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ABSTRACT: Aging is a key risk factor for angiogenic dysfunction and cardiovascular diseases, including heart 

failure, hypertension, atherosclerosis, diabetes, and stroke. Members of the NAD+-dependent class III histone 

deacetylase family, sirtuins, are conserved regulators of aging and cardiovascular and cerebrovascular diseases. 

The sirtuin SIRT6 is predominantly located in the nucleus and shows deacetylase activity for acetylated histone 

3 lysine 56 and lysine 9 as well as for some non-histone proteins. Over the past decade, experimental analyses in 

rodents and non-human primates have demonstrated the critical role of SIRT6 in extending lifespan. Recent 

studies highlighted the pleiotropic protective actions of SIRT6 in angiogenesis and cardiovascular diseases, 

including atherosclerosis, hypertension, heart failure, and stroke. Mechanistically, SIRT6 participates in vascular 

diseases via epigenetic regulation of endothelial cells, vascular smooth muscle cells, and immune cells. 

Importantly, SIRT6 activators (e.g., MDL-800/MDL-811) have provided therapeutic value for treating age-

related vascular disorders. Here, we summarized the roles of sirtuins in cardiovascular diseases; reviewed recent 

advances in the understanding of SIRT6 in vascular biology, cardiovascular aging, and diseases; highlighted its 

therapeutic potential; and discussed future perspectives. 
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1. Introduction  

 

The increasing aging population has created a huge social 

burden as it consumes large amounts of human, economic, 

and medical resources. Various diseases are correlated 

with aging, including cardiovascular diseases, stroke, 

cancer, and chronic obstructive pulmonary disease [1, 2]. 

For instance, aging is a key risk factor for cardiovascular 

and cerebrovascular diseases and the vascular 

complications of currently widespread SARS-CoV-2 

infections [3]. Anti-aging drugs such as metformin and 

rapamycin have shown great potential for treating aging-

related cardiac diseases and vascular diseases including 

hypertension, atherosclerosis, and stroke in preclinical 

animal models and humans [4-6]. Understanding the 

functions and mechanisms of aging and its regulators is 
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critical for designing strategies to treat aging-related 

cardiovascular diseases [7, 8]. 

In recent decades, numerous pivotal regulators of 

aging have been identified, including sirtuins, mammalian 

target of rapamycin, insulin-like growth factor (IGF), 

AMP-activated protein kinase, and forkhead box O 

(FoxO) transcription factor family [9-11]. These 

regulators critically participate in aging-related 

cardiovascular diseases, including heart failure, 

atherosclerosis, stroke, hypertension, and arterial 

aneurysms [7, 12, 13].  

2. Sirtuins in Aging and Cardiovascular Diseases 

 

The sirtuin family comprises NAD+-dependent class III 

histone deacetylases with deacetylase and ADP-ribose 

transferase activities [13-15]. In mammalian cells, the 

sirtuin family consists of seven members (SIRT1–

SIRT7), with SIRT1, SIRT6, and SIRT7 in the nucleus; 

SIRT2 in the cytoplasm; and SIRT3-5 in the mitochondria 

predominantly [13] (Fig. 1). Interestingly, sirtuins also 

shuttle across subcellular locations in response to stress. 

For instance, most SIRT6 is found in the nucleus, where 

it shows deacetylase activity for acetylated histone 3 

lysine 56 (H3K56ac) and lysine 9 (H3K9ac). SIRT6 also 

deacetylates non-histone proteins in the nucleus and 

cytoplasm [16]. In addition, it also exhibits ADP-ribose 

transferase activity and can hydrolyze long-chain fatty 

acyl lysine such as myristoyl within the endoplasmic 

reticulum [17, 18]. Thus, SIRT6 is a multifunctional 

epigenetic enzyme (Fig. 1E). 

 

 
Figure 1. Basic information about Sirtuins. (A) Structures of Sirtuin members (left) and key domains of SIRT6 

(PDB code: 3PKI). (B) Subcellular locations of Sirtuin members. ER, endoplasmic reticulum. (C) The enzymatic 

activity model catalyzed by Sirtuin members. NAD, nicotinamide adenine dinucleotide; NAM, nicotinamide. (D) 

Enzyme activity of Sirtuins for deacylation and ADP-ribosylation. (E) Substrates of SIRT6. DDB2, Damage specific 

DNA binding protein 2; ERRγ, Estrogen-related receptor γ; EZH2, Enhancer Of Zeste 2 polycomb repressive complex 

2 subunit; FOXO1, Forkhead Box O1; GCN5, General control nonderepressible 5; Ku70, Ku autoantigen P70 subunit; 

MnSOD, Manganese-containing superoxide dismutase; ME1, Malic enzyme 1; NCOA2, Nuclear receptor coactivator 

2; NAMPT, Nicotinamide phosphoribosyltransferase; PKM2, Pyruvate kinase M2; Prdx6, Peroxiredoxin 6; SMAD2, 

SMAD family member 2; XBP1s, Spliced form of X-box binding protein 1; R-Ras2, RAS related 2; TNFα, Tumor 

necrosis factor-alpha; BAF170, BRG1-associated factor 170; KAP1, KRAB domain-associated protein 1; KDM2A, 

Lysine demethylase 2A; PARP1, Poly (ADP-ribose) polymerase 1. 
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Table 1. Effects of Sirtuin knockout (KO)/transgene (TG) on animal lifespan and cardiac homeostasis. 

