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A B S T R A C T   

The monitoring of forest biomass is a crucial biophysical parameter in forest ecosystems, as it 
provides valuable information for managing forests sustainably and tracking carbon circulation 
statistics. To achieve sustainable forest management, it is essential to monitor and study forest 
resources, particularly biomass. This study aimed to model above ground tree biomass (AGTB) 
using Machine Learning Algorithms (MLAs) in the western terai Sal forest of Nepal. AGTB was 
calculated using a systematic inventory sample plot, while spectral and textural variables were 
processed and masked for the study area using Sentinel-2A satellite imagery. Three MLAs namely 
support vector machine (SVM), random forest (RF), and stochastic gradient boosting (SGB), were 
employed for modeling with eight categorized variable datasets. Among the MLAs, the RF al
gorithm with a combination of gray-level co-occurrence matrix (GLCM) and raw bands (RB) 
dataset variable demonstrated the best performance, with a low RMSE value of 78.81 t ha− 1 in the 
test data. However, the AGTB range from this model ranged from 118.34 to 425.97 t ha− 1. The 
study found that traditional indices, raw bands, and GLCM texture from near-infrared were 
important variables for AGTB. Nevertheless, the RF algorithm and the dataset combination of 
GLCM plus raw bands (RB) exhibited excellent performance in all model runs. Thus, this pio
neering study on comparative MLAs-based AGTB assessment with multiple datasets variables can 
provide valuable insights for new researchers and the development of novel approaches for 
biomass/carbon estimation techniques in Nepal.   

1. Introduction 

Forest measurement is essential for national and international forest resource assessment report. Thus the report could support for 
biodiversity monitoring and management prospects at regional/local level working plan cum decision making process [1]. Growing 
stock estimation, carbon stock, above ground biomass of forest ecosystem are main variables which are directly related to sustainable 
forest management strategies and climate change mitigation policies development [2,3]. Likewise forest biomass quantification is 
crucial for economic valuation of forest and its supply in form of fuel wood, timber and so on [4,5]. Also carbon mapping in 
spatio-temporal way is important for its sustainability as not only for how much carbon reduced [6]. Forest ecosystem comprise 30 % 

* Corresponding author. 
E-mail addresses: bikramsingh2051@gmail.com (B. Singh), amitvermafri@gmail.com (A.K. Verma), kasiptiwari@gmail.com (K. Tiwari), joshi. 

rajeev20@gmail.com (R. Joshi).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e21485 
Received 8 July 2023; Received in revised form 6 October 2023; Accepted 22 October 2023   

mailto:bikramsingh2051@gmail.com
mailto:amitvermafri@gmail.com
mailto:kasiptiwari@gmail.com
mailto:joshi.rajeev20@gmail.com
mailto:joshi.rajeev20@gmail.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e21485
https://doi.org/10.1016/j.heliyon.2023.e21485
https://doi.org/10.1016/j.heliyon.2023.e21485
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e21485

2

of global land surface, plays vital role in carbon circulation which help in mitigation of human induced emission effects [7]. However 
World Forest growing stock is declining, about 3 billion cubic meter has lost from 1990 to till [8]. Forest growing stock volume (FGSV) 
is highly correlated with above ground biomass [9,10]. Studies evidenced that Above ground biomass is significant predictive variables 
of carbon storage and half of total biomass would be carbon storage as per thumb rule [11,12]. 

