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Abstract

High-density lipoprotein (HDL) is believed to play an important role in lowering cardiovascular disease (CVD) risk by
mediating the process of reverse cholesterol transport (RCT). Via RCT, excess cholesterol from peripheral tissues is carried
back to the liver and hence should lead to the reduction of atherosclerotic plaques. The recent failures of HDL-cholesterol
(HDL-C) raising therapies have initiated a re-examination of the link between CVD risk and the rate of RCT, and have brought
into question whether all target modulations that raise HDL-C would be atheroprotective. To help address these issues, a
novel in-silico model has been built to incorporate modern concepts of HDL biology, including: the geometric structure of
HDL linking the core radius with the number of ApoA-I molecules on it, and the regeneration of lipid-poor ApoA-I from
spherical HDL due to remodeling processes. The ODE model has been calibrated using data from the literature and
validated by simulating additional experiments not used in the calibration. Using a virtual population, we show that the
model provides possible explanations for a number of well-known relationships in cholesterol metabolism, including the
epidemiological relationship between HDL-C and CVD risk and the correlations between some HDL-related lipoprotein
markers. In particular, the model has been used to explore two HDL-C raising target modulations, Cholesteryl Ester Transfer
Protein (CETP) inhibition and ATP-binding cassette transporter member 1 (ABCA1) up-regulation. It predicts that while CETP
inhibition would not result in an increased RCT rate, ABCA1 up-regulation should increase both HDL-C and RCT rate.
Furthermore, the model predicts the two target modulations result in distinct changes in the lipoprotein measures. Finally,
the model also allows for an evaluation of two candidate biomarkers for in-vivo whole-body ABCA1 activity: the absolute
concentration and the % lipid-poor ApoA-I. These findings illustrate the potential utility of the model in drug development.
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Introduction

Epidemiological studies have shown that high levels of low-

density lipoprotein cholesterol (LDL-C) as well as low levels of

high-density lipoprotein cholesterol (HDL-C) are associated with

increased cardiovascular disease (CVD) risk [1,2]. While LDL-C

lowering therapies have been shown consistently to reduce CVD

risk, there is significant residual risk that remains to be managed

[2]. The strong inverse association between HDL-C and CVD risk

has led to the ‘‘HDL-C hypothesis’’, whereby all HDL-C raising

therapies should be anti-atherogenic [2,3]. Currently, the anti-

atherogenic activity of HDL is mainly attributed to its role in

mediating reverse cholesterol transport (RCT), whereby choles-

terol is effluxed from peripheral tissues and transported to the liver

for biliary excretion [4]. However, the recent failures of a number

of HDL-C raising intervention trials [5–7] have called for a re-

examination of the HDL-C hypothesis. It has long been thought

that HDL-C is a reliable biomarker for cholesterol efflux from

tissues [8]. However, the several recent failed HDL-C raising

intervention trials provide mounting evidence that at least under

certain conditions, the plasma concentration of HDL-C, a very

simple and static measure, is inadequate for characterizing the rate

of RCT, which is a complex and dynamic process [8]. A revision

of the HDL-C hypothesis to the ‘‘HDL flux hypothesis’’ has been

proposed, whereby interventions should be aimed at promoting

cholesterol efflux to HDL, and hence the overall RCT rate,

independently of their effects on HDL-C levels [9,10]. Hence,

there is now a pressing need to better understand the role of HDL-

C raising targets in the context of RCT and to identify biomarkers

which could provide information on the flux rate through the

RCT pathway [8]. Our modeling effort is focused on addressing

these issues.

A number of previous mathematical models have focused on

various aspects of lipid metabolism; see [11,12] for recent reviews.

Of the existing models, some describe metabolic processes at a

mechanistic level [13–19], while others have been empirically

derived from tracer kinetic studies [20–22]. In general these

models were built to describe the dynamics of HDL and the other
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major lipoprotein classes, which include LDL, intermediate

