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Abstract: Mycoplasma hyorhinis most commonly causes polyserositis and arthritis in swine and is a
common contaminant during the cell culture in the laboratory. In our continuing research for diverse
bioactive compounds from Bacillus subtilis 109GGC020, we discovered uncommon cyclic lipote-
trapeptides showing inhibitory activities against M. hyorhinis with similar structures to previously
reported bacilotetrins A and B. Bacilotetrins C–E (1–3), new cyclic lipodepsipeptides, were isolated
from the EtOAc extract obtained from the fermentation of marine-derived Bacillus subtilis isolated
from a marine sponge sample collected from the Gageo reef, Republic of Korea. The structures
of 1–3, consisting of three leucine residues, one glutamic acid, and a β-hydroxy fatty acid, were
elucidated by detailed analysis of 1D, 2D NMR, and HR-ESIMS data. The absolute configurations
of the amino acids and β-hydroxy fatty acid were established by advanced Marfey’s method and
Mosher’s method, respectively. The localization of L- and D-amino acids within the compounds
was determined by retention time comparison of each purchased dipeptide standard to the partial
hydrolysate products using LC-MS. Compounds 1–3 exhibited anti-mycoplasma activity, with an
MIC value of 31 µg/mL, twofold stronger than that of the positive control, BioMycoX®. Detailed
analysis and comparison of the spectroscopic data between bacilotetrins A (4) and B (5) and 1–3 led
us to revise the structures of 4 and 5.

Keywords: Bacillus subtillus; cyclic lipodepsipeptide; anti-mycoplasma activity

1. Introduction

Marine micro-organisms are recognized principally as a significant resource pro-
ducing new and bioactive compounds [1]. Marine Bacillus species produce structurally
diverse secondary metabolites, including lipopeptides, polypeptides, macrolides, fatty
acids, polyketides, carotenoids, and isocoumarins, which have various activities, such as
antimicrobial, anticancer, and antialgal activities [2]. In particular, strong antimicrobial
cyclic lipopeptides, including surfactins, iturins, and fengycins, from Bacillus subtilis have
received great attention for potential biotechnological and pharmaceutical applications [3].

In our previous study, marine-derived Bacillus subtilis 109GGC020 has been reported to
produce interesting secondary metabolites, including macrolactins (gageomacrolactins [4]),
linear lipopeptides (gageotetrins A–C [5], gageopeptides A–D [6], and gageostatins A–C [7]),
and cyclic lipopeptides (gageopeptins A and B [8], and bacilotetrins A and B [9]) with
antibacterial and antifungal activities. Linear lipopeptides, including gageopeptides A–D
and gageotetrin B, exhibited inhibitory effects on the wheat blast fungus Magnaporthe
oryzae Triticum [10] and the results have revealed the potential of these compounds for
agricultural antibiotics.

Mycoplasma is generally known as the smallest bacteria that can survive without oxy-
gen and exists in various forms due to their lack of cell walls [11,12]. Mycoplasma species
infect animals, plants, insects, and humans and are often found in research laboratories
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as contaminants in cell culture [11,13]. Among mycoplasmas, M. hyorhinis is a commen-
sal bacterium of the upper respiratory tract of swine and it is a pathogenic mycoplasma
species found in piglets [14]. In addition, it has been reported to cause polyserositis [15],
arthritis [16], conjunctivitis [17], otitis [18], and cell culture contamination [13].

During the investigation for antimicrobial compounds against agricultural pathogens,
we discovered new cyclic lipotetradepsipeptides (1–3) (Figure 1) from the strain 109GGC020
exhibiting inhibitory activities against Mycoplasma hyorhinis. The molecular formulae, 1H,
13C, and 2D NMR data of 1–3 were closely similar to previously reported bacilotetrins A (4)
and B (5) [9]. By the detailed and careful analysis of NMR data, we also found that the
planar structures of 4 and 5 were wrongly determined. Here, we described the isolation,
structure determination, and anti-mycoplasma activity of 1–3, and structure revision of 4
and 5.
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Figure 1. The structures of 1–3 and bacilotetrins A (4) and B (5). 