Forest biomass estimation is used to be tough but accurate through field based destructive solely methods which cost much 
manpower, finance and time for local level assessment [10,13,14]. Nowadays, remote sensing and geographical information system 
(GIS) integration with plot based data on geo-statistical analysis enables the modeling of Above Ground Tree Biomass(AGTB) with 
reliable results in worldwide [15–17]. Widely utilized remote sensing satellite data from sources such as Landsat 8, MODIS, QuickBird, 
SPOT, as well as Light Detection and Ranging (LiDAR) and Sentinel 1 or 2 images, have proven instrumental in achieving highly 
accurate AGTB estimations across diverse regions [18–21]. However, the application of spatial-level forest AGTB estimation is not yet 
widespread in developing countries due to a dearth of innovative estimation methodologies. Spectral bands of satellite images based 
rationing calculated variable layers like Normalized Different Vegetation Index (NDVI), Ratio vegetation index (RDVI), Enhanced 
vegetation index (EVI) etc. have performed better relationship with biomass and their modeling based output improves the estimation 
accuracy [20,22]. More recently, researchers have begun harnessing various novel machine learning algorithms (MLA) to further 
elevate the precision of AGB estimation. These algorithms combine field survey biomass data with multiple derivatives of remote 
sensing data, ushering in a new era of improved estimation accuracy [23]. These MLAs have the classification and regression tree 
(CART) learner and its extensions using bagging or boosting techniques, followed by the development of random forests (RFs) and the 
gradient-boosted regression tree (GBRT) algorithms [23–25]. It is evidenced that different non-parametric machine learning algo
rithms (MLAs) like random forest (RF), support vector machine (SVM), maximum entropy (MaxEnt) algorithm, k-nearest neighbors 
(kNN) method, artificial neural network (ANN) and cubist (CB) algorithms have performed better than traditional linear regression 
models for biomass estimation in recent research [21,26,27]. Researches were carried out in comparison of performance output of 
these algorithms in estimation forest AGB i.e. [28] compared several techniques like stepwise linear regression, kNN, SVR, RF, and 
stochastic gradient boosting (SGB) methods for estimating forest AGB from Landsat series images in China, and concluded that the RF 
revealed the best performance among all. Similarly recent done by using Random Forest (RF), Gradient Boosted Model (SGB), and 
Extreme Gradient Boosting (XGB) for AGB estimation of Mangrove site forest in India resulted that RF gave good results among all 
however ensemble prediction exhibited more improvement in accuracy for estimation [12]. Though medium resolution satellites 

Fig. 1. Study area map.  
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images are available free of cost i.e. Sentinel 1 or 2 and Landsat 8 OLI/TIRS, the studies are very limited in Nepal to estimate AGB. 
Sound methods to assess the actual forest resources are one of the important aspects of sustainable forest management principles. 

Above ground tree biomass is the living or dead standing tree weight expressed as mass per unit area which is important variable to 
assess carbon stock. Nepal committed at the national and international level to reduce emissions by addressing drivers of deforestation 
and forest degradation, and therefore it is actively engaged in the REDD readiness and implementation process. Nepal National REDD 
+ Strategy had objective to improve National Forest Monitoring System with robust measurement, monitoring, reporting and veri
fication mechanisms [29]. Department of forest and soil conservation has been followed point based field data to project overall 
country forest growing stock [30]. Furthermore, the community forest inventory guideline is also based on plot based for growing 
stock estimation. However, there are more than 22000 community forests. In order to develop new method/guideline which is based 
on geospatial machine learning modeling to project forest tree growing stock of spatial boundary, ample scientific research should 
carry in different part of country. 

In Nepal, research utilizing spatial modeling approaches is scarce. Notably, a study in the Chitwan district of central Nepal 
employed object-based image analysis and supervised nearest neighbor classification methods, drawing on WorldView-2 satellite and 
LiDAR data, to quantify and map carbon stocks for predominant tree species [31]. Similarly, another investigation focused on a hilly 
watershed in the Gorkha district of Nepal, leveraging high-resolution GeoEye data to estimate carbon stocks [32]. However, these 
studies are more applicable to small areas and come with substantial costs. A recent study by Ref. [26] utilized medium-resolution 
Sentinel-2 data in the buffer zone community forest of Parsa National Park, Nepal, employing the random forest model algorithm 
for above-ground biomass assessment. Despite these efforts, there remains a dearth of multiple machine learning ensemble models for 
predicting forest tree growing stock and above-ground tree biomass in Nepal. Thus, the introduction of multiple machine learning 
model applications in forest resources promises a groundbreaking approach to spatially mapping biomass stock. Consequently, the 
outcomes of such endeavors could serve as essential references for developing technology-based guidelines for forest resource 
assessment across various management models in Nepal. The primary objective of this study is to estimate spatial Above Ground Tree 
Biomass (AGTB) by employing Machine Learning Algorithms (MLAs), encompassing an assessment of MLA performance and envi
ronmental variables in estimating AGTB in the Western Terai Sal Forest of Nepal. 

Fig. 2. Work flow of methodology.  
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2. Materials and method 

2.1. Study area 

The study was carried out in the Terai Sal Forest patch of Far Western, Nepal that covers an area of 2786 ha (Fig. 1). The forest area 
is located in 28◦43′19.56"N latitude and 80◦38′10.39"E longitude with elevation approximate 180 m from mean sea level. The climate 
of study area consists of hot monsoon tropical climate with winter cold and summer hot. The forest patch falls under tropical Sal Forest 
of Nepal forest classification and managed by community forest users’ group. Sal (Shorea robusta) is dominant species in study area 
with some associates species like Terminalia tomentosa, Adina cordifolia, Syzigium cuminii etc. The study area covers Jali community 
forest, Dhanchaudi community forest, Devhariya community forest, Siddanath community forest, Beli community forest, Patela 
community forest and Manehara community forest. 