density lipoprotein (IDL) and very low density lipoprotein (VLDL),

describing lipid transport between these particles mediated by the

cholesteryl ester transport protein (CETP) in the normal or basal

state, and the effects of genetic mutations and/or drug interven-

tions on these processes. While valuable insights have been gained

from these models, none can be used to predict the associated

changes in the RCT rate since they lack a mechanistic description

of ApoA-I dynamics and other key processes involved in the RCT

pathway. The latter include the lipidation of lipid-poor ApoA-I via

its interaction with ATP-binding cassette transporter member 1

(ABCA1), the key process in the initiation of RCT [8], as well as

processes of HDL remodeling which lead to the delivery of

cholesterol from HDL to other lipoproteins and cells, and the

regeneration of lipid poor ApoA-I [23]. In all the existing models

except the ones by Hübner et al [16] and Adiels et al [24], the

dynamics of apolipoproteins that cover the surface of lipoprotein

particles are not described. While each VLDL, IDL and LDL

particle contains only one ApoB molecule per particle, for HDL

particles the number of ApoA-I molecules per particle may vary

from 2 to 4 or more depending on HDL size [25]. This variation

results from HDL remodeling processes such as particle fusion,

CETP-mediated lipid transport, lipolysis and esterification where-

by particles can gain or lose core lipid content as well as ApoA-I

molecules [23]. While it has been shown experimentally and

theoretically that the number of ApoA-I molecules on a given

HDL particle is intrinsically linked to the particle size [25], this

important relationship has yet to be incorporated into a

mechanistic model of HDL metabolism.

In this paper, we propose a novel model of lipoprotein

metabolism and kinetics (the LMK model) that provides an

integrated description of the dynamics of cholesterol and ApoA-I

in plasma. In particular, the model captures the initiation of RCT

from the lipidation of lipid-poor ApoA-I by the ABCA1

transporter, the generation of nascent discoidal and nascent

spherical particles, HDL particle fusion, CETP mediated lipid

transfer between HDL and other lipoproteins, and the dissociation

of excess ApoA-I from mature spherical a-HDL due to remodeling

processes. The model is calibrated to: lipoprotein measures for

normal and CETP deficient subjects; cholesteryl ester (CE) and

ApoA-I fluxes measured in normal subjects; data on the fractional

catabolic rate (FCR) of ApoA-I. The structure and the kinetic

constants of our model provide an explanation for the relationship

between FCR of ApoA-I and HDL particle size. To our

knowledge the LMK model is the first to provide a mechanistic

basis for the linkage between the metabolism of ApoA-I and the

cholesterol component of HDL. The model has been validated by

simulating patients with genetic mutations in the HDL metabolism

pathway and the predictions are compared with lipoprotein

measures reported in literature. Finally, the model was used to

evaluate targets that could potentially increase RCT and to

identify relevant biomarkers, as part of the effort to support drug

discovery and development using a model-based approach.

Results/Discussion

Model structure
The LMK model is shown schematically in Figure 1, focused on

the RCT pathway and a number of targets contained within it, for

instance CETP, ABCA1, ApoA-I and SRB1. The LMK model

describes the synthesis of ApoA-I and the initiation of RCT by the

interaction of lipid-poor ApoA-I with ABCA1 leading to the

formation of mature, spherical a-HDL. The HDL remodeling

processes represented in the model include: the fusion of spherical

HDL particles (arrow 5 of Figure 1); the exchange and elimination

of CE in spherical HDL by interaction with CETP (arrows 12–14)

and SRB1 (arrow 7); the regeneration of lipid-poor ApoA-I from

spherical HDL particles (arrow 3). Lipid-poor ApoA-I is assumed

to be eliminated via the kidney (arrow 4), while the spherical HDL

particles are assumed to be eliminated by a holo-uptake

mechanism with a rate dependent on the particle size (arrow 6).

The transfer and elimination of CE in LDL and VLDL pools are

also represented (arrows 9–11). Our approach is to adequately

describe the metabolic processes, while keeping the model as

simple as possible. The representations of lipoprotein components

and metabolic processes in the LMK model reflect these

principles.

Lipoprotein representation. While HDL particles are

heterogeneous in size and composition [8], for the purposes of

understanding RCT we only consider two HDL particle classes:

spherical, a-HDL and small, lipid-poor ApoA-I. Amongst the

apolipoproteins and lipid species contained in a-HDL particles,

the LMK model has an explicit representation of ApoA-I and CE.