2. Results and Discussion 
2.1. Identification of Isolated Compounds 

Bacilotetrin C (1) was obtained as an amorphous solid and its molecular formula was 
determined to be C37H66N4O8 by HR-ESIMS, which required 7 degrees of unsaturation. 
The NMR data for 1 are summarized in Table 1. The 1H NMR (CD3OH) spectra suggested 
the presence of four NH groups (δH 9.10, 8.39, 7.76, and 7.74). 1H, 13C NMR, and HSQC 
spectra revealed the presence of four α-protons (δH 4.57, 4.43, 4.11, and 3.74), long aliphatic 
protons (δH 1.29), one oxygenated proton (δH 5.16), seven methyl protons (δH 0.96–0.89), 
and six carbonyl carbons (δC 176.3, 175.9, 174.5, 173.9, 173.3, and 172.9). The detailed anal-
yses of 1H–1H COSY, TOCSY, and HMBC spectra revealed the presence of three leucines 
(Leu), one glutamic acid (Glu), and a β-hydroxy fatty acid (β-OH acid). To satisfy the un-
saturation number and molecular formula, the structure of 1 was suggested to be a cyclic 
lipodepsipeptide. The sequence for 1 was determined by analyses of the HMBC and NO-
ESY spectra. The HMBC signals from H-3 (δH 5.16) of β-OH acid to C-1 (δC 172.9) of Leu-
3, from NH (δH 7.76) and H-2 (δH 4.57) of Leu-3 to C-1 (δC 174.5) of Leu-2, from NH (δH 
7.74) of Leu-2 to C-1 (δC 173.9) of Leu-1, from NH (δH 9.10) and H-2 (δH 3.74) of Leu-1 to C-
1 (δC 175.9) of Glu, and from NH (δH 8.39) of Glu to C-1 (δC 173.3) of β-OH acid established 
the peptide linkages between the inter-residues. The NOESY correlations between NH (δH 
7.76) of Leu-3/H-2 (δH 4.43) of Leu-2, NH (δH 7.74) of Leu-2/H-2 (δH 3.74) of Leu-1, NH (δH 
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also supported the connections between the amino acids and β-OH acid. The HMBC sig-
nals from the α-proton and amide proton of each amino acid to the carbonyl carbon of the 

Figure 1. The structures of 1–3 and bacilotetrins A (4) and B (5).

2. Results and Discussion
2.1. Identification of Isolated Compounds

Bacilotetrin C (1) was obtained as an amorphous solid and its molecular formula was
determined to be C37H66N4O8 by HR-ESIMS, which required 7 degrees of unsaturation.
The NMR data for 1 are summarized in Table 1. The 1H NMR (CD3OH) spectra suggested
the presence of four NH groups (δH 9.10, 8.39, 7.76, and 7.74). 1H, 13C NMR, and HSQC
spectra revealed the presence of four α-protons (δH 4.57, 4.43, 4.11, and 3.74), long aliphatic
protons (δH 1.29), one oxygenated proton (δH 5.16), seven methyl protons (δH 0.96–0.89),
and six carbonyl carbons (δC 176.3, 175.9, 174.5, 173.9, 173.3, and 172.9). The detailed
analyses of 1H–1H COSY, TOCSY, and HMBC spectra revealed the presence of three
leucines (Leu), one glutamic acid (Glu), and a β-hydroxy fatty acid (β-OH acid). To satisfy
the unsaturation number and molecular formula, the structure of 1 was suggested to be
a cyclic lipodepsipeptide. The sequence for 1 was determined by analyses of the HMBC
and NOESY spectra. The HMBC signals from H-3 (δH 5.16) of β-OH acid to C-1 (δC 172.9)
of Leu-3, from NH (δH 7.76) and H-2 (δH 4.57) of Leu-3 to C-1 (δC 174.5) of Leu-2, from
NH (δH 7.74) of Leu-2 to C-1 (δC 173.9) of Leu-1, from NH (δH 9.10) and H-2 (δH 3.74) of
Leu-1 to C-1 (δC 175.9) of Glu, and from NH (δH 8.39) of Glu to C-1 (δC 173.3) of β-OH
acid established the peptide linkages between the inter-residues. The NOESY correlations
between NH (δH 7.76) of Leu-3/H-2 (δH 4.43) of Leu-2, NH (δH 7.74) of Leu-2/H-2 (δH 3.74)
of Leu-1, NH (δH 7.74) of Leu-1/H-2 (δH 4.11) of Glu, and NH (δH 8.39) of Glu /H-3
(δH 5.16) of β-OH acid also supported the connections between the amino acids and β-OH
acid. The HMBC signals from the α-proton and amide proton of each amino acid to the
carbonyl carbon of the adjacent amino acid or β-OH acid and the NOESY correlations
between the α-proton and amide proton of amino acids established the sequence of 1 as
(cyclo-(β-OH acid-Glu-Leu-1-Leu-2-Leu-3)) (Figure 2). The β-OH acid chain was estimated
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to be a linear type due to the remaining one methyl signal (δC 14.5 and δH 0.89), which
matched well with recently reported chemical shifts for the terminal methyl signal (δC 14.4
and δH 0.90) of a linear β-OH acid [19].
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Figure 2. Partial structures and key 2D NMR correlations of 1–3.

