDIQFINPYQD –
p30 EVIFKTD 21 p72 KPYVPVGFEY 7
p30 TSSFETLFEQ 8 p72 GFEYNKVRPHTGTPTLGNKLT 20
p30 TVQHIEQYGKA 2 p72 QMGAHGQLQTFPRNGYDWDNQTPLE 4
p30 QHIEQYGKAPDFNKV 27 p72 NVRFDVNGNSL 18
P30 LKEEEKEVVRLMVIKLLKKNKL – p72 YCEYPGERLYENVRFDVNGNSLDEYSSDVTTL 15
p54 MDSEFFQPVYPRHYGECLS 3 p72 HKPHQSKPILTDENDTQRTC –
p54 FQPVYPRHYGECLSP – p72 FPENSHNIQTAGKQD –
p54 QPVYPRHYGECLSPV 20 p72 HTNPKFLSQHFPENSHNIQTAGKQDITPITD 33
p54 PVYPRHYGECLSPVT – p72 RPSRRNIRF 4
p54 VYPRHYGECLSPVTT – p72 TWNISDQNPHQHRDWHK 22
p54 YPRHYGECLSPVTTP – p72 VTHTNNNHHDEKLMS –
p54 PRHYGECLSPVTTPSFF – p72 SFQDRDTALPDACSSISDI 16
p54 YGECLSPVTTPSFFS – p72 LLQNGSAVLRYST –
p54 GECLSPVTTPSFFST 23 pp220 NKALQKVGL –
p54 SRKKKAAAAIEEEDI – pp220 SQVDLNQAINTFMYYYYVAQIY 26
p54 NKPVTDNPVTDRL – pp220 HNKQEFQSY 15
p72 YCEYPGERLYENVRFDVNGNSLDEYSSDVTTL 15 pp220 ITKTFVNNI 14
p72 LCNIHDLHKPHQSKPILTDENDTQRTCS 20 pp220 DNAPAGHYY 30
p72 QKDLVNEFPGLFIRQSRFIPGRPSRRNIRFKP 2 pp220 TPEEAAQRVY 27
p72 ACSSISDISPVTYPITLPIIKNISVTAHGINLIDK 4 pp220 VNDALSTRW 31
p72 LKPREEYQPS 6 pp220 MAAKIFIVL 9
pp220 YDSCSRLLQIIDFYTDIVQKKYGGGEDCECTRV 19 pp220 EFYQKLFSF 21
pp220 PKGQTRTLGSNRERERI – pp220 ARTMNDFGM –
pp220 GYMSRIFRGDNALNM – pp220 NRSNPGSFY 25
pp220 YMSRIFRGDNALNMG 29 pp220 IQNNRSMMMVFNQLIASYITRFY 30

pp220 IPIYLKENY 24
pp220 YMSRYNKEPLMPF 11
pp220 RERERIFNL 18
pp220 YINQALHEL –

The rank of the evaluated epitope was the highest Pareto rank in the selected epitopes. There were 17 and 24 selected epitopes in the 30 experimentally validated 
and 34 predicted epitopes of T or B cells
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and immunogenicity and is enriched and assembled in 
the ER during late-stage expression of infection. This 
study (Neilan et al. 2004) showed that p72 may produce 
high levels of p72-specific IgG antibodies, but there 
exists partial protection when using p72 epitopes alone. 
In this work, p72 had the third highest Pareto front and 
10 p72 epitopes were selected from the top 72 epitopes, 
the data show that p72 may increase antibody produc-
tion in multi-epitope vaccine. The ASFV polyprotein 
precursor pp220 is highly conserved in the viral genome, 
and pp220 is cleaved by proteases to produce the mature 

virion proteins p150, p37, p14, and p34, which account 
for approximately 30% of the total viral protein mass and 
play an important role in the assembly process of the viral 
capsids and viral infection (Andres et al. 2002). In this 
work, pp220 had seven epitopes in the top three fronts, 
and pp220 had the second highest proportion (n = 14) 
among the top 72 promising epitopes. These results indi-
cate that pp220 can be an important component of multi-
epitope vaccine.

However, in the swine computational studies, the pre-
diction models were trained mainly using human data-
sets and small amounts of animal data. In addition, the 
percentage of immune cell populations and the func-
tion of T cells differ between pigs and humans (Gerner 
et al. 2015; Rubic-Schneider et al. 2016), and varia-
tions in MHC polymorphisms induce different immune 
responses (Opriessnig et al. 2021). For computational 
prediction, identifying individual predictors is important 
to improve swine epitope prediction.

Although cross-species epitope prediction increases 
the uncertainty of the results, this study has demon-
strated a relationship between Pareto rank and swine 
survival days based on the Pareto front approach. These 
findings support the hypothesis that accurate predictors 
with the Pareto front method may reduce vaccine devel-
opment time and costs when applied to human vaccine 
development.

In this study, we use the Pareto front method to con-
sider T and B cell immunogenicity simultaneously and 
ranked the epitopes with Pareto ranks. This procedure 
involved state-of-the-art computational methods and 
confirmed parameters. In addition, the evaluation of the 
experimental epitope ranks for the vaccination study had 
a significant coefficient of determination, demonstrating 

Fig. 5  The correlation between Pareto ranks and swine survival days. Com-
binations 1, 2, and 3 contain four, six, and two epitopes, respectively. The 
vaccination experiments of combinations 1, 2, and 3 were performed in 
triplicate, quadruplicate, and triplicate, respectively. There was an R2 = 0.95 
between mean ranks of the recombinant vaccines and swine survival days. 
Results are presented using mean ± SD

 

Fig. 4  Scatter points of experimental, predicted and selected epitopes in the top 30% of the fragments using PFAS. (A) Experimental epitopes. (B) Pre-
dicted epitopes
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that the Pareto front method has effective screening 
efficiency. Finally, promising epitopes based on frag-
ment extension and the peptide sequences with Pareto 
ranks were provided for biological experimental verifica-
tion and confirmation. Overall, our study has proposed 
a computational prediction method based on the Pareto 
front method, provides Pareto rank of all fragments, 
promising epitopes, and may contribute to the develop-
ment of recombinant multi-epitope vaccines for ASFV. 
The method may be used for human or cross-species 
promising epitope identification.
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