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Abstract: Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a
wide variety of tissues and cell types. NGAL exists as a 25 kDa monomer, a 46 kDa homodimer
(the most abundant form in healthy subjects) and a 130 kDa disulfide-linked heterodimer bound to
latent matrix metalloproteinase-9. Dysregulated expression of NGAL in human malignancies suggests
its value as a clinical marker. A growing body of evidence is highlighting NGAL’s paradoxical
(i.e., both beneficial and detrimental) effects on cellular processes associated with tumor development
(proliferation, survival, migration, invasion, and multidrug resistance). At least two distinct cell
surface receptors are identified for NGAL. This review (i) summarizes our current knowledge of
NGAL’s expression profiles in solid tumors and leukemias, and (ii) critically evaluates the beneficial
and detrimental activities of NGAL having been documented in a diverse range of cancer-derived
cell lines. A better understanding of the causal relationships between NGAL dysregulation and
tumor development will require a fine analysis of the molecular aspects and biological role(s) of
NGAL both in primary tumors and at different stages of disease. Having an accurate picture of
NGAL’s contribution to tumor progression is a prerequisite for attempting to modulate this protein
as a putative therapeutic target.

Keywords: cancer; drug resistance; invasion; migration; matrix metalloproteinase-9; neutrophil
gelatinase-associated lipocalin; signaling; survival

1. Introduction

Human neutrophil gelatinase-associated lipocalin (NGAL) is a 25 kDa glycosylated protein
from the lipocalin family [1]. The lipocalins’ common secondary and tertiary structure corresponds
to a single, eight-stranded antiparallel β-barrel around a central pocket that is capable of binding
low-molecular-weight ligands [1]. NGAL was initially characterized as an antibacterial immune
factor via the pocket’s ability to capture siderophores (such as bacterial enterochelin and mammalian
endogenous catechols) that bind iron with high affinity, causing iron depletion and thus the inhibition
of bacterial cell growth [1,2]. A 30 kDa isoform of NGAL has been described, and probably results
from differential glycosylation [3]. NGAL also exists as a 46 kDa disulfide-linked homodimer (the most
abundant form in healthy subjects) and a 130 kDa heterodimer bound to the inactive zymogen form
of the matrix metalloproteinase-9 (proMMP-9) [1,4]. Indeed, NGAL was first purified from human
neutrophils because of its ability to bind proMMP-9 into a disulfide-linked complex [5]; the Cys-87 in
NGAL forms a disulfide bond with an as yet unidentified cysteine residue in MMP-9’s hemopexin
domain [1]. Excellent reviews have described the genomic organization of the NGAL gene and the
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protein’s three-dimensional structure, as well as its expression profiles in adult and fetal tissues, and
biological fluids [1,4,6].

There is now evidence to suggest that NGAL may be a marker of disease status in chronic
and acute pathological conditions in general and in inflammatory, metabolic, neurologic and cancer
diseases in particular [2,4,7–10]. For example, urine and blood levels of NGAL monomer increase
following acute kidney injury (nephron epithelia damage) [7,11,12].

The initial functional studies investigated the role of lipocalin-2 (Lcn-2, the murine homolog of
human NGAL) in a mouse model [1,13,14]. However, Lcn-2 exhibits little homology with human NGAL
(62%), and notably does not contain the unpaired cysteine that can form the NGAL homodimer and
the NGAL-proMMP-9 heterodimer in humans [1]. These facts are crucial when analyzing the specific
roles attributed to NGAL in humans, which might be distinct from that of Lcn-2 in mice [1,2,4,13,14].
For example, human NGAL is not involved in myeloid cell apoptosis or acute response in contrast to
what was previously reported for Lcn-2 in mice [15]. A growing number of studies have explored the
NGAL’s possible roles in various models of cancer, and suggest that the protein has both beneficial
and detrimental functions [1,2,4,14]. Although ongoing studies are investigating the value of the
NGAL-proMMP-9 complex as a marker of disease status in cancer, there are still no detailed data on
its full functional significance in this disease [1,16].

Here, we briefly review the current literature on NGAL’s expression profiles (both free and
complexed to proMMP-9) in solid tumors and leukemias. With regard to its dysregulation in cancers,
NGAL could represent a promising molecular target for therapy in cancer. However, the road to
pharmacological targeting of NGAL is not straightforward. The challenge now facing researchers and
clinicians is to definitively understand how cells utilize NGAL in the context of tumor progression.
The intention of this article is: (i) to evaluate the positive or negative effects of free NGAL observed
in various models of cancer by focusing on several aspects that have not been considered before
(investigative techniques used to study NGAL’s role, NGAL isoforms, NGAL receptors); (ii) to consider
the remaining challenges and; (iii) to discuss the prospects for determining NGAL’s functional value
in cancer.