The absolute configurations of the amino acids in 1 were determined using advanced
Marfey’s method [20,21]. The result revealed that 1 contains 2 × L-Leu, 1 × D-Leu, and
1 × L-Glu (Figure S25). To confirm the localization of D-Leu, 1 was subjected to partial
hydrolysis, which produced a complex mixture of dipeptides. The mixture was purified
by HPLC-MS to give three fragments containing Leu–Glu, Leu–Leu and β-OH-acid–Leu
(Figure S26). Marfey’s analysis of Leu–Glu and β-OH-acid–Leu fragments revealed that
these fragments consisted of only the L-form. The Leu–Leu fragment (P2) was reacted with
1-fluoro-2,4-dinitrophenyl-5-L-leucine amide (L-FDLA), which was analyzed by comparing
the retention time with L-FDLA derivatives of authentic reagents (L-Leu-D-Leu and D-
Leu-L-Leu) (Figure S27). The Leu–Leu fragment (P2) reacted with L-FDLA showed two
peaks corresponding with standard derivatives. The retention times of the major peak (tR
26.1 min, m/z 589 [M + H]+) and minor peak (tR 31.6 min (minor), m/z 589 [M + H]+) of
the P2 fragment were in good agreement with those of authentic L-Leu-D-Leu-L-FDLA (tR
26.1 min, m/z 589 [M + H]+) and D-Leu-L-Leu-L-FDLA (tR 31.6 min, m/z 589 [M + H]+),
respectively. Therefore, the Leu–Leu fragment (P2) was a mixture containing Leu-1–Leu-2
(major peak) and Leu-2–Leu-3 (minor peak) fragments. These results indicated that the
sequence of three leucines is L–D–L. To determine the absolute stereochemistry of the β-OH
acid, 1 was cleaved by methanolysis to give a β-OH acid methyl ester (1a) (Figure 3). Then,
1a was converted to the (S)- (1b) and (R)-MTPA esters (1c) and the 1H NMR signals of 1b
and 1c were designated by the analysis of COSY spectra. The ∆δH values (δS-ester − δR-ester)
established the R configuration of C-3 in the β-OH acid methyl ester (Figure 4).

Table 1. 1H and 13C NMR data for compounds 1–3 (600 MHz, CD3OH).

Position
1 2 3

δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz)

Glu

1 175.9, C 175.9, C 175.9, C
2 55.6, CH 4.11, td (7.3, 4.0) 55.5, CH 4.11, m 55.5, CH 4.11, m
3 27.3, CH2 1.95, q (7.5) 27.3, CH2 1.95, q (7.5) 27.3, CH2 1.94, q (7.4)
4 31.1, CH2 2.42, m 31.1, CH2 2.43, m 31.1, CH2 2.42, m
5 176.3, C 176.3, C 176.3, C

NH 8.39, d (4.7) 8.42, d (4.5) 8.41, d (4.5)
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Table 1. Cont.

Position
1 2 3

δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz) δC, Type δH, m (J in Hz)

Leu-1

1 173.9, C 173.9, C 173.9, C
2 55.0, CH 3.74, m 55.0, CH 3.75, m 55.0, CH 3.74, m

3 38.5, CH2
2.01, ddd (14.6, 11.0, 3.9)

1.80, o.l a 38.5, CH2
2.01, m

1.80, o.l a 38.5, CH2
2.01, m

1.80, o.l a

4 26.3, CH 1.61, m 26.3, CH 1.60, o.l a 26.3, CH 1.60, o.l a

5 21.3, CH3 0.93, d (5.8) 21.3, CH3 0.93, d (5.4) 21.3, CH3 0.94, d (5.3)
6 24.0, CH3 0.95, d (5.8) 24.0, CH3 0.95, d (5.4) 24.0, CH3 0.95, d (5.3)

NH 9.10, d (6.7) 9.13, d (6.6) 9.12, d (6.7)

Leu-2

1 174.5, C 174.5, C 174.5, C
2 53.4, CH 4.43, m 53.3, CH 4.42, m 53.4, CH 4.42, m
3 40.4, CH2 1.81, o.l a 40.4, CH2 1.76, o.l a 40.4, CH2 1.78, o.l a

4 26.2, CH 1.70, m 26.2, CH 1.71, o.l a 26.2, CH 1.71, o.l a

5 21.2, CH3 0.90, d (6.4) 21.2, CH3 0.90, d (6.4) 21.2, CH3 0.91, d (6.4)
6 23.9, CH3 0.96, d (6.4) 23.9, CH3 0.96, d (6.4) 23.9, CH3 0.98, d (6.4)

NH 7.74, d (8.6) 7.75, d (8.5) 7.74, d (8.8)

Leu-3

1 172.9, C 173.0, C 173.0, C
2 51.6, CH 4.57, m 51.6, CH 4.57, m 51.6, CH 4.57, m