Although there are a large number of species in the HDL

proteome (e.g., ApoA-II, ApoE) and lipidome (e.g., triglycerides,

phospholipids) which may be relevant in particular diseased states,

they play a secondary role in the characterization of RCT. We

make the assumption that the protein moiety contains 60% ApoA-

I by weight, with all other proteins contributing the remaining

40%. This is within the range of values reported in literature

[25,26]. Under this assumption, the total concentration of ApoA-I

is represented as an explicit variable that changes as a direct result

of the metabolic processes described in the model while ApoA-II

and other HDL apolipoproteins are implicit quantities: namely,

they are assumed to change in concert with ApoA-I so as to keep

the weight fraction constant. Similarly, the LMK model explicitly

represents CE in the particle classes of a-HDL, VLDL and LDL

but represents TG in a-HDL only implicitly. That is, the ratio of

TG/CE in a-HDL particles is assumed to be 13% which is

consistent with the range of values reported in healthy subjects

[25,27]. The amounts of free cholesterol (FC) and phospholipids

(PL) per HDL particle are implicitly represented in the LMK

model: they depend on the a-HDL size, in a manner analogous to

the treatment of PL in [16]. In particular, given the CE content of

Author Summary

Epidemiological studies have shown a strong inverse
association between HDL-C and cardiovascular risk and
led to the formulation of the ‘‘HDL cholesterol hypothesis’’:
under this hypothesis, interventions raising HDL-C should
decrease risk. However, the recent failures of HDL-C raising
therapies in improving cardiovascular disease risk in
outcomes trials have suggested a need to revise the
hypothesis to account for the contrary data. An ‘‘HDL flux
hypothesis’’ has emerged: it is not HDL-C level per se which
forms the basis for reducing risk, but it is the flux rate of
reverse cholesterol transport that drives risk reduction. We
propose that, the concentration of HDL cholesteryl ester in
plasma simply reflects the ratio of input rate of reverse
cholesterol transport into the HDL compartments to its
clearance rate. A challenge in identifying targets under the
new conceptual framework is the feedback process that
occurs between the input rate and the clearance rate of
HDL-C. To meet this challenge, we have built a systems
model which incorporates the main processes of HDL
metabolism to elucidate the relationships between target
modulations and the reverse cholesterol transport rate.

A Model of Lipoprotein Metabolism and Kinetics
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an a-HDL particle its core size can be inferred and the FC and PL

content on the surface can be computed using the updated Shen

model; see [25]. With our choice of lipoprotein representation, the

species represented in the model are given in Table 1.

Metabolic processes. The full list of reactions represented in

the LMK model (as schematized in Figure 1) is shown in Table 2.

We would like to point out that the remodeling flux (arrow 3 of

Figure 1) based on geometric concepts developed in [25] is an

original contribution of our work. The remodeling flux expression,

Frem(CEa(t),Aa(t),Na(t)), represents the excess ApoA-I within the

pool of a-HDL particles given the core cholesteryl ester content,

particle concentration and the amount of ApoA-I covering the

surface. Its derivation based on geometric concepts of a-HDL

particles is discussed in more detail in the Methods section. The

holo-uptake of a-HDL particles is thought to be mediated by a

number of receptors, which are not well understood [28,29]. In

order to account for the possible size-dependence in the uptake

rate of a-HDL particles, the functional dependence kholo(d) is

utilized. This is also discussed in more detail in the Methods

section.

The model constants are shown in Table 3 while the list of

parameters are given in Table 4; the prior values of parameters

and their posterior estimates are discussed in the next section.

With the list of reactions given in Table 2, the LMK model can be

expressed as the following system of ODEs:

dAlp(t)

dt
~

r
lp
in{kABCA1Alp(t){kkidneyAlp(t)zkdissocFrem(CEa(t),Aa(t),Na(t))

ð1aÞ

dAa(t)

dt
~

kABCA1Alp(t){kdissocFrem(CEa(t),Aa(t),Na(t)){kholo(d)Aa(t)

ð1bÞ

Figure 1. A schematic representation of the model. The arrows shown in the diagram denote the processes represented by the model and the
boxes with italicized text denote mediators that are explicitly represented. The process arrows are numbered, refering to the reaction number shown
in Table 2. The arrows leading from the nascent sphere towards the a-HDL pool represent the 2 scenarios that may occur in the transformation of
newly formed particles: they may either enter the a-HDL pool as distinct particles (the dashed arrow) or fuse with the existing ones (solid arrow).
doi:10.1371/journal.pcbi.1003509.g001

Table 1. Species represented in the model.