2. Methods

Data and references from relevant articles were identified by searches of the electronic database
PubMed, using the search terms “neutrophil gelatinase-associated lipocalin”, “NGAL”, “lipocalin”,
“Lcn-2”, “cancer”, “solid tumor”, “neoplasma”, “hematological disease”, “leukemia”, “pronostic
marker”, “diagnostic marker”, and “review”. Only articles published in English between 1993 and
2018 were included. The last search was run in August 2018. Studies on animal models and with
murine Lcn-2 were excluded. One author (B.B.) first performed the literature search and the selection
of the eligible papers (based on title and abstract), and then reviewed the full texts of all potentially
eligible studies for final inclusion. The eligibility criteria included: (i) studies that evaluated NGAL as
prognostic or diagnostic marker in cancer; (ii) studies that evaluated the in vitro functions of NGAL in
human cancer cell models; and (iii) internationally renowned and referenced reviews. With regard to
the relevant publications, both authors collected data about study design, type of cancer, methodologies
to study NGAL’s roles. No disagreement appeared between authors.

3. NGAL as a Biomarker in Cancer

NGAL is regularly expressed in a large variety of cell types including adipocytes, hepatocytes,
pneumocytes, splenocytes, mesangial and microglial cells, renal epithelial cells, and vascular smooth
muscle cells [1,4]. Concerning the immune system, during hematopoiesis, immature (CD34+) bone
marrow progenitor cells express NGAL [17]. During the maturation of granulocyte precursors in the
bone marrow, NGAL is synthesized almost exclusively by myelocytes and metamyelocytes [18].
Expression of NGAL and its 130 kDa complex is also observed in activated monocytes and
neutrophils [5,17], and the dimer is the major molecular form of free NGAL secreted by neutrophils [19].
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To date, NGAL protein expression has never been reported in resting B and T lymphocytes. Circulating
low levels of the protein (mainly as the dimer) are detected in the urine and blood of healthy
subjects [19,20]. The main sources of circulating NGAL are thought to be neutrophils and renal
epithelial cells [7,19].

Below, we summarize current knowledge of NGAL dysregulation in cancer (Table 1).

Table 1. Potential value of neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker in solid
tumors and leukemias.

Cancer Type NGAL NGAL Complex Ref.

Breast serum/tissue serum/urine [1,4,10,13,14,21–26]
Brain tissue [1,4,13]
Ovary serum/urine/tissue [1,13,25,27]

Endometrium serum/tissue serum [4,13,28,29]
Colorectal plasma/serum/tissue [1,4,13,30–32]

Bladder serum/urine/tissue serum/urine [25,33]
Prostate urine [34]

Liver tissue [4,25,35]
Lung tissue [1,2,35]

Pancreas plasma/serum/tissue [1,4,25,36]
Kidney serum/urine/tissue serum/urine [1,25,35,37,38]

Esophagus tissue [4,25,35,39]
Gastric serum/tissue [25,35,40]
Thyroid tissue [1,41]

ALL cell cell [16,25]
CLL cell cell [16,25,42]
AML cell cell [16,25,43]
CML plasma/serum/cell [1,16,42,44,45]

3.1. Solid Tumors

A number of recent reviews have reported NGAL dysregulation in cancer [1,4,13,14,25].
Quantitative measurements of the NGAL protein and mRNA levels performed in blood, urine and
tissues, show that NGAL is overexpressed in non-microbe-associated cancers (including breast, brain,
ovarian, endometrial, pancreatic, colorectal, bladder, liver, and lung cancers) [1,4,13,14,25,28,33,36].
In striking contrast, one study shows that NGAL is downregulated in primary malignant and metastatic
tissues of oral cancer compared to normal tissues [46].