 
 Genetic 

Alteration 

Cells Targeted Lifespan Cardiac phenotype Ref. 

SIRT1 KO ALL Reduced Cardiac developmental defect and cardiomyocyte 

apoptosis 

[21] 

KO Cardiomyocytes NA Augmented ischemic injury [114] 

KO Cardiomyocytes Reduced Cardiac abnormalities, arrhythmia-related premature 

death 

[26] 

TG Cardiomyocytes NA Reduced cardiomyocyte toxicity induced by chemical 

injury 

[115] 

TG of mutant 

SIRT1 

Cardiomyocytes Reduced Dilated cardiomyopathy and cardiomyocyte apoptosis [19] 

SIRT2 KO ALL NA Aging-related cardiac fibrosis and cardiac hypertrophy [25] 

TG Cardiomyocytes NA Repressed Ang II-induced cardiac hypertrophy [25] 

SIRT3 KO ALL NA Spontaneous cardiac hypertrophy [33] 

TG Cardiomyocytes NA Repressed cardiac hypertrophy induced by pressure 

overload and aging 

[33, 

116] 

SIRT4 KO ALL NA Repressed Ang II-induced cardiac hypertrophy and 

fibrosis 

[35] 

TG Cardiomyocytes NA Promoted Ang II-induced cardiac hypertrophy [35] 

SIRT5 KO  NA Promoted Ang II-induced cardiac hypertrophy, 

augmented ischemic injury 

[44, 

117] 

SIRT6 KO ALL Reduced Spontaneous cardiac hypertrophy [46] 

KO Cardiomyocytes NA Increased cardiac hypertrophy induced by pressure-

overload 

[46] 

TG Cardiomyocytes NA Repressed cardiac hypertrophy induced by pressure-

overload 

[46] 

SIRT7 KO ALL Reduced Spontaneous inflammatory cardiomyopathy [20] 

KO Cardiomyocytes NA Increased cardiac hypertrophy induced by pressure-

overload 

[118] 

 

KO, knockout; TG, transgene; Ang II, angiotensin II; N/A, not available. 

Sirtuins are enzymes that slow the process of aging 

and aging-related disorders across species. Genetic 

depletion of SIRT1, SIRT6, and SIRT7 affects the 

development and reduces the lifespan of mice, 

accompanied by cardiovascular defects [18-21]. Although 

the effects of SIRT2 on lifespan have not been 

investigated, studies from our lab and others have 

highlighted the role of SIRT2 in preventing aging-related 

cardiovascular remodeling, reproductive aging, aging-

associated chronic inflammation, and hematopoietic stem 

cell aging [22-25]. However, the effects of mitochondrial 

sirtuin members on lifespan in animals remain unclear. 

Given the roles of mitochondrial sirtuins in key metabolic 

and cellular processes that are directly linked to aging, 

their activities should be further investigated. 

The roles of sirtuins in cardiovascular diseases have 

been widely studied over the past decade. In general, 

sirtuin family members, except for SIRT4, are 

cardioprotective factors (Table 1). SIRT1 has been shown 

to protect the heart from aging-related cardiac 

remodeling, arrhythmia, and ischemic injury [26-29]. Our 

previous findings revealed that SIRT1 participates in 

cardiac development by deacetylating P53 and NKX2.5 

[19, 30]. We also showed that SIRT2 was a critical factor 

preventing aging-related cardiac remodeling via 

activation of liver kinase B1-AMP-activated protein 

kinase signaling and contributes to metformin-mediated 

anti-hypertrophic effects [25]. The cardioprotective role 

of SIRT2 was validated in follow-up studies [31, 32]. 

SIRT3 and SIRT4 regulate cardiac remodeling by 

targeting mitochondrial metabolism and reactive oxide 

species (ROS) homeostasis. SIRT3 represses aging-

related and stress-induced cardiac hypertrophy and 

fibrosis by deacetylating FOXO3 and manganese-

containing superoxide dismutase (MnSOD) to reduce the 

levels of mitochondrial ROS [33, 34]. Furthermore, we 

previously showed that SIRT4 inhibited the SIRT3-

MnSOD interaction to repress MnSOD deacetylation and 

its antioxidative activity, thus indicating its pro-

hypertrophic role [35].  