2.2. Sampling design and data collection 

The overall methodology process completed in five steps as sampling design and data, plot-based biomass calculation, satellite data 
download, variable layer preparation and stacking, model run and model evaluation (Fig. 2). The sample design is based on Com
munity forest inventory guideline 2005 [33]. According to these guidelines, the sampling intensity for any homogenous community 
based managed forest would be 0.1 %. Hence the number of sample plot required for study area calculated by following formula. 

n=
A × I

a×100%
(1)  

where, A = Study area (Ha), I = Sampling Intensity, a = Sample plot area and n = Sample plot numbers required. 
*Sample plot area would be 500 m2 for tree according to CF inventory guideline 2005. 
The total 51 numbers of sample plots were measured for this study area. Furthermore, required numbers of sample plot was layout 

on systematic sampling basis throughout study area. Hence systematic distance between one sample plot to another can be calculated 
by following formula. 

d =

̅̅̅̅̅̅̅̅̅
A

n+1

√

(2)  

where, A = Study area (m2), n = Sample plots number required and d = Distance between two sample plots. 
Once distance is calculated, sample plots have been laid out in study spatially by using Fishnet tool in Arc map 10.5 versions 

(Fig. 3.1). The plots have been navigated by Global Positioning System (GPS) tools. At field, sample plots were measured in circular 
shape. The tree diameter at breast height (dbh) 1.3 m (>10 cm dbh only) and height were measured within each plot. The diameter at 
breast height was measured by diameter tape and height by Range finder. 

2.3. Plot based above ground tree biomass (AGTB) calculation 

The above ground tree biomass is calculated at plot level by improved allometric equation based on diameter and height developed 
by Ref. [34] at plot level as: 

AGTB= 0.0673×
(
ρ×D2 × H

)0.976 (3) 

Fig. 3. Sentinel-2A imagery scene.  
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Where, AGTB = Above Ground Tree Biomass (Kg), ρ = Wood density
( gm

cm3

)
, H = Height of tree(m), D = Diameter at breast height(cm). 

2.4. Satellite data processing and variable layers 

For this study, we used the Sentinel-2A MSI Level-1C (L1C) products collected from the Copernicus Open Access Hub (https:// 
scihub.copernicus.eu/, accessed in 2022 April 01) (Fig. 3). The satellite is rich in spectral information covering total 13 bands i.e., 
visible, red-edge, near-infrared and shortwave infrared wavelengths with varied spatial resolution. In this study, total 10 bands 
(Table 1) were used out of 13 in which 1, 9 and 10 bands were excluded. In order to resemble in spatial resolution, all bands were 
resampled to 10 m resolution. To run the model, raw bands (RB), traditional spectral indices(TSI), red edge spectral indices (RESI) and 
gray level co-occurrence matrix (GLCM). TSI, and RESI layer were prepared by using the mathematical formula through raster 
calculation (Table 1). And for GLCM layer, optimum window size 7 x 7 was selected to preparation using the near infrared band. 

2.5. Machine learning algorithm for AGTB modeling 

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific 

Table 1 
Variable description used in AGTB prediction modeling.  

Variable layer Formula Reference 

Raw bands (RB) [35] 
Blue B2  
Green B3  
Red B4  
Red edge 1 B5  
Red edge 2 B6  
Red edge 3 B7  
NIR B8  
NIR narrow B8A  
SWIR 1 B11  
SWIR 2 B12  
Traditional spectral indices (TSI) 
NDVI (ρNIR − ρRed)/(ρNIR+ ρRed) [36] 
CLG ρNIR/ρGreen − 1 [37] 
VARIg (ρGreen − ρRed)/(ρGreen+ ρRed − ρBlue) [38] 
NDII (ρNIR − ρSW IR1)/(ρNIR+ ρSW IR1 [39] 
MSAVI 

[2 ρNIR+ 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2 ρNIR+1)2
− 8(ρNIR− ρRed)

√

]/2 [40] 

SR ρNIR/ρRed [41] 
DVI ρNIR − ρRed [42] 
ARVI (ρNIR − (2ρRed − ρBlue))/(ρNIR + (2ρRed − ρBlue)) [43] 
Red edge spectral indices (RESI) 
MCARI [(ρRE1 − ρRed) − 0.2(ρRE1 − ρGreen)](ρRE1 /ρRed) [44] 
NDVIre1 (ρNIR − ρRE1)/(ρNIR+ ρRE1) [45] 
NDVIre2 (ρNIR − ρRE2)/(ρNIR+ ρRE2) [46] 
SRre ρNIR/ρRE1 [47] 
NDVIre3 (ρNIR − ρRE3)/(ρNIR+ ρRE3) [46] 
CLre ρRE3/ρRE1 − 1 [48] 
NDre2 (ρRE3 − ρRE1)/(ρRE3 + ρRE1) [49] 
Gray-level co-occurrence matrix (GLCM) 
Mean ∑N− 1

i,j=0 iPi,j [50] 