3 40.6, CH2
1.80, m
1.69, m 40.6, CH2

1.81, m
1.69, m 40.6, CH2

1.80, m
1.70, m

4 25.8, CH 1.65, o.l a 25.7, CH 1.65, o.l a 25.7, CH 1.66, m
5 21.8, CH3 0.89, o.l a 21.7, CH3 0.89, d (6.4) 21.7, CH3 0.90, d (6.5)
6 23.8, CH3 0.92, d (6.5) 23.7, CH3 0.92, d (6.4) 23.7, CH3 0.93, d (6.5)

NH 7.76, d (9.5) 7.77, d (9.5) 7.77, d (9.4)

β-OH acid

1 173.3, C 173.3, C 173.0, C

2 41.5, CH2
2.72, dd (13.8, 4.6)
2.29, dd (13.8, 8.1) 41.5, CH2

2.72, dd (13.8, 4.6)
2.29, dd (13.8, 8.1) 41.5, CH2

2.72, dd (13.8, 4.7)
2.29, dd (13.8, 8.1)

3 73.8, CH 5.16, tt (7.8, 5.3) 73.8, CH 5.15, m 73.8, CH 5.15, m

4 35.5, CH2
1.80, o.l a

1.57, o.l a 35.4, CH2
1.81, o.l a

1.56, o.l a 35.4, CH2
1.81, o.l a

1.62, o.l a

5

26.4–
30.8, CH2

1.29, o.l a
28.2–

30.6, CH2
1.29, o.l a

26.3, CH2 1.28, o.l a

6

28.6–
31.0, CH2

1.28, o.l a

7
8
9

10

11 30.7, CH2
1.34, o.l a

1.13, o.l a

12 33.1, CH2 1.27, o.l a 35.7, CH 1.29, o.l a 40.3, CH2 1.16, m

13 23.8, CH2 1.30, o.l a 37.8, CH2
1.29, o.l a

1.09, o.l a 29.2, CH 1.51, m

14 14.5, CH3 0.89, o.l a 11.8, CH3 0.87, o.l a 23.1, CH3 0.87, d (6.4)
15 19.7, CH3 0.85, d (4.8) 23.1, CH3 0.87, d (6.4)

a Signals were overlapped with other signals.
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Bacilotetrins D (2) and E (3) were isolated as amorphous solids. Both the molecular
formulae of 2 and 3 were determined to be C38H68N4O8 (unsaturation degree of 7) by
HR-ESIMS. The NMR data for 2 and 3 are summarized in Table 1. The 1H and 13C NMR
spectra of 2 and 3 were very similar to those of 1, except for the branched β-OH acids. The
main difference in the 1H and 13C NMR spectra of 2 and 3 lies in the chemical shifts of
the terminal methyls in the β-OH fatty chains. Bacilotetrin D (2) showed anteiso-methyl
signals (δC 19.7/δH 0.85 and δC 11.8/δH 0.87), whereas 3 displayed iso-methyl signals (δC
23.1/δH 0.87 × 2). Compound 2 exhibited HMBC signals from H-13 (δH 1.29 and 1.09) of
β-OH acid to C-11 (δC 30.7) and C-12 (δC 35.7) of β-OH acid and from H-14 (δH 0.87) and
H-15 (δH 0.85) to C-13 (δC 37.8). These signals established that the branched-chain fatty
acid in 2 is an anteiso type. Bacilotetrin E (3) also displayed HMBC signals from H-14
and H-15 (δH 0.87) of the β-OH acid to C-13 (δC 29.2) of β-OH acid and from H-12 (δH
1.16) to C-14 (δC 23.1) and C-15 (δC 23.1) of the β-OH acid, suggesting the presence of an
iso-methyl branched fatty acid. In addition, anteiso- and iso-methyl signals of 2 and 3 were
in good agreement with reference values (anteiso: δC 19.6/δH 0.86 and δC 11.8/δH 0.88;
iso: δC 23.1/δH 0.88) [19]. Thus, the sequences of 1–3 were identified as cyclo-(R-β-OH
acid-L-Glu-L-Leu-D-Leu-L-Leu).