The abnormally elevated levels of NGAL in most cancers appear significantly correlated with
disease severity and poor survival [1,4,7–9,14,21,25]. For example, studies on breast cancer suggest the
usefulness of serum NGAL in monitoring disease progression [22] and the association of serum NGAL
with reduced survival [23]. NGAL appears to be a diagnostic biomarker of advanced or recurrent
ovarian cancer [27] and pancreatic cancer [36]. Although serum NGAL levels increase in patients
with colorectal cancer [30,31], NGAL does not seem to be suitable as a diagnostic biomarker [30],
but can have a prognostic utility in metastatic patients [31,32]. NGAL levels in gastric tumor tissues
are associated with worse survival [40]. NGAL is not useful for diagnosing renal cell carcinoma [37],
but it may be helpful to select a proper therapy in cases of metastatic disease without the need for
pretreatment biopsy [38]. Interestingly, Roli et al. recently reevaluated the potential value of NGAL as
a prognostic and diagnostic marker in cancer [47]. Their meta-analysis shows that high NGAL levels in
biological fluids, such as serum and urine, could be useful to predict disease-free survival for patients
with colorectal and breast cancer, but its prognostic and diagnostic accuracy remains uncertain for other
human tumors, including pancreatic, thyroid, liver, lung, esophageal, oral, and kidney tumors [47].
Note that in the cancers evaluated, the inclusion of single studies enrolling a limited number of patients
influence the results by overestimating the effect size [47].

Few studies investigated the value of the 130 kDa NGAL complex as a marker of disease status in
several solid tumors [22,24,34,37,39,41]. The expression of the NGAL complex often correlates with
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the aggressive behavior of gastric, anaplastic thyroid, breast, kidney, and oral cancer cells [22,37,39–41].
In endometrial cancer, the NGAL complex may be useful in the assessment of tumor stage before
surgical treatment [29].

3.2. Leukemias

Acute and chronic lymphoid/myeloid leukemias are clonal disorders that result from the
neoplastic transformation of hematopoietic progenitor cells. These diseases are characterized by
the survival and expansion of clonal progenitors, cell dissemination from the bone marrow into the
blood and peripheral tissues, and often resistance to chemotherapy [48–51].

More precisely, acute lymphoblastic leukemia (ALL) is a heterogeneous disease that includes B
and T-ALL cancers [48]. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation
of monoclonal B lymphocytes (CD19+, CD5+) in the peripheral blood, bone marrow, and secondary
lymphoid organs [49]. Acute myeloid leukemia (AML) is a highly heterogeneous disease characterized
by the clonal expansion and accumulation of hematopoietic stem cells arrested at various stages
of development [50]. Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder
that originates from a pluripotent stem cell expressing the Ph chromosome (t(9;22) chromosomal
translocation) with a constitutively active BCR-ABL fusion gene, leading to the production of the p210
BCR-ABL protein [51].

The NGAL complex is found in blood tumor cells from patients with ALL, AML and CLL types
of leukemia [16,42,44,45]. Overexpression of free NGAL is observed in blood cells from patients with
all types of leukemia [16,25,42,44,45]. Paradoxically, the levels of bone marrow NGAL transcript
are found to be lower in AML patients than in healthy individuals, and these levels recover to
normal values following complete remission and then decline again at relapse [43]. In patients
with AML, higher bone marrow NGAL mRNA expression is observed in individuals with a good
prognosis than in individuals with a poor prognosis, and independently of the French-American-British
(FAB) classification [43]. Moreover, patients with higher expression levels of NGAL mRNA in the
bone marrow in combination with the wild type FLT3-ITD sequence have better prognoses [43].
The prognostic or predictive value of NGAL (dimer and/or monomer, free and complexed) in
the serum of patients with AML, ALL, or CLL remains to be determined. With regard to CML,
inhibition of the constitutive tyrosine kinase activity of p210 BCR-ABL [51] with imatinib alleviates
the hyperproliferation-induced symptoms [52]. Furthermore, serum levels of NGAL are significantly
higher in CML patients than in healthy individuals [44,45,53,54]. If CML patients achieve complete
molecular remission after imatinib therapy, NGAL serum levels fall and are significantly lower than
during the full-blown disease [44,53]. These findings indicate that NGAL is a useful marker of
CML’s response to treatment, and strongly suggest the existence of a functional link between NGAL
and BCR-ABL.