Variance ∑N− 1
i,j=0 iPi,j(1 − μi)

Homogeneity ∑N− 1
i,j=0 iPi,j /(1 + (i − j)2

)

Contrast ∑N− 1
i,j=0 iPi,j(i − j)

Dissimilarity ∑N− 1
i,j=0 iPi,j|i − j|

Entropy ∑N− 1
i,j=0Pi,j ln Pi,j  

Second moment ∑N− 1
i,j=0 iPi,j

2 

Correlation ∑N− 1
i,j=0(i(

∑N− 1
i,j=0ijPi,j − μiμi) /σi

2σj
2)

*ARVI: Atmospherically Resistant Vegetation Index; CLg: Green Chlorophyll Index; DVI: Difference Vegetation Index; MSAVI: 
Modified Soil Adjusted Vegetation Index; NDII: Normalized Difference Infrared Index; NDVI: Normalized Difference Vegetation 
Index; SR: Simple Ratio; VARIg: Visible Atmospherically Resistant Index green; CLre: Chlorophyll Index red-edge; MCARI: Modified 
Chlorophyll Absorption Ratio Index; NDVIre1: Normalized Difference Vegetation Index Red-edge 1; NDVIre2: Normalized Difference 
Vegetation Index Red-edge 2; NDVIre3: Normalized Difference Vegetation Index Red-edge 3; NDre2: Normalized Difference Red- 
edge 2; SRre: Simple Ratio Red-edge. 

B. Singh et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e21485

6

task without being explicitly programmed. Based on Machine learning, many algorithms were developed for geospatial predictive 
modeling for environmental research [51]. CARET (Classification and Regression Training) package based machine learning algo
rithms (Random Forest, Support Vector Machine and stochastic gradient boosting.) was selected for AGTB estimation in R statistical 
software [12]. Furthermore the CARET package had calculated environment variable importance for each model run. 

2.6. Model evaluation 

A total of 51 sampling plots based AGTB value were randomly partition into two subsets: 70 % was used for the training data set for 
model learning and the remaining 30 % as the testing the model built. Cross-validation was applied to assess the generalization 
capability of the model when there are an inadequate number of sample points. In addition, we selected three criteria for evaluating the 
RF model effectiveness, namely, the RMSE (Equation (4)), the coefficient of determination (R2, Equation (5)), and Pearson’s corre
lation coefficient of the root mean square error (r, Equation (6)). These were calculated using fifteen-fold cross-validation. Generally, 
the higher R2 and r and the lower RMSE represents, the model fits better. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(ŷi − yi)
2

n

√

(4)  

R2= 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2 (5)  

r= n
( ∑

yi ŷi)− (
∑

yi)(
∑

ŷi)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
n(
∑

yi
2) − (

∑
yi)

2] [
(n
∑

ŷi
2) − (

∑
ŷi)

2]
√ (6)  

Where, yi and ŷi represents the field measured and predicted AGTB values in the ith sample respectively, yi is the measured AGTB 
averaged over all samples, and n represents the size of the samples in different data set. 

3. Results 

Total eight set of variable combinations as per mentioned in methodology section were calibrated for each model i. e., SVM, RF and 
SGB. In order to optimize the values of hyper parameter according to the minimum RMSE, the model run for every replication was 
based on 15 cross fold and 10 repetitions. The results obtained and model performance is explained separately as follows. 

3.1. Support vector machine 

The model performance for each variable combination in model calibration, training data and test data is illustrated (Table 2). For 
SVM algorithm, eight categories of variable combination reflect varied performance for model calibration, train data and test data. 
Model performance in calibration is found less RMSE value (118.11 tha-1) in case of all variables stacked (RB, TSI, RESI, GLCM) for 
AGTB estimation with R2 (0.77). Thus, the AGTB range given by this model based on all variables is 159.72–365.96 t ha− 1 (Fig. 5(h)). 
Similarly, the algorithms had responded differently for each variable combination for train data on field measured data versus pre
dicted data and thus all variable based model has showed good among all with RMSE (112.13 t ha− 1), R2 (0.55) and r (0.74) (Table 2). 
And test data partition before model build was compared with predicted biomass data by model run for each variable combination, we 
found best statistical response on traditional spectral indices-based model with RMSE (83.36 t ha− 1), R2 (0.26) and r (0.51) (Table 2) 
which shows the AGTB of range 171.21–356.09 t ha− 1(Fig. 5(b)). The scatter plot is clearly shown (Fig. 4) for observed and predicted 
AGTB for eight combinations for test data. The predicted spatial AGTB map for each variable combination is presented in Fig. 5. 