SIRT3-mediated metabolic homeostasis in 

mitochondria also contributes to its cardioprotective 

functions [36, 37]. Interestingly, a recent report revealed 

that SIRT3 was shuttled into the nucleus to inhibit FOS 

via histone H3 deacetylation and subsequently prevented 

cardiac fibrosis and inflammation [38]. Mitochondrial 
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sirtuins also regulate short-chain lysine acylations to 

participate in cardiovascular biology [39, 40]. For 

instance, SIRT3 deacetylated ECHS1 [41], which 

repressed cardiac hypertrophy by inhibiting histone 

crotonylation [42]. Additionally, SIRT5 maintains 

metabolic homeostasis by regulating mitochondrial 

succinylation to preserve cardiac function and increase the 

survival of animals in response to cardiac pressure 

overload [43, 44]. SIRT6 also regulates metabolism to 

participate in cardiac remodeling. SIRT6 represses IGF-

AKT signaling to reduce cardiac aging and hypertrophy 

while activating FOXO3 to reduce injury induced by 

ischemia [45, 46].  

Interestingly, sirtuins play important roles in cardiac 

tissues in a deacetylase-independent manner. For 

instance, we observed that the effects of SIRT4 on 

MnSOD and mitochondrial ROS in hypertrophic 

cardiomyocytes did not rely on its enzymatic activity [35]. 

Moreover, the deacetylase-independent function of 

SIRT6 is coupled with the transcription factor GATA-

binding protein 4 and epigenetic activation to prevent 

cardiomyocyte apoptosis induced by doxorubicin [47]. 

Taken together, sirtuins function as cardioprotective 

factors, except for SIRT4 and SIRT1-3, which have been 

shown to inhibit cardiac aging. 

 
Table 2. Roles of Sirtuin knockout (KO)/transgene (TG) on vascular homeostasis. 

 
 Genetic 

Alteration 

Cells Targeted Vascular Phenotype Ref. 

SIRT1 KO Endothelial cells Promoted vascular aging with reduced muscle capillary, 

nephrosclerosis, and atherosclerosis 

[119, 120] 

[52, 121] 

KO Macrophages Promoted Ang II-induced abdominal aortic aneurysm [52] 

KO VSMC Promoted abdominal aortic aneurysm; [48, 53] 

TG Endothelial cells Inhibited hyperglycemia-induced endothelial dysfunction and 

atherosclerosis 

[49, 51] 

TG VSMC Inhibited abdominal aortic aneurysm, injury-induced neointima 

formation, and diet-induced aortic stiffness 

[50, 53, 

122] 

SIRT3 KO ALL Spontaneous pulmonary arterial hypertension (PAH); PAH 

associated with HFpEF; promoted Ang II-induced hypertension 

and accelerated arterial thrombosis 

[56, 58, 59, 

123, 124] 

TG ALL Attenuated Ang II/deoxycorticosterone acetate-salt induced 

hypertension 

[57] 

SIRT5 KO ALL Blunted arterial thrombosis [125] 

TG ALL Accelerated arterial thrombus formation [125] 

SIRT6 Heterozygote ALL Promoted atherosclerosis [78, 84] 

KO Endothelial cells Exacerbated hypertension and complications; enhanced 

atherosclerosis, stroke, and vascular aging. 

[77, 79, 90, 

126] 

TG VSMC Reduced atherosclerosis [88] 

SIRT7 KO ALL Enhanced neointimal formation [127] 

TG VSMC Attenuated neointimal formation [127] 

TG Endothelial cells Extended lifespan in Hutchinson-Gilford progeria syndrome [128] 

 

KO, knockout; TG, transgene; VSMC, vascular smooth muscle cells; HFpEF, heart failure with preserved ejection fraction. 

The roles of SIRT1 and SIRT3 in vascular biology 

have been widely studied (Table 2). SIRT1 is a well-

known anti-aging factor in vascular diseases, and our 

previous studies demonstrated the role of SIRT1 in 

preventing atherosclerosis, hypertension, and abdominal 

aortic aneurysm [3, 48-54]. In vascular tissues, SIRT1 is 

a multifunctional protective factor that reduces the 

senescence of vascular smooth muscle cells (VSMCs), 

regulates M2 macrophage polarization, and prevents 

endothelial dysfunction and senescence, which have been 

discussed in previous reviews by our team and others [3, 

13, 55]. SIRT3 was shown to play a role in hypertension 

and pulmonary arterial hypertension (PAH). Loss of 

SIRT3 induced a spontaneous PAH phenotype in mice, 

which was accompanied by metabolic dysfunction and 

VSMC hyperproliferation [56]. This finding was 
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validated in humans; patients with single-nucleotide 

polymorphisms in SIRT3 showed an increased risk of 

PAH [56]. SIRT3 also represses stress-induced 

hypertension by regulating MnSOD hypoacetylation and 

ROS homeostasis in endothelial cells and by repressing 

endothelial-to-mesenchymal transition [57-59]. For a long 

time, the in vivo roles of other sirtuins in vascular biology 

and aging-related vascular diseases remained largely 

unknown. Over the past two years, the understanding of 

SIRT6 in vascular diseases has achieved remarkable 

progress. 