As the spectroscopic data, including NMR and MS, of 1–3 were very similar to pre-
viously reported bacilotetrins A (4) and B (5), we carefully compared and checked the
NMR data of these compounds to discover that the planar structures of 4 and 5 were
incorrectly determined. In the original paper for 4, the NMR signals for the carbonyl
carbon (δC 173.0) and α-position (δC 51.6 and δH 4.58) of Leu-3 were misassigned to those
of Glu (Table S4). These misassignments led to a wrong determination of the sequence of
amino acids in 4. In addition, the methine signals (δC 30.6 and δH 1.50) for the anteiso-type
β-OH acid in the original NMR data of 4 were not true signals. The methyl signals (δC
14.6 and δH 0.89) of the β-OH acid in 4 were in good agreement with those (δC 14.5 and
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δH 0.89) of 1 and the literature values for the linear-type β-OH acid [19]. Thus, we revise
the planar structure of 4 to have a linear-type β-OH acid instead of the anteiso-type β-OH
acid, and to be cyclo-(R-β-OH acid-L-Glu-L-Leu-L-Leu-L-Leu) instead of cyclo-(R-β-OH
acid-L-Leu-L-Leu-L-Leu-L-Glu) (Figure 5). Compound 5 was reported to have a 3-hydroxy-
9,11-dimethyltridecanoic acid (HDTA, C15H30O3) as a β-OH acid. However, by the detailed
analysis of 2D NMR data, we found that the HDTA unit in 5 is a mixture of a 3-hydroxy-12-
methyltetradecanoic acid and a 3-hydroxy-13-methyltetradecanoic acid, which have the
same molecular weight and formula to HDTA, as shown in Figure 5. This fact was also
supported by the chemical shifts of the methyl signals (δC 19.8/δH 0.86, δC 11.9/δH 0.87,
and δC 23.1/δH 0.87) of the β-OH acid in 5, which were well matched with the literature
values for the anteiso- and iso-type β-OH acids [19]. Therefore, the planar structures of 4
and 5 should be revised to have the same planar core structure as baciloterins C–E (1–3).
However, 4 and 5 consist of only L-amino acids, whereas 1–3 consist of L- and D-amino
acids, and these compounds had slightly different optical rotation values (1: [α]25

D −50
(c 0.1, MeOH); 4: [α]25

D −22.1 (c 0.05, MeOH) and 2: [α]25
D −70 (c 0.1, MeOH); 3: [α]25

D −63
(c 0.1, MeOH); 5: [α]25

D −18.6 (c 0.05, MeOH)). Therefore, these facts revealed that 1 is a new
diastereomeric isomer of 4, and 2 and 3 are new diastereomers of 5 (Figure 5).
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The structures of 1–3 have a similar structural composition to surfactins. Surfactins
are cyclic lipopeptides consisting of seven amino acids (L-Glu-L-Leu-D-Leu-L-Val-L-Asp-
D-Leu-L-Leu) and a β-OH fatty acid having 13 to 15 carbon atoms [22]. Likewise, 1–3
are also cyclic lipopeptides consisting of four amino acids (L-Glu-L-Leu-D-Leu-L-Leu)
and a β-OH acid having 14 or 15 carbon atoms in a similar manner. These structural
similarities suggest that 1–3 might be biosynthesized by a similar biosynthetic pathway, a
non-ribosomal peptide synthetase (NRPS), to surfactins. The cyclic lipopeptide surfactins
are synthesized by a complex of three surfactin synthetase subunits SrfA-A, SrfA-B, and
SrfA-C [23]. These subunits consist of either three modules (SrfA-A and SrfA-B) or one
module (SrfA-C) and each module contributes to the addition of one amino acid [24]. In
the case of 1–3, it is predicted that one SrfA-B module is omitted and other modules are
related to produce the structures (Figure S37).

2.2. Inhibitory Activity of Isolated Compounds against Mycoplasma hyorhinis

The anti-mycoplasma activity of 1–3 was assessed by broth dilution assay (Table 2).
Compounds 1–3 exhibited anti-mycoplasma activity, with an MIC value of 31 µg/mL.
These results revealed that the type of branch of β-OH fatty acids does not affect their
inhibitory activity against M. hyorhinis, and the cyclic lipodepsipeptide core plays a more
important role.
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Table 2. MIC values of bacilotetrins C–E (1–3).

Compounds

1 2 3 BioMycoX® 1

MIC (µg/mL) 31 31 31 62
1 Positive control.