Table 2 
Model performances on train and test data for SVM algorithm.  

S.N. Variables Model performance Training data Test data 

R2 RMSE R2 RMSE R R2 RMSE R 

1 Raw bands 0.74 122.23 0.58 127.98 0.70 0.13 90.31 0.36 
2 Traditional spectral indices 0.74 121.41 0.38 127.58 0.62 0.26 83.36 0.51 
3 Red edge spectral indices 0.75 120.55 0.24 127 0.49 0.02 105.08 − 0.13 
4 Gray-level co-occurrence matrix (GLCM) 0.75 124.52 0.63 126.32 0.70 0.05 93.19 0.22 
5 Traditional spectral indices and raw bands 0.72 119.78 0.42 126.06 0.65 0.16 90.75 0.40 
6 Red edge spectral indices and raw bands 0.72 119.79 0.36 127.54 0.60 0.00 97.04 0.01 
7 Gray-level co-occurrence matrix (GLCM) and raw bands 0.75 120.52 0.47 123.67 0.68 0.03 94.97 0.18 
8 All 0.77 118.11 0.55 112.13 0.74 0.00 103.43 − 0.03  
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3.2. Random forest 

The model performance for each variable combination in model calibration, training data and test data is presented (Table 3). For 
RF algorithm, eight categories of variable combination reflect varied performance for model calibration, train data and test data. 
Model performance in calibration is found less RMSE value (122.45 t ha− 1) in case of all variables stacked (RB, TSI, RESI, GLCM) for 
AGTB estimation with R2 (0.77). The range of AGTB based on all variables by using RF algorithm is found 115.92 to 448.83 t 
ha− 1(Fig. 7(h)) which is significantly different from biomass obtained based on SVM algorithm. Similarly, the algorithm had shown 
significantly different prediction of AGTB for each variable category combination as compared train data on field measured data versus 
predicted data and thus TSI plus RB based model has showed good among all with RMSE (55.56 t ha− 1), R2 (0.92) and r (0.96) (Table 2) 
which ranges the AGTB 109.78 to 471.33 t ha− 1(Fig. 7(e)). And test data partition before model build was compared with predicted 
biomass data by model run for each variable combination, we found best statistical response on GLCM plus RB based model with RMSE 
(78.81 t ha− 1), R2 (0.34) and r (0.58) (Table 3) and thus has given the AGTB map of range 118.34–425.97 t ha− 1 (Fig. 7(g)).The scatter 
plot is clearly shown (Fig. 6) for observed and predicted AGTB (t ha− 1) for eight combinations. The predicted spatial AGTB map for 
each variable combination is visualized (Fig. 7). 

3.3. Stochastic gradient boosting 

The model performance for each variable combination in model calibration, training data and test data is presented (Table 4). For 
SGB algorithm; eight categories of variable combination reflect varied performance for model calibration, train data and test data. 
Model performance in calibration is found less RMSE value (119.84 t ha− 1) in case of all variables stacked (RB, TSI, RESI, GLCM) for 
AGTB estimation with R2 (0.77) (Table 4). Thus, the SGB algorithm based on all variables has predicted the AGTB map of range 
196.65–367.28 t ha− 1(Fig. 9(h)). Similarly, the algorithm had shown significantly different prediction of AGTB for each variable 
category combination as compared train data on field measured data versus predicted data and thus all variable based model has 
showed good among all with RMSE (111.32 t ha− 1), R2 (0.64) and r (0.80) (Table 4). And test data partition before model build was 
compared with predicted biomass data by model run for each variable combination, we found best statistical response on all variable 
based model with RMSE(83.42 t ha− 1), R2 (0.27) and r (0.52) (Table 4).The scatter plot is clearly shown (Fig. 8) for observed and 
predicted AGTB for eight combinations for test data. The predicted spatial AGTB map for each variable combination is presented in 
Fig. 9. 