4. Detrimental and Beneficial Effects of NGAL in Cancer

In normal tissues, NGAL serves to provide protection against bacterial infection and modulate
oxidative stress [1]. Few studies have investigated NGAL’s physiological function(s) in the
hematopoietic system by treating cells with recombinant human NGAL (rhNGAL) [15,55–57]. NGAL
does not appear to influence the balance between survival and death of bone marrow stem and
progenitor CD34+ cells, mature granulocytes, and T and B lymphocytes [15,55], whereas it blocks
the maturation of lineage-committed myeloid cells into mature erythrocytes and monocytes [55].
In contrast, a study performed by Lu et al. [56] suggests that NGAL induces the death of bone marrow
CD34+ cells through the production of reactive oxygen species. Moreover, it seems that NGAL may
favor the differentiation of bone marrow and mesenchymal stem cells into osteoblasts and fibroblasts,
respectively [56]. Another study demonstrated that NGAL increases the number of T-regulatory cells
(Tregs) in the peripheral blood mononuclear cell population by up-regulating the human leukocyte
antigen G (HLA-G) complex, which is a mediator of tolerance [57]. This observation may have
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important implications for cancer, since a number of preclinical and clinical studies have linked the
presence of Tregs to an increased risk of carcinogenesis and cancer development [58].

Several investigative techniques have been used to study NGAL’s role in tumor models: (i)
treatment of cells with rhNGAL or neutralizing NGAL antibodies (NGAL Abs), and (ii) stable
overexpression or knockdown (using siRNA) of NGAL expression with sense or antisense
NGAL cDNA.

Current knowledge of NGAL’s divergent functions in cancer is summarized in Table 2.
In different models of human cancer (lung, thyroid, gastric, and breast cancer), NGAL facilitates

the survival and proliferation of malignant cells [24,59–63]. In lung carcinoma, NGAL might protect
against oxidative stress by activating the nuclear factor E2-related factor 2/heme oxygenase-1
(Nrf2/HO-1) pathway [60] and inducing the expression of heme oxygenase-1 and superoxide
dismutase 1,2 [64]. Paradoxically, NGAL inhibits the proliferation and invasion of liver carcinoma cells,
and this inhibition is associated with the blockade of the JNK and PI3/Akt signaling pathways [65].
In a model of advanced pancreatic cancer, NGAL reduced invasion (by suppressing FAK activation)
and inhibited angiogenesis (by blocking VEGF production) [66]. In contrast, NGAL increased the
motility and invasion of colon carcinoma cells by modifying the subcellular localization of E-cadherin
and Rac1 (one of the Rho small GTPases) through an iron-dependent mechanism [67]. These data are
consistent with reports in which NGAL favors the migration and invasion of endometrial cancer and
cholangiocarcinoma cells [63,68].

Several research groups have already analyzed NGAL’s role in multidrug resistance [43,46,63,69–73].
While NGAL does not interfere with doxorubicin resistance in breast and colorectal cancer cells [73],
it might favor the intracellular accumulation of other chemotherapeutic drugs in breast cancer [28],
renal cancer [71], glioblastoma [70], oral squamous cancer [46] and leukemic AML [43] cell lines.
In contrast, elevated NGAL levels might contribute to drug resistance in endometrial [63] and non-small
cell lung [69] cancer cells.

Finally, whether NGAL bound to proMMP-9 retains a function has not yet been established. It has
been suggested that NGAL, by forming the NGAL complex, could protect proMMP-9 from proteolytic
degradation [20] and/or support its allosteric activation [74]. By binding to cell surface receptors,
NGAL and proMMP-9 can initiate signal transducing events that control tumor cell processes [16].
It is therefore legitimate to suggest that the NGAL complex could interfere with the binding of NGAL
and/or proMMP-9 to their respective receptors, thus modulating signaling events induced by free
NGAL and/or proMMP-9.

Thus, NGAL appears to exhibit negative or positive effects on tumor progression, depending on
the type of cancer in question, as shown in Figure 1. Consequently, these multifaceted roles of NGAL
observed in the pathophysiology of cancer may compromise the potential therapeutic application of
any NGAL inhibition or stimulation proposed by several authors [1,13,75–78]. Currently, apart from
anti-NGAL antibodies, no specific inhibitors (or inducers) of NGAL are commercially available. In our
opinion, before developing NGAL-targeted therapy, a major challenge requires an accurate evaluation
of NGAL effects in certain cancers.
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Table 2. Beneficial and detrimental effects of neutrophil gelatinase-associated lipocalin (NGAL)
in cancer.

Cancer Type Investigative Technique Impact of NGAL on
Cell Processes Ref.