3. Materials and Methods
3.1. General Experimental Procedures and Reagents

UV spectra were recorded with a Shimadzu UV-1650PC spectrophotometer (Shimadzu
Corporation, Kyoto, Japan). IR spectra were obtained on a JASCO FT/IR-4100 spectropho-
tometer (JASCO Corporation, Tokyo, Japan). Optical rotations were measured with a
Rudolph analytical Autopol III S2 polarimeter (Rudolph Research Analytical, Hackettstown,
NJ, USA). NMR spectra were acquired with a Bruker AVANCE III 600 spectrometer (Bruker
BioSpin GmbH, Rheinstetten, Germany) with a 3 mm probe operating at 600 MHz (1H)
and 150 MHz (13C). Chemical shifts were expressed in ppm with reference to the solvent
peaks (δH 3.31 and δC 49.15 ppm for CD3OH). LR-EIMS and Marfey’s analysis data were
acquired using an Agilent 6100 single quadrupole mass spectrometer (Agilent Technologies,
Santa Clara, CA, USA). HR-ESIMS data were obtained with a Waters SYNPT G2 Q-TOF
mass spectrometer (Waters Corporation, Milford, CT, USA) at Korea Basic Science Institute
(KBSI) in Cheongju, Republic of Korea. HPLC was performed using a PrimeLine binary
pump (Analytical Scientific Instruments, Inc., El Sobrante, CA, USA) with Shodex RI-101
refractive index detector (Shoko Scientific Co. Ltd., Yokohama, Japan) and S3210 variable
UV detector (Schambeck SFD GmbH, Bad Honnef, Germany), along with Thermo Fisher
Scientific UltiMate 3000 HPLC system (Thermo Scientific, Bremen, Germany). Columns
for HPLC were YMC-ODS-A (250 mm × 10 mm, 5 µm; and 250 mm × 10 mm, 5 µm) and
YMC-Triart C18 (250 mm × 10 mm, 5 µm; and 250 mm × 10 mm, 5 µm). C18-reversed-phase
silica gel (YMC-Gel ODS-A, 12 nm, S-75 µm) was used for open column chromatography.
Organic solvents were purchased as HPLC grade from Duksan (Ansan, Republic of Korea)
and Samchun (Pyeongtaek, Republic of Korea). Pure and ultrapure waters were obtained
from the Milipore Mili-Q Direct 8 system (Milipore S.A.S. Molsheim, France).

3.2. Micro-Organism and Fermentation

The bacterial strain Bacillus subtilis 109GGC020 (Genbank accession number JQ927413)
was isolated from a marine sponge sample collected from the Gageo reef, Republic of
Korea in 2010. The seed culture and production cultures were carried out in Bennett (BN)’s
broth [9] (1% glucose, 0.2% tryptone, 0.1% yeast extract, 0.1% beef extract, 0.5% glycerol,
1.85% artificial sea salt, pH 7 before sterilization). The seed culture was performed in a
250 mL Erlenmeyer flask containing 100 mL BN broth at 28 ◦C, 120 rpm for 3 days. The seed
culture was inoculated into a 100 L fermenter containing 70 L of the broth medium under
the aseptic condition. The fermenter was operated at 28 ◦C, 55 rpm, and airflow rate of
20 L/min (LPM) for 7 days. The culture broth was separated by high-speed centrifugation
(60,000 rpm) into cell mass and broth. The broth part was extracted with an equal volume
of ethyl acetate (EtOAc, 70 L) twice.

3.3. Extraction and Isolation of Compounds 1–3

The EtOAc extract was concentrated in vacuo, and 28.4 g of a crude extract was
obtained. A portion of the crude extract (9.7 g) was subjected to reversed-phase vacuum
column chromatography (YMC Gel ODS-A, 12 nm, S 75 µm) with a stepwise gradient
solvent system of 20, 40, 60, 80, and 100% MeOH in H2O. The 100% MeOH fraction,
showing characteristic two exchangeable proton signals in 7–8 ppm of bacilotetrins, was
selected for further purification.

The 100% MeOH fraction (2.3 g) was applied to ODS vacuum column chromatography,
followed by a stepwise gradient elution with 80, 90, and 100% MeOH in H2O. In addition,
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each fraction was divided into three subfractions. Subfraction-3 of the 90% MeOH fraction
(1.5 g) was purified by reversed-phase HPLC (YMC ODS-A, 250 × 10 mm, 5 µm, 86% MeOH
in H2O, 2.0 mL/min, RI, runtime 60 min) to obtain 1 (19.1 mg, tR 37 min). Subfraction-1 of
the 100% MeOH fraction (200 mg) was purified by HPLC (YMC Triart C18, 250 × 10 mm,
5 µm, 90% MeOH in H2O, 2.0 mL/min, RI, runtime 55 min) to yield a subfraction containing
2 and 3. The subfraction was again subjected to further purification by HPLC (YMC Triart
C18, 250 × 4.6 mm, 5 µm, 70% MeCN in H2O + 0.01% TFA, 0.7 mL/min, UV: 224 nm,
runtime 60 min) to obtain 2 (3.7 mg, tR 49 min) and 3 (2.7 mg, tR 51 min).

Bacilotetrin C (1): Amorphous solid; [α]25
D −50 (c 0.1, MeOH); IR (MeOH) γmax 3297,

2925, 1643, 1052 cm−1; 1H and 13C NMR data, see Table 1; HR-ESIMS m/z [M + Na]+

717.4775 (calculated for C37H66N4O8Na, 717.4778).
Bacilotetrin D (2): Amorphous solid; [α]25

D −70 (c 0.1, MeOH); IR (MeOH) γmax 3300,
2957, 1653, 1057 cm−1; 1H and 13C NMR data, see Table 1; HR-ESIMS m/z [M + Na]+

731.4934 (calculated for C38H68N4O8Na, 731.4935).
Bacilotetrin E (3): Amorphous solid; [α]25

D −63 (c 0.1, MeOH); IR (MeOH) γmax 3297,
2961, 1650, 1057 cm−1; 1H and 13C NMR data, see Table 1; HR-ESIMS m/z [M + Na]+

731.4937 (calculated for C38H68N4O8Na, 731.4935).