3.4. Variable importance 

The important of the input variables for the model based on all variables were determined for all algorithms i.e., RF (Fig. 10(a)), 

Fig. 4. Scatter plot for predicted and observed biomass in SVM algorithm for test data(a = Scatter plot for Red bands variable combination, b 
= Scatter plot for Traditional spectral indices variable combination, c = Scatter plot for Red edge spectral indices variable combination, d = Scatter 
plot for Gray-level co-occurrence matrix variable combination, e = Scatter plot for Red bands and Traditional spectral indices variable combination, 
f = Scatter plot for Red bands and Red edge spectral indices variable combination, g = Scatter plot for Red bands and Gray-level co-occurrence 
matrix variable combination and h = Scatter plot for Red bands, Traditional spectral indices, variable combination, Red edge spectral indices and 
Gray-level co-occurrence matrix). 
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SGB (Fig. 10(b)) and SVM (Fig. 10(c)). Thus, NDVI is most important variable in case of RF and SGB followed by entropy, MCARI and so 
on. But in case of SVM algorithm, B_04 of raw band shows most importance variable followed by B_12, NDVI and so on. The study 
carried out for AGTB estimation using multiple MLAs had shown that soil-adjusted vegetation index (SAVI) as most important pre
dictive variable followed by NDVI in Yongshou Country. However, SAVI is not included in our study and thus NDVI has been most 
important variable for two models i.e., RF and SGB. 

3.5. Comparative analysis of models 

Overall, the RMSE value is found less in RF algorithm than other algorithms i.e., SVM and SGB (Fig. 11). Furthermore, the com
bination of GLCM texture of near infrared and RB in RF algorithm had shown better performance having less RMSE value of 78.81 t 

Fig. 5. AGTB predicted map by SVM algorithm for each variable combination (a = AGTB predicted map for Red bands variable combination, b 
= AGTB predicted map for Traditional spectral indices variable combination, c = AGTB predicted map for Red edge spectral indices variable 
combination, d = AGTB predicted map for Gray-level co-occurrence matrix variable combination, e = AGTB predicted map for Red bands and 
Traditional spectral indices variable combination, f = AGTB predicted map for Red bands and Red edge spectral indices variable combination, g =
AGTB predicted map for Red bands and Gray-level co-occurrence matrix variable combination and h = AGTB predicted map for Red bands, 
Traditional spectral indices, variable combination, Red edge spectral indices and Gray-level co-occurrence matrix). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Model performances on train and test data for RF algorithm.  

S.N. Variables Model performance Train data Test data 

R2 RMSE R2 RMSE r R2 RMSE R 

1 Raw bands 0.76 133.37 0.89 67.63 0.94 0.15 89.55 0.39 
2 Traditional spectral indices 0.77 123.10 0.91 59.57 0.95 0.34 79.01 0.58 
3 Red edge spectral indices 0.73 131.72 0.84 70.15 0.92 0.04 100.69 0.20 
4 Gray-level co-occurrence matrix (GLCM) 0.73 126.48 0.86 61.67 0.93 0.32 82.44 0.56 
5 Traditional spectral indices and raw bands 0.74 123.70 0.92 55.56 0.96 0.13 92.29 0.36 
6 Red edge spectral indices and raw bands 0.71 127.05 0.88 67.87 0.94 0.14 90.6 0.37 
7 Gray-level co-occurrence matrix (GLCM) and raw bands 0.73 125.80 0.89 66.55 0.94 0.34 78.81 0.58 
8 All 0.77 122.45 0.91 65.21 0.95 0.30 80.78 0.55  

Fig. 6. Scatter plot for predicted and observed biomass for test data in RF algorithm(a = Scatter plot for Red bands variable combination, b =
Scatter plot for Traditional spectral indices variable combination, c = Scatter plot for Red edge spectral indices variable combination, d = Scatter 
plot for Gray-level co-occurrence matrix variable combination, e = Scatter plot for Red bands and Traditional spectral indices variable combination, 
f = Scatter plot for Red bands and Red edge spectral indices variable combination, g = Scatter plot for Red bands and Gray-level co-occurrence 
matrix variable combination and h = Scatter plot for Red bands, Traditional spectral indices, variable combination, Red edge spectral indices and 
Gray-level co-occurrence matrix). 
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ha− 1among all 24-model run. Similar type of comparative study were carried out in Zhejiang Province, China using five MLAs (KNN, 
SVM, RF and SGB) concluded that better prediction by RF algorithm [28] which is also resemble with our study output. Furthermore 
comparative modeling for above ground carbon stock estimation in Iran using MLAs (Boosted regression tree, SVM and RF) again 
concluded that better performance of RF model among all [52]. Study carried in Myanmar by Ref. [53] had demonstrated that RF 
based above ground biomass performed better compared to SGB model. 