3. SIRT6 Regulation of Aging 

 

Among the sirtuin family members, SIRT6 is a key 

regulator of genome stability, stemness, and aging. SIRT6 

deficiency reduces the lifespan of mice [18, 60, 61]. In 

2012, Kanfi et al. showed that transgenic mice 

overexpressing SIRT6 had a remarkably longer lifespan 

than their wild-type littermates, suggesting that SIRT6 has 

important therapeutic potential in aging-related diseases 

[62]. In 2018, using a genome editing strategy, Zhang et 

al. showed that SIRT6 is a pivotal regulator of 

development and lifespan in non-human primates [63], 

revealing an orchestrator role for SIRT6 in mammalian 

aging. Interestingly, SIRT6 is more responsible for 

efficient DNA double-strand break repair [64], a 

conserved mechanism for preventing cell senescence and 

aging, in long-lived species (Fig. 2A), suggesting that 

SIRT6 activity is increased in long-lived species and that 

the activity of this enzyme is associated with lifespan. 

Although the activity of SIRT6 decreases with age [65, 

66] (Fig. 2B), a clinical study implicated a low level of 

SIRT6 methylation (high SIRT6 expression) as a 

protective factor in the longevity of Chinese people [67]. 

In rodents, genetic overexpression of SIRT6 partially 

prolongs lifespan by regulating IGF-AKT signaling, 

contributing to SIRT6 function in preventing cardiac 

aging and heart failure (Fig. 2C) [46, 62]. Thus, SIRT6 is 

a critical protein regulating lifespan, making this protein 

a hotspot in the field of aging-related diseases, including 

vascular diseases. 

 

Figure 2. SIRT6 function in regulating aging. (A) SIRT6 activity is higher in long-lived species. SIRT6 is responsible for more 

efficient DNA double-strand break repair in long-lived species. (B) SIRT6 activity declines with aging in primates and rodents. (C) 

SIRT6 high expression expands lifespan in mice.  

The role of stem cells in aging is critical, and some 

studies have focused on the functions and mechanisms 

underlying SIRT6 in stem cells. For instance, Pan et al. 

[68] reported that SIRT6 protected against oxidative 

stress by activating NF-E2-related factor 2 in human 

mesenchymal stem cells. A breakthrough study led by 

Wang and Ju showed that SIRT6 controls the homeostasis 

of hematopoietic stem cells in mice through epigenetic 

regulation of WNT signaling by deacetylating H3K56ac 

[69], highlighting the critical role of SIRT6 in maintaining 

the stemness of these cells. Our work revealed important 

roles for SIRT1 and SIRT6 in mouse somatic 

reprogramming and pluripotency maintenance [70, 71]. 

Thus, SIRT6 controls stemness. Notably, the SIRT6 

activator MDL-800 was recently shown to improve the 

genome stability and pluripotency of aged murine-derived 

induced pluripotent stem cells [72]. The ability of SIRT6 

to regulate pluripotency and differentiation depends 

mainly on its effects on histones and chromatin [69, 73]. 

For instance, SIRT6 regulates Tet-mediated production of 

5hmC to serve as a chromatin regulator that safeguards 

the balance between pluripotency and differentiation [74]. 

In non-human primates, genetic loss of SIRT6 delays 

neuronal differentiation and shortens lifespan [63]. These 

studies suggest that SIRT6 regulates stemness (anti-

senescence) and physiological differentiation to reduce 

aging and aging-related disorders. Further studies are 

needed to validate whether SIRT6 regulates aging and 

lifespan by controlling the senescence of stem cells, such 

as hematopoietic stem cells and vascular progenitor cells. 

4. SIRT6 in Vascular Diseases 

 

Senescence, phenotype switching, and activation of 

vascular cells and immune cells are hallmarks of vascular 

aging and contribute to vascular diseases, including 

atherosclerosis, hypertension, stroke, arterial aneurysm, 

and vascular injury in myocardial infarction. The critical 
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role of SIRT6 in regulating aging and stem cell 

senescence has driven studies of SIRT6 in vascular aging 

and diseases. Recent studies from our lab and others 

revealed that SIRT6 protects against vascular aging. 

SIRT6 is widely expressed in vascular cells and 

participates in vascular biology by epigenetically 

regulating endothelial cells (ECs), VSMCs, and immune 

cells. Here, we discuss recent advances in the 

understanding of SIRT6 in aging-related vascular 

diseases, including atherosclerosis, hypertension, and 

ischemic stroke. 