3.4. Total Hydrolysis and Marfey’s Analysis

Compound 1 (0.4 mg) was treated with 6N HCl (300 µL) for 12 h at 110 ◦C. The com-
pletion of reaction was confirmed by LR-LCMS analysis. The reaction mixture was cooled
down to room temperature, and partitioned with water and hexane (Hex). The aqueous
layer was evaporated and treated with 0.1% 1-fluoro-2,4-dinitro-phenyl-5-L-leucinamide
(L-FDLA, 600 µL) in acetone and 1M NaHCO3 (120 µL). The mixture was stirred at 40 ◦C
for 1 h. After cooling to room temperature, the solution was neutralized with 1N HCl
(120 µL) and diluted with MeCN (420 µL). Likewise, standard L- and D-amino acids were
derivatized with L-FDLA, following the above-mentioned method. Marfey’s derivative of
1 was analyzed by LR-LCMS (YMC ODS-A, 250 × 4.6 mm, 5 µm, 0.5 mL/min, UV: 340 nm)
using a gradient MeCN–H2O (+0.02% TFA) solvent system (40% MeCN for 5 min, 40–80%
MeCN over 20 min, and 80% MeCN for 5 min), and the retention time was compared
with authentic standard derivatives (Figure S25 and Table S1). As a result, the compo-
sition of amino acid from 1 was confirmed as L-Glu (16.9 min), L-Leu (23.6 min), and
D-Leu (29.0 min). Standard amino acid derivatives with L-FDLA: L-Glu (16.9 min), D-Glu
(17.8 min), L-Leu (23.6 min), and D-Leu (28.9 min).

3.5. Partial Hydrolysis and Marfey’s Analysis

Compound 1 (2.0 mg) was treated with 1 mL of 4N HCl:AcOH (1:1) at 100 ◦C for 2 h.
The reaction was monitored by LR-LCMS. The hydrolysate was concentrated under a N2
stream, and partitioned with H2O and hexane. The aqueous layer was concentrated in
vacuo and purified by LR-LCMS (YMC ODS-A, 250 × 4.6 mm, 5 µm, 0.5 mL/min, UV:
224 nm) using a gradient MeCN–H2O (+0.02% TFA) solvent system (20% MeCN for 10 min,
20–100% MeCN over 40 min, and 100% MeCN for 10 min) to obtain three fragments (P1:
Glu–Leu, tR 7.6 min, m/z 261 [M + H]+; P2: Leu–Leu, tR 23.0 min, m/z 245 [M + H]+;
P3: β-OH-acid–Leu, tR 28.6 min, m/z 358 [M + H]+) (Figure S26). Two fragments, P1
(Glu–Leu) and P3 (β-OH-acid–Leu), were subjected to total hydrolysis and derivatization
with L-FDLA, which were analyzed by LR-LCMS, as previously described (Figure S27 and
Table S2). Both leucines from fragments P1 and P3 were identified as L-form (hydrolysate
of P1-L-FDLA: tR 23.7 min, hydrolysate of P3-L-FDLA: tR 23.7 min). The other fragment P2
(Leu–Leu) was reacted with L-FDLA, which was analyzed by comparing the retention time
with L-FDLA derivatives of standard reagents (L-Leu-D-Leu and D-Leu-L-Leu, Figure S28)
(Figure S29 and Table S3). The Leu–Leu of P2 was determined as a mixture of L-Leu-D-
Leu and D-Leu-L-Leu (P2-L-FDLA: tR 26.1 min (major) and tR 31.6 min (minor), m/z 589
[M + H]+, L-Leu-D-Leu-L-FDLA: tR 26.1 min, m/z 589 [M + H]+, D-Leu-L-Leu-L-FDLA: tR
31.6 min, m/z 589 [M + H]+).
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3.6. Methanolysis of 1

Compound 1 (2.4 mg) was dissolved in 1.2 mL of 3M methanolic HCl and refluxed for
2 h. The completion of reaction was confirmed by LR-LCMS analysis. The mixture was
concentrated under a N2 gas stream and partitioned with Hex and water. The Hex layer
was dried and 1.0 mg of a crude fatty acid ester 1a was obtained (Figure S34).