Lung
(A549)

siRNA
anti-NGAL

Survival ↑
Oxidative stress ↓ [59]

Lung
(A549, PC9) siRNA Proliferation ↑

Oxidative stress ↓ [60]

Lung and liver
(A549, HepG2)

siRNA
NGAL overexpression Oxidative stress ↓ [64]

Anaplastic thyroid
(FRO)

rhNGAL (*), siRNA
anti-NGAL Survival ↑ [61]

Gastric
(MGC-803, SGC-7901) siRNA Survival & Proliferation ↑ [62]

Liver
(SK-Hep-1)

rhNGAL (R&D)
NGAL overexpression Proliferation & Migration ↓ [65]

Pancreatic
(Paca)

siRNA
NGAL overexpression Invasion & Angiogenesis ↓ [66]

Colon
(KM12C, HCT116, DLD1)

siRNA
NGAL overexpression

Cell-cell adhesion ↓
Migration ↑ [67]

Colon
(KM12SM) NGAL overexpression Invasion ↓ [76]

Cholangiocarcinoma
(RMCCA-1) siRNA Migration & Invasion ↑ [68]

Endometrial
(HHUA, RL95-2)

siRNA
NGAL overexpression

Survival & Migration ↑
Cisplatin resistance ↑ [63]

Squamous cell carcinoma
(SAS) siRNA Survival & Migration ↓

Cisplatin Resistance ↓ [46]

Non-small-cell lung
(H441, H3255)

siRNA
NGAL overexpression Erlotinib Resistance ↑ [69]

Glioblastoma
(U87MG, U373MG, T98G) NGAL overexpression Carmustine Resistance ↓

Cell Death ↑ [70]

Renal cancer
(Caki1, A498, ACHN)

rhNGAL (Pfizer, Sigma)
NGAL overexpression Sunitinib Resistance ↓ [71]

Breast
(MDA-MB-23)

rhNGAL (R&D, Sino
Biological Inc.)

siRNA
Rhodamine-123 Resistance ↓ [72]

Breast
(MCF-7) NGAL overexpression

Proliferation & Angiogenesis ↑
No effect on Doxorubicin

Resistance
[24,73]

Colorectal
(HT-29) NGAL overexpression No effect on Doxorubicin

Resistance [73]

AML
(THP1, OCI-AML3) NGAL overexpression Cytarabine Resistance ↓

Cell death ↑ [43]

rhNGAL: recombinant human NGAL; ROS, reactive oxygen species; * not commercially available rhNGAL;
Nrf2: nuclear factor E2-related factor-2. Cisplatin and cytarabine inhibit DNA replication; carmustine
(1,3-bis(2-chloroethyl)-1-nitrosourea) and doxorubicin prevent DNA replication and transcription; erlotinib is
an EGFR tyrosine kinase inhibitor; sunitinib is a multi-targeted receptor tyrosine kinase inhibitor. ↑ stimulation;
↓ inhibition.
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Figure 1. Schematic Diagram Illustrating the Putative Roles of neutrophil gelatinase-associated
lipocalin (NGAL) in Modulating Major Cellular Processes. The synthesis and release of tumor NGAL
(monomer, dimer, or complex) increase in response to various stimuli (inflammatory cytokines, hypoxia
etc.). Extracellular NGAL binds to specific cell surface receptors (megalin, SLC22A7 isoforms) on tumor
cells, and thus may activate or inactivate signaling pathways. In turn, this modulates proliferation,
survival, migration, invasion, angiogenesis, immunotolerance, and multidrug resistance—all events
involved in tumor biology. A given cell type may be involved in the NGAL-mediated actions reported
here to a variable extent. Intracellular NGAL might be directly involved in the modulation of cell
responses. The NGAL complex’s possible effects on tumor cells remain to be identified.