4.1 Atherosclerosis  

 

Endothelial dysfunction and senescence are the initial 

steps in atherosclerosis development. SIRT6 is a well-

known regulator of endothelial senescence. As discussed 

previously, SIRT6 is essential for DNA damage repair and 

genome stability in stem cells and plays a similar role in 

vascular cells. SIRT6 deficiency in human ECs increases 

DNA damage, the formation of telomere dysfunction-

induced foci, and the fraction of senescent cells as well as 

reduces cell proliferation and angiogenesis capacity [75]. 

In human endothelial cells, SIRT6 represses the 

expression of senescence-associated angiocrine factors, 

such as plasminogen activator inhibitor-1 and TNF 

superfamily member 4, and that of forkhead box M1 [75-

77]. In ApoE-/- mice fed a high-fat diet (HFD), endothelial 

loss of SIRT6 promotes monocyte adhesion to ECs, 

impairs endothelium-dependent vasorelaxation, and 

facilitates atherosclerosis development [78, 79]. This 

function of SIRT6 was partially mediated by decreases in 

the gene expression of TNF superfamily member 4 and 

forkhead box M1 through binding to and deacetylating 

H3K9ac at the gene promoters (Fig. 3A) [77, 78]. 

Collectively, SIRT6 guards against endothelial 

dysfunction and senescence by deacetylating H3K9ac to 

prevent DNA damage and the senescence-associated 

secretory phenotype. Endothelial dysfunction is the 

initiation step in the development of atherosclerosis, 

indicating that SIRT6 participates in the early stages of 

the disease [80, 81]. Patients with diabetic atherosclerosis 

showed higher endothelial SIRT6 in plaques following 

administration of glucagon-like peptide-1 (GLP-1) 

receptor agonists [82], revealing endothelial SIRT6 as a 

curative effect index and target for atherosclerosis 

treatment. Endothelial SIRT6 facilitates angiogenesis and 

hemorrhage of carotid plaques by inhibiting HIF-1α and 

ROS [83]. Thus, the anti-atherosclerotic role of SIRT6 

may also rely on its function in angiogenesis. Studies are 

needed to determine whether SIRT6 activation in ECs can 

reverse established plaques. 

Immune cells are essential for vascular homeostasis, 

aging, and disease. Macrophage activation is required for 

the initiation of plaque formation and plaque instability in 

atherosclerosis. Our findings revealed that SIRT6 in 

macrophages inhibited HFD-induced atherosclerosis in 

ApoE-/- mice by reducing the levels of H3K9ac and 

H3K56ac. This reduction represses the expression of 

ligands for natural killer (NK) group 2D (NKG2D), which 

is critical for activating NK cells to favor atherosclerosis 

development and plaque instability (Fig. 3A) [84, 85]. 

However, we did not examine the role of SIRT in 

polarization switching and foam cell formation, which are 

two crucial features of macrophages in atherosclerotic 

plaques. A follow-up study of bone marrow 

transplantation validated the important role of 

macrophage SIRT6 in preventing atherosclerosis in mice 

[86]. In addition, another follow-up study showed that 

SIRT6 repressed the expression of macrophage scavenger 

receptor 1, a receptor for oxidative low-density 

lipoprotein uptake and foam cell formation, in the 

atherosclerotic plaques of ApoE-/- mice [86]. During 

HFD-induced insulin resistance in the liver, SIRT6 

deficiency promoted M1 macrophage transformation and 

the inflammatory response [87], suggesting that SIRT6-

mediated macrophage polarization contributes to its 

effects in atherosclerosis. Therefore, SIRT6 in 

macrophages may prevent atherosclerosis by regulating 

macrophage polarization and inflammation as well as 

foam cell formation to inhibit the initiation of 

atherosclerosis and plaque instability. In other types of 

immune cells, SIRT6 may also be necessary for 

preventing atherosclerosis. More detailed experiments are 

required to validate the effects of SIRT6 on immune cells, 

such as macrophages and T lymphocytes, in 

atherosclerotic plaques. Additionally, high-throughput 

strategies such as chromatin immunoprecipitation-seq 

may reveal the direct targets of SIRT6 in immune cells. 

Generally, VSMCs undergo phenotypic switching 

and senescence in atherosclerotic plaques. Delaying 

VSMC senescence is an approach for maintaining plaque 

stability and reversing atherosclerosis. Grootaert et al. 

[88] reported that SIRT6 protected VSMCs from 

senescence by decreasing H3K9 acetylation levels in 

telomeres to maintain telomere integrity in humans and 

mice (Fig. 3A). In VSMCs from human and mouse 

plaques, SIRT6 deacetylated telomere chromatin, leading 

to reduced 53BP1 binding and VSMC senescence. 