3.7. Preparation of the (S)- and (R)-MTPA Esters (1b and 1c)

Crude fatty acid ester 1a was divided equally into two portions and dried under a N2
gas stream. A few crystals of 4-dimethylaminopyridine (DMAP) and anhydrous pyridine
(80 µL) were added to each vial and stirred at room temperature for 5 min. Then, 5 µL of
R-(−) or S-(+)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (MTPA-Cl) was added,
respectively. The mixtures were stirred at room temperature for 16 h. The reaction mixtures
were concentrated under a N2 gas steam at 40 ◦C. Each mixture was dissolved in methylene
chloride (MC) and washed with 1N HCl solution, saturated NaHCO3 solution and brine.
The MC layer was dried over anhydrous MgSO4 and evaporated in vacuo. Each residue
was purified by reversed-phase HPLC (YMC-Triart C18, 250 × 4.6 mm, 5 µm, 1.0 mL/min,
UV: 210 and 254 nm) using a gradient MeCN–H2O solvent system (40% MeCN for 5 min,
40–100% MeCN over 30 min, and 100% MeCN for 10 min) to give (S)-MTPA ester 1b
(0.2 mg, tR 39.4 min) and (R)-MTPA ester 1c (0.3 mg, tR 39.6 min). The 1H chemical shifts
around the stereogenic center of MTPA esters were confirmed by the analysis of 1H and
COSY spectrum (Figures S30−S33).

S-MTPA ester of 1a (1b): 1H NMR (600 MHz, CDCl3) δ 5.45 (m, H-3), 3.57 (s, OCH3),
2.62 (dd, J = 15.9, 8.0 Hz, H-2a), 2.56 (dd, J = 15.9, 5.0 Hz, H-2b), 1.72 (m, H-4a), 1.64 (m,
H-4b); EIMS m/z [M + Na]+ 497.3.

R-MTPA ester of 1a (1c): 1H NMR (600 MHz, CDCl3) δ 5.45 (m, H-3), 3.64 (s, OCH3),
2.67 (dd, J = 15.9, 8.3 Hz, H-2a), 2.60 (dd, J = 15.9, 4.6 Hz, H-2b), 1.63 (m, H-4a), 1.58 (m,
H-4b); EIMS m/z [M + Na]+ 497.2.

3.8. Measurement of Anti-Mycoplasma Activity

Anti-mycoplasma activity against Mycoplasma hyorhinis of 1–3 was evaluated by broth
dilution assay. In brief, the test strain, Mycoplasma hyorhinis ATCC 17981, was cultured
in PPLO broth medium [25] at 37 ◦C under a humidified atmosphere of 5% CO2. Stock
solutions of 1–3 were dissolved in DMSO and diluted with PPLO broth medium to give
serial twofold dilutions in the range of 500 to 1 µg/mL. The final DMSO concentration was
maintained at 5% by adding DMSO to the PPLO broth. Culture broth (100 µL) containing
approximately 2 × 104 CFU/mL of activated strain was added to each well of a 96-well
plate. The plates were incubated for 7 days at 37 ◦C under a humidified atmosphere
of 5% CO2. The color of the broth changes to yellow as bacteria grow. The minimum
inhibitory concentration (MIC) values were determined as the lowest concentration of the
test compound that inhibited bacterial growth. BioMycoX® (CellSafe Co., Yongin, Republic
of Korea) was used for a positive control.

4. Conclusions

Three new cyclic lipodepsipeptides, bacilotetrins C–E, consisting of four amino
acids and a β-hydroxy fatty acid were isolated from the culture broth of Bacillus sub-
tilis 109GGC020. Their spectroscopic data were very similar to those of previously reported
for bacilotetrins A (4) and B (5). By the detailed and careful analysis of NMR data, we
found that the planar structures of 4 and 5 must be reassigned and our comprehensive
spectroscopic data analysis led to revision of their structures. In the revised structures
of 4 and 5, the positions of Glu and the branch types of the β-hydroxy fatty acids are
correctly determined.

The absolute configurations of the amino acids and β-hydroxy fatty acid in 1–3 were
established by chemical derivatization, including Marfey’s and Mosher’s methods. The
major difference between 1–3 and 4–5 lay in the fact that 1–3 consist of L- and D-amino



Mar. Drugs 2021, 19, 528 10 of 11

acids, whereas 4–5 have only L-amino acids. In addition, as previously mentioned, 1–3
were expected to be synthesized through the similar biosynthetic pathway to surfactins,
which are well known for their various biological activities, such as antifungal, antibacterial,
anticancer, and anti-mycoplasma activities [22]. Compounds 1–3 also showed antimicrobial
activity against M. hyorhinis, which is known to cause diseases, such as polyserositis,
arthritis, conjunctivitis, and otitis in pigs, with an MIC value of 31 µg/mL, twofold stronger
than that of the positive control, BioMycoX®. The only difference between 1–3 was the
type of branch in the β-OH acid. Therefore, on the basis of the result, it is supposed that
the cyclic peptide core plays an important role in anti-mycoplasma activity, but the type of
branch in the β-OH acid is not critical for activity. Further studies are needed to clarify the
underlying mechanism of the activity for the development of antibiotics.
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