5. Conclusions and Future Directions

In molecular terms, there is increasing evidence of crosstalk between NGAL and cancer. There is a
growing body of evidence suggesting that NGAL overexpression in tumors results from stimuli
(including hypoxia and inflammatory cytokines) present in the tumor microenvironment [77].
The NF-κB signaling pathway, activated in most cancers including leukemias, regulates the
transcription of NGAL [1] and the MAPK pathway may cooperate with NF-κB to up-regulate the
expression of NGAL [1]. Moreover, epigenetic modifications might be important in initiating NGAL
expression in the tumor cells. This may explain the increased levels of NGAL in most cancers.
It remains to identify the specific molecular forms of NGAL (in serums and in cells) associated with
a specific type of cancer (solid or liquid). In functional terms, as seen in Figure 1, NGAL appears
to exhibit either beneficial or detrimental effects through the modulation of proliferation, survival,
migration, invasion, angiogenesis, and drug resistance—all cellular events considered to be hallmarks
of cancer [79]. How, then, can NGAL’s opposing effects in cells be explained? One may consider that
the one or more functional roles of NGAL expressed by tumor cells are intrinsically linked to a specific
type of cancer. However, several parameters have to be taken into account when assessing NGAL’s
roles in malignant cells. Firstly, all of the above-mentioned functional studies used cancer-derived cell
lines that might not reflect the progressively malignant stages of a given cancer. Secondly, it is possible
that our understanding of NGAL’s pro-/anti-tumor activities has been conditioned by the different
technical approaches used in the studies. Indeed, NGAL overexpression and silencing probably target
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intracellular NGAL localization, whereas rhNGAL and NGAL antibodies respectively mimic and
target extracellular NGAL. As seen in leukocytes, inside-out and outside-in signaling mechanisms
often overlap [80]. Alternatively, NGAL’s actions inside and outside cells may be exerted through
distinct mechanisms. For example, the study by Tong et al. [59] indicated that inhibiting intracellular
NGAL expression with siRNA in A549 lung cancer cells increases cell death, whereas cell treatment
with rhNGAL, even at high doses, had no effect on cell viability. Finally, in the functional studies using
rhNGAL, the molecular form of rhNGAL (monomer or dimer) and the NGAL receptor involved in the
cellular events have not been characterized; this might also explain NGAL’s divergent effects.

Two distinct cell surface receptors were initially identified for NGAL: low-density lipoprotein
receptor-related protein-2 (LRP-2, also known as megalin) [81] and the solute carrier family 22 member
17 (also known as SLC22A17 and NGAL-receptor 2) [82]. LRP-2 internalizes a variety of unrelated
ligands, including nutrients, hormones and their carrier proteins, signaling molecules, and extracellular
proteins [83]. Both LRP-2 and NGAL-R2 bind both free and iron-bound NGAL, and promote the
latter’s endocytosis [1,81,82]. Two splice variants of SLC22A17 (designated as NGAL-R1 and NGAL-R3)
have also been identified, and appear to be involved in NGAL-mediated transport inside cells [84].
It remains to be determined whether all these receptors are able to bind all the different forms of NGAL
(monomer, dimer and complex). Accordingly, the paradoxical effect of rhNGAL on the survival of bone
marrow CD34+ cells might possibly be related to molecular differences between the distinct sources
of rhNGAL [15,56]. Moreover, the existence of distinct NGAL receptors suggests that the signaling
pathways through which cellular responses are induced might be distinct or similar. These key
signaling pathways might be involved singly or concurrently in tumor progression. Importantly,
the NGAL receptors have not been characterized in most cancers—including leukemias. For each
type of cancer studied, characterization of NGAL’s molecular forms, receptors, and related signaling
mechanisms will be essential for gaining a better understanding of the role of tumor NGAL in cancer
progression. Furthermore, greater knowledge of the intracellular signaling pathways induced by
NGAL might provide a molecular basis for targeted therapeutic approaches.

Novel therapies are needed to overcome resistance to chemotherapeutic drugs, and the
identification of novel, eligible cancer targets is always of general interest. Given the abnormally
high levels of NGAL secreted in disease settings, it has been suggested that NGAL is a therapeutic
target. Few studies have investigated the role of NGAL in cancer drug resistance, as shown in
Table 2. Unexpectedly, NGAL contributes to both drug resistance and sensitivity, depending on the
chemotherapeutic drug and the type of cancer in question. These findings therefore provide the
rationale for further investigations of NGAL putative utility as a drug target.

In conclusion, dysregulation of NGAL expression is observed in tumor cells. NGAL now appears
to be a pleiotropic cytokine, but an essential question for clinicians and scientists is whether NGAL
participates to the disease process as a “saint” or a “sinner”. The challenge is now to solve all the
above-mentioned questions and thus establish an integrated model of NGAL’s actions in cancer.

Funding: This study was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AML acute myeloid leukemia
ALL acute lymphoblastic leukemia
CLL chronic lymphocytic leukemia
CML chronic myeloid leukemia
FAB French-American-British
HLA-G human leukocyte antigen G
Lcn-2 ipocalin-2
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LRP-2 low-density lipoprotein receptor-related protein-2
Neutrophil gelatinase-associated lipocalin NGAL
NGAL Ab NGAL antibody
NGAL-R NGAL-receptor
Nrf2/HO-1 nuclear factor E2-related factor 2/heme oxygenase-1
proMMP-9 pro-matrix metalloproteinase-9
rhNGAL recombinant human NGAL
ROS reactive oxygen species
Nrf2 nuclear factor E2-related factor-2
SLC22A17 solute carrier family 22 member 17
Treg T-regulatory cell
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