Genetic overexpression of SIRT6 in VSMCs delayed 

senescence and inhibited atherosclerosis in HFD-fed 

ApoE-/- mice. This was the first study to investigate the 

role of SIRT6 in VSMCs in vivo. A previous in vitro study 

showed that SIRT6 regulates VSMCs to switch their 

phenotypes from a quiescent contractile phenotype to a 

synthetic phenotype [89], which may also contribute to 

the function of SIRT6 in atherosclerosis. Thus, SIRT6 

represses VSMC phenotype switching and senescence to 
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increase plaque stability and delay the development of 

atherosclerosis. However, the in vivo study of Grootaert 

et al. was based on transgenic mice overexpressing 

SIRT6, which greatly differs from physiological and 

pathological conditions. Therefore, further studies using 

VSMC-specific knockout mice are needed to determine 

the vascular protective roles of endogenous VSMC 

SIRT6. 

 

Figure 3. SIRT6 function in regulating vascular disease (Central Illustration). (A) SIRT6 represses the initiation, 

development, and plaque instability of atherosclerosis. In endothelial cells, SIRT6 epigenetically represses the production of 

pro-inflammatory angiocrine factors and senescence-associated secretory phenotype, thus inhibiting endothelial dysfunction 

and senescence to reduce initiation and development of atherosclerosis. In macrophages, SIRT6 deacetylates H3K9ac and 

H3K56ac to reduce the expression of natural-killer group 2, member D (NKG2D) ligands, inhibiting the activation of immune 

cells and atherosclerosis development. SIRT6 also maintains the telomere integrity by deacetylating H3K9ac at the telomere 

and inhibiting 53BP1 binding, thus suppressing vascular smooth muscle cells (VSMCs) senescence. SIRT6 deficiency leads 

to VSMC senescence and plaque instability of atherosclerosis. PAI1, plasminogen activator inhibitor-1; TNFSF4, TNF 

superfamily member 4; FoxM1, Forkhead box protein M1; ICAM1, intercellular adhesion molecule-1. (B) SIRT6 suppresses 

hypertension. By deacetylating H3K9ac, endothelial SIRT6 inhibits NKX3.2 (NK3 homeobox 2) expression to reduce the 

transcription of GATA5 (GATA-binding protein 5), a transcriptional factor controlling blood pressure. Endothelial loss of 

SIRT6 facilitates hypertension and associated cardiorenal injury. SIRT6-mediated suppression of VSMC may also contribute 

to its role in preventing hypertension. (C) SIRT6 inhibits ischemic stroke. Endothelial loss of SIRT6 induces AKT inhibition 

via an unknown mechanism, which activates Caspase 3 to cause endothelial apoptosis and subsequent blood-brain barrier 

(BBB) injury and ischemic stroke. It remains unknown whether SIRT6 regulates endothelial senescence and angiocrine 

phenotype to participate in ischemic stroke. Chemical drug MDL-811 can activate macrophage SIRT6 and repress ischemic 

stroke via targeting histone acetylation and EZH2 activation to promote the expression of FOXC1. 
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4.2 Hypertension 

 

The critical functions of SIRT6 in regulating ECs and 

VSMCs also affect hypertension. In ECs, SIRT6 

deacetylated H3K9ac at the promoter of Nkx3.2 (NK3 

homeobox 2) and repressed its expression. Nkx3.2 is a 

transcription factor that controls the expression of 

GATA5, a novel regulator of blood pressure [90]. 

Endothelial overexpression of SIRT6 showed therapeutic 

potential in deoxycorticosterone acetate/salt-induced 

hypertension and related cardiorenal syndromes in mice 

(Fig. 3B). SIRT6 showed pleiotropic protective effects in 

ECs by promoting endothelium-dependent vasodilatation 

and vascular nitric oxide bioavailability to ameliorate 

endothelial senescence [90]. SIRT6 also participates in 

hypertensive nephropathy in humans and mice [91].  

Angiotensin-converting enzyme 2 (ACE2) is a 

component of the renin-angiotensin-aldosterone system, 

the most important regulator of vascular aging and the 

pathophysiology of hypertension [92]. In hypertension 

and related nephropathy, SIRT6 may also inhibit ACE2 

expression in ECs [93], which requires further in vivo 

validation. The cardiovascular complications of SARS-

CoV-2 infection include endothelial dysfunction and 

activation of immune cells, such as neutrophils [94, 95]. 

Because SIRT6 represses the expression of the SARS-

CoV-2 receptor ACE2 in ECs [93], aging-induced 

decreases in SIRT6 may be one of the mechanisms 

underlying SARS-CoV-2-induced vascular complications 

in aged populations.  

VSMC senescence is an essential mechanism in 

vascular remodeling during the development of 

hypertension. A recent study demonstrated SIRT6 

represses VSMC senescence [88]. This mechanism may 

also contribute to hypertension. The senescence of 

VSMCs and ECs is also functionally involved in 

hypertension and PAH. Thus, SIRT6 may also repress 

hypertension and PAH by maintaining VSMCs and ECs 

“young”.  