4. Discussion 

Nowadays remote sensing-based variable are widely using for forest resource assessment like above ground biomass by application 
of machine learning algorithms [21,23,53]. This study is preliminary study in Nepal on comparative analysis of machine learning 

Fig. 7. AGTB predicted map by RF algorithm for each variable combination (a = AGTB predicted map for Red bands variable combination, b 
= AGTB predicted map for Traditional spectral indices variable combination, c = AGTB predicted map for Red edge spectral indices variable 
combination, d = AGTB predicted map for Gray-level co-occurrence matrix variable combination, e = AGTB predicted map for Red bands and 
Traditional spectral indices variable combination, f = AGTB predicted map for Red bands and Red edge spectral indices variable combination, g =
AGTB predicted map for Red bands and Gray-level co-occurrence matrix variable combination and h = AGTB predicted map for Red bands, 
Traditional spectral indices, variable combination, Red edge spectral indices and Gray-level co-occurrence matrix). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 4 
Model performances on train and test data for SGB algorithm.  

S. N Variables Model performance Train data Test data 

R2 RMSE R2 RMSE r R2 RMSE R 

1 Raw bands (RB) 0.69 124.54 0.44 134.09 0.66 0.14 92.15 0.37 
2 Traditional spectral indices (TSI) 0.70 119.92 0.49 117.44 0.70 0.30 85.26 0.55 
3 Red edge spectral indices (RESI) 0.72 119.92 0.42 121.31 0.65 0.18 87.56 0.42 
4 Gray-level co-occurrence matrix (GLCM) 0.74 125.63 0.42 132.20 0.65 0.14 90.60 0.38 
5 Traditional spectral indices and raw bands 0.71 121.23 0.58 115.69 0.76 0.25 84.24 0.50 
6 Red edge spectral indices and raw bands 0.72 122.21 0.58 116.20 0.76 0.16 87.96 0.40 
7 Gray-level co-occurrence matrix (GLCM) and raw bands 0.70 125.73 0.51 129.99 0.71 0.35 87.81 0.59 
8 All 0.77 119.84 0.64 111.32 0.80 0.27 83.42 0.52  

Fig. 8. Scatter plot for predicted and observed biomass for test data in SGB algorithm(a = Scatter plot for Red bands variable combination, b 
= Scatter plot for Traditional spectral indices variable combination, c = Scatter plot for Red edge spectral indices variable combination, d = Scatter 
plot for Gray-level co-occurrence matrix variable combination, e = Scatter plot for Red bands and Traditional spectral indices variable combination, 
f = Scatter plot for Red bands and Red edge spectral indices variable combination, g = Scatter plot for Red bands and Gray-level co-occurrence 
matrix variable combination and h = Scatter plot for Red bands, Traditional spectral indices, variable combination, Red edge spectral indices and 
Gray-level co-occurrence matrix). 
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Fig. 9. AGTB predicted map by SGB algorithm for each variable combination(a = AGTB predicted map for Red bands variable combination, b 
= AGTB predicted map for Traditional spectral indices variable combination, c = AGTB predicted map for Red edge spectral indices variable 
combination, d = AGTB predicted map for Gray-level co-occurrence matrix variable combination, e = AGTB predicted map for Red bands and 
Traditional spectral indices variable combination, f = AGTB predicted map for Red bands and Red edge spectral indices variable combination, g =
AGTB predicted map for Red bands and Gray-level co-occurrence matrix variable combination and h = AGTB predicted map for Red bands, 
Traditional spectral indices, variable combination, Red edge spectral indices and Gray-level co-occurrence matrix). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Variables important; (a) RF, (b) SGB and (c) SVM.  
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algorithms and performance of combination of geospatial variable for biomass estimation. Hence the main expected contribution of 
study was to build a baseline for preparation of sound approach of biomass estimation in Nepal for better quantification of forest 
resources. In this study three machine learning (RF, SVM and SGB) were used to estimate AGTB of western terai Sal forest of Nepal 
based on four forms of variables (raw bands, traditional spectral indices, red edge spectral indices and gray level co-occurrence matrix) 
of remote sensing data (Table 1) with their combinations. On comparison of SVM and SGB, RF performed better for AGTB estimation, 
had lowest RMSE (78.81 t/ha) and R2 (0.34). Additionally, the combination of gray level co-occurrence matrix and raw bands has 
responded better output for AGTB estimation among eight combinations in RF algorithm (Table 3). 