These studies highlight the pivotal role of SIRT6 in 

aging-related cardiovascular disorders such as 

atherosclerosis and hypertension. The results also suggest 

that SIRT6 can prevent other types of vascular diseases, 

such as diabetic angiopathy, artery dissection, and 

ischemic vascular injury via a similar mechanism. Thus, 

SIRT6 is an ideal target for treating atherosclerosis and 

hypertension because the roles of SIRT6 in each type of 

vascular cell protect the vascular tissues.  

4.2 Ischemic Stroke 

 

Although recent studies have focused on SIRT6 in 

cardiovascular disorders, the role of SIRT6 in aging-

related cerebrovascular diseases is not fully understood. 

Liberale et al. recently reported that endothelial SIRT6 

preserved blood-brain barrier integrity and reduced stroke 

size by repressing endothelial apoptosis through AKT 

activation [96] (Fig. 3C). These findings improve the 

understanding of the role of SIRT6 in blood-brain barrier 

injury and stroke. Furthermore, preventing stroke by 

overexpressing SIRT6 is a promising translational 

strategy. Senescence-associated angiocrine factors from 

ECs are crucial for neuronal survival and post-stroke 

regeneration, which may be critical for SIRT6 function in 

stroke, as AKT controls the angiocrine phenotype. 

Another concern is how SIRT6 activates AKT (via 

epigenetic regulation or not) and whether AKT is 

critically involved in SIRT6 function in ischemic stroke. 

A previous study of the heart revealed that SIRT6 

repressed AKT [46], whereas Liberale et al. reported that 

SIRT6 activated AKT [96], suggesting that SIRT6 

indirectly regulates AKT. Further studies are needed to 

determine the direct mechanism underlying SIRT6 

function in stroke.  

The mechanisms underlying SIRT6 functions in 

cardiovascular tissues significantly differ from those of its 

family member SIRT1. Generally, SIRT1 targets non-

histone proteins in vascular cells, whereas SIRT6 

regulates vascular cells via epigenetic mechanisms [26, 

50, 53, 55, 88, 90, 97]. A recent follow-up study revealed 

that activated SIRT6 in macrophages repressed ischemic 

stroke by interacting with zeste homolog 2 to balance 

histone acetylation and methylation [97]. Endothelial 

SIRT6 may also function in ischemic stroke by directly 

regulating histone acetylation. In addition, VSMCs and 

immune cells express SIRT6, which is downregulated in 

the blood cells of patients with ischemic stroke [96]. 

Therefore, how SIRT6 regulates ischemic stroke via cell 

types other than ECs should be further evaluated. 

5. SIRT6 Activators for Treating Cardiovascular 

Diseases 

 

SIRT6 exerts anti-aging roles in vascular tissues, 

indicating the therapeutic potential of SIRT6 activators. 

Importantly, SIRT6 in all cell types can repress 

cardiovascular aging and diseases, suggesting SIRT6 as 

an ideal target for treating aging-related cardiovascular 

diseases. Therefore, studies are needed to identify SIRT6 

activators. Several SIRT6 activators have been identified 

in recent years, with some candidates showing the 

therapeutic value (Table 3), as described in previous 

reviews [61, 98, 99]. 

Recent studies have provided a model for screening 

SIRT6 activators (e.g., MDL-800 and MDL-811) for 

treating cancer, ischemic stroke, and other aging-related 

diseases such as liver fibrosis. In 2018, Huang et al. 

identified MDL-800, MDL-801, and MDL-811 as SIRT6 
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activators that increased SIRT6 deacetylase activity by up 

to 22-fold via binding to an allosteric site [100]. MDL-

800 and MDL-811 showed significant anti-cancer effects 

in hepatocellular carcinoma, non-small cell lung cancer, 

and colorectal cancer [100-102]. SIRT6 may also possess 

tumor-promoting functions; hence, some inhibitors have 

been developed [61, 98, 103]. Additionally, MDL-800 

promoted deacetylation of lysine 54 on SMAD2 in hepatic 

stellate cells to alleviate liver fibrosis [104]. The novel 

SIRT6 activator MDL-811 ameliorated 

neuroinflammation and ischemic injury via the zeste 

homolog 2/FOXC1 axis [97], highlighting the value of 

MDL-811 for treating aging-related ischemic stroke. 

Notably, MDL-800 improves the genome stability and 

pluripotency of induced pluripotent stem cells derived 

from aged mice [72], revealing the potential of MDL-800 

for preventing the senescence of stem cells and vascular 

cells.  

Taken together, the currently identified SIRT6 

activators MDL-800/811 show significant value as 

candidate drugs for treating aging and aging-related 

cardiovascular diseases. As SIRT6 controls the lifespan of 

non-human primates [63], the efficacy of MDL-

800/MDL-811 for treating aging-related vascular 

disorders in non-human primates must be evaluated. More 

importantly, further studies are needed to examine the 

potential of SIRT6 activators such as MDL-800/MDL-

811 for treating aging-related vascular diseases, such as 

atherosclerosis, hypertension, and stroke in humans, 

followed by preclinical and clinical trials. 

 

Table 3. Identified SIRT6 activators. 

 
Compound EC50 (μM) Max Activation Substrate Ref. 

MDL-800 10 22-fold H3K9ac [100, 104] 

MDL-801 4.1 25.1-fold H3K9myr [129] 

MDL-811 7.1 >15-fold H3K9ac, H3K56ac [97] 

Cyanidin 460 55-fold H3K9ac [130] 

4H-chromen N/A 40-fold H3K9ac [131] 

Quercetin 1200 2-fold H3K9ac [132] 

UBCS039 38 3.5-fold H3K9ac [133] 

CL5D 15 50-fold H3K9ac [134] 

Fucoidan N/A 335-fold H3K9ac [135] 

Oleoylethanolamide 3.1 2-fold H3K9ac [136] 

Myristic acid 246 35-fold H3K9ac [134] 

Nitro-fatty acid N/A 40-fold H3K9myr [137] 

12q 0.58 >38-fold Ac-RYQK(Ac)-AMC [138] 

 

N/A, not available. 

6. Conclusion Remarks and Perspectives 

 
SIRT6 is critical for mammalian development and 

determines the lifespan of rodents and non-human 

primates. Findings obtained in the past two years have 

highlighted the vital role of SIRT6 in preventing 

angiogenic defects, vascular diseases, atherosclerosis, 

hypertension, and ischemic stroke. The anti-senescence 

function is crucial for the protective roles of SIRT6 in 

aging and vascular diseases. Importantly, recent studies 

suggested the translational value of SIRT6 activators, 

such as MDL-800/811. However, some functions of 

SIRT6 need further addressing.  

(1) SIRT6-mediated metabolic regulation in 

vascular diseases. Recent studies have mainly focused on 

the function of SIRT6 in the epigenetic regulation of cell 

senescence and inflammation. Cardiovascular diseases 

are closely related to metabolic syndrome. Accumulating 

studies have shown that SIRT6 mediates liver and adipose 

metabolism [105, 106], which may also contribute to the 

function of SIRT6 in vascular diseases. SIRT6 may 

regulate serum lipid and insulin sensitivity to prevent the 

development of age-related vascular disorders such as 

atherosclerosis and hypertension. The function of SIRT6 

in regulating lifespan in mice and non-human primates 

largely depends on IGF signaling, a key regulator of 

cellular metabolism [62, 63]. SIRT6 also prevents cardiac 

aging by epigenetically repressing the metabolic IGF-

AKT pathway [46]. Furthermore, SIRT6-mediated 

metabolic changes in vascular cells may be equally 

critical in aging-related vascular injury [88]. Therefore, it 

is important to determine whether SIRT6 regulates the 

intracellular metabolism of vascular cells to prevent 

aging-related vascular diseases.  

(2) Insight into the mechanisms underlying SIRT6 

inactivation. Increased methylation of the SIRT6 gene 
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and decreased SIRT6 protein stability occur in vascular 

injury. Some studies suggested that SIRT6 is regulated by 

miRNAs and lncRNAs (e.g., miR-25-3p, LncRNA Blnc1, 

and LncRNA SNHG12) in vascular cells in vitro [107, 

108]; however, the mechanisms by which SIRT6 is 

repressed in aging and aging-related vascular diseases 

remain unclear. Further studies of the detailed mechanism 

underlying the aging-mediated decline in SIRT6 

expression and activity will improve the understanding of 

SIRT6 and promote the design of SIRT6-targeted 

therapeutic translational strategies. The function and 

mechanisms of SIRT6 in aging-related vascular diseases 

such as myocardial infarction [109], arterial aneurysm [3], 

artery dissection [110], arterial calcification [111], and 

diabetic angiopathies [13] also require further analysis. 

(3) Vascular protective roles in aged animals and 

humans. SIRT6 is an anti-aging factor in rodents and 

primates [46, 63, 67]; therefore, it would be interesting to 

determine whether SIRT6 is critical for preventing 

vascular disorders in aged animals and humans. Our 

previous studies showed that SIRT6 expression is reduced 

in atherosclerotic plaques in patients [84]. In addition, 

polymorphisms in SIRT6 increase the risk of plaque 

burden and coronary artery disease [112, 113]. Higher 

endothelial SIRT6 levels in plaques were also observed in 

patients administered GLP-1 receptor agonists. Notably, a 

clinical study implicated the low level of SIRT6 

methylation (high SIRT6 expression) as a protective 

factor for Chinese longevity [67], and SIRT6 expression 

was decreased in cells of aged humans [65, 66]. These 

findings reveal the critical role of SIRT6 in human aging 

and aging-related vascular diseases. Further studies of the 

role of SIRT6 in vascular diseases in aged human patients 

are needed to improve the understanding of SIRT6 and 

enable targeting of SIRT6 in aged patients with vascular 

diseases. 
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