The study carried out in Yok Don National Park, Vietnam concluded that sentinel-2 data in conjunction with RF based model has 
good potential to predict spatial map of AGTB [54] which is also agreeable statement in case of our study. A study on AGTB using the 
RF algorithm in Himalayan foothills of India with a total 51 spectral indices and textural variables, showed the result having good 
coefficient of variation and RMSE = 62.56 Mgha-1 and hence convinced us to use of remote sensing, field data, and RF algorithm to 
assess spatial distribution of AGTB [55].A comparative study for three MLAs (RF, SVM and ANN) for AGTB in Yongshou Country 
demonstrated that RF performed better for estimation [21] as our overall study conclusion also consistent with that RF based model 
had good performance. Interestingly a research was carried out in Norway nation forest for above ground biomass estimation using RF 
model which had concluded that model would give better accuracy if we combine multispectral data and Arctic canopy height model 
data [56]. Again, study carried out by recommended that application of RF model with the combination of synthetic aperture radar 
backscatters and vegetation indices could give best result for above ground biomass. Furthermore study carried in community forest in 
Nepal for biomass estimation using RF algorithm for comparison of potential of texture indices from Sentinel-2A data, resulted that 
biomass estimation based on texture indices plus vegetation indices model fit better than other [57]. 

Likewise the study carried out in Sierra Madre Occidental in Mexico for above ground estimation using SVM and RF algorithm 
showed that best performance of SVM with RMSE = 8.20 Mg/ha [5] whose result is different from our result in case of validation RF 
showed best among three. Furthermore study carried out in Madhya Pradesh, India on biomass prediction comparison for traditional 
regression models and support vector machine had found better performance of SVM over regression model [58].It has been concluded 
that integration of SVM algorithm and ALOS/PALSAR data in hilly terrain performed good for biomass estimation [59] and thus such 
technique can be used in mid-hills of Nepal. Additionally it was clearly demonstrated that support vector machine increased the 
performance for AGTB estimation using multi resource remote sensing data [60]. 

Furthermore the study carried out in dense tropical forest of India using SGB and RF had shown that less performance of SGB as 
compare to RF [61] which resembles with our result in case of test data. SGB model predicted the AGTB having coefficient of 
determination 0.6 and RMSE (79.45 t/ha) in study done by Ref. [62] however in our study best model predicted based on SGB gave R2 

(0.77) and RMSE (119.84 t ha− 1) from model cross validation. Similarly study done [53] in Myanmar by using MLAs (RF based kriging, 
RF and SGB) resulted that R2 (0.35) and RMSE (32.02 t ha− 1) in case of evergreen forest. 

The study also assessed the response of combination of variables for each MLA and thus found that significantly different per
formance for RF, SVM and SGB. Thus, GLCM and RB, TSI and ALL combination were better predictions for biomass estimation in RF, 
SVM and SGB respectively. It is also concluded that the variable combination performance for each three algorithms was significantly 
different. Hence TSI, GLCM + TSI and ALL variable combination have shown better performance for SVM, RF and SGB respectively. 
The comparison of results provided by previous studies with this study guided more study requirements in Nepal in order to get better 

Fig. 11. Comparison of RMSE for each three algorithms across variable combination dataset model.  
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modeling results for biomass estimation. Eventually this type of approach of biomass estimation will definitely help for periodic 
monitoring for REDD + program in Nepal. 

5. Conclusion 

In this study, we utilized three machine learning algorithms (SVM, RF, and SGB) with various variable combinations derived from 
Sentinel-2 MSI satellite data to map the above ground tree biomass (AGTB) in the Sal Forest of western terai, Nepal. Moreover, we 
evaluated the performance of eight variable datasets for AGTB estimation, resulting in nine models out of 24 that demonstrated better 
performance through the correlation of predicted and observed data via scatter plot. These models include TSI of SVM, TSI, GLCM plus 
bands, all variables, GLCM only of RF, and TSI, TSI plus bands, GLCM plus bands, and All variable of SGB, which are expected to predict 
AGTB accurately in future Nepal. The best model in our study, with the lowest RMSE (78.81 t ha− 1) and AGTB range of 118.34–425.97 
t ha− 1, was the datasets variable of GLCM plus bands of RF algorithms. Additionally, NDVI was found to be the most important variable 
in RF and SGB algorithms, followed by entropy, B_04, mean, and so on, while the B_04 band was significant in SVM algorithm. Our 
study concludes that the choice of algorithm and variable selection for modeling is significant for biomass estimation in any forest 
region. 

Combining field inventory data with spectral and textural responses calculated from Sentinel-2 MSI satellite imagery using machine 
learning algorithms can provide a quick, feasible, reliable, and effective technique to assess spatial AGTB of the Nepalese forest 
ecosystem. This technique can support monitoring, reporting, and verification of biomass/carbon stock and carbon accounting. 
Therefore, this type of study should be carried out in other ecological zones to develop better guidelines for estimating biomass/carbon 
at a spatial level to address the carbon measurement and monitoring issues of REDD+ in Nepal. 
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