Symbol Description Units

Alp Lipid-poor ApoA-I mg/dL

Aa ApoA-I in the a-HDL pool mg/dL

Na Particle concentration of a-HDL mmol/dL

CEa cholesteryl ester in a-HDL mg/dL

CELDL cholesteryl ester in LDL mg/dL

CEVLDL cholesteryl ester in VLDL mg/dL

doi:10.1371/journal.pcbi.1003509.t001

A Model of Lipoprotein Metabolism and Kinetics
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dNa(t)

dt
~

kABCA1

2mA

1

1zkf Na(t)
Alp(t){kholo(d)Na(t) ð1cÞ

dCEa(t)

dt
~c

mC

mA

kABCA1Alp(t)z

kCETP
LH CELDL(t){ kCETP

HV zkCETP
HL zkHDL

SRB1zkholo(d)
� �

CEa(t)

ð1dÞ

dCELDL(t)

dt
~

kVLCEVLDL(t)zkCETP
HL CEa(t){(kCETP

LH zkLDL
out )CELDL(t)

ð1eÞ

dCEVLDL(t)

dt
~

rVLDL
in zkCETP

HV CEa(t){(kVLzkVLDL
out )CEVLDL(t):

ð1fÞ

One important quantity that the LMK model can help to assess is

the rate of reverse cholesterol transport (RCT) at the whole-body level.

This quantity is thought to play an important role in determining

cardiovascular disease risk, but is experimentally challenging to

assess. Using the LMK model, we are able to quantify the flux rate

of free cholesterol into the nascent disc particles mediated by

ABCA1: in particular, this is given by

RCT rate~plasma volume|c
mC

mA

kABCA1Alp(t): ð2Þ

The term kABCA1Alp(t) represents the transformation rate of lipid-

poor ApoA-I to nascent discs, which subsequently enter the

a-HDL pool. The parameter c describes the number of cholesterol

molecules per ApoA-I in the nascent discs.
mC

mA

converts the

molecular mass of ApoA-I to cholesterol. Finally, the volume of

plasma converts RCT rate to the whole-body level: we assume that

plasma volume = 3.15 L in a 70 kg adult [22]. As illustrated in

Figure 1, nascent discs are transformed into nascent spheres (as

mediated by the LCAT enzyme [30]) which are assumed to have

in their cores c CE molecules per ApoA-I. Hence, the RCT

expression (2) also represents the input rate of HDL-CE into the

plasma a-HDL pool. Note that the factor 2 in the expression for

reaction 2 (initiation of RCT) accounts for the assumption that

there are 2 ApoA-I molecules per nascent HDL particle.

Model calibration
Parameter estimates: Prior and posterior. The Bayesian

approach for parameter estimation is a well established method-

ology which has found applications in various fields of science

[31], including parameter estimation for models of cellular

processes [32,33] as well as pharmacokinetics and pharmacody-

namics (PK/PD) [34,35]. Under this framework, it is assumed that

a prior distribution is available for (some) parameters as a result of

previous experimental studies. In combination with calibration

data, the posterior distribution for the parameters is obtained.

For most of the LMK model parameters, prior estimates are

available from literature studies; a detailed discussion of the

references from which parameter estimates and their uncertainties

are obtained is given in the Methods section. Using the model

calibration procedure as discussed in the Methods section, the

prior is combined with calibration data to give rise to the posterior

estimates. A list of the prior and posterior values of parameters is

given in Table 5. It is worthwhile noting that, for the most part,

the maximum a posteriori (MAP) estimate obtained by the calibration

process does not depart significantly from the prior. This indicates

that the calibration data are fairly consistent with the prior

Table 2. Reactions represented in the model.

# Reaction Description Rate expression Ref.

1 1?Alp ApoA-I synthesis r
lp

in
[22,88]

2
Alp?Aazc

mC

mA

CEaz
Na

2mA

Initiation of RCT by interaction with ABCA1 kABCA1Alp(t) [79,80,89]

3 Aa?Alp Regeneration of lipid-poor ApoA-I via HDL remodeling kdissoc|Frem(CEa(t),Aa(t),Na(t)) [22,25,76,90–92]

4 Alp?1 Kidney removal of lipid-poor ApoA-I kkidneyAlp(t) [43,48]

5 Na?1 Fusion of nascent spherical particles with mature a-HDL kABCA1Alp(t)

2mA

kf Na(t)

1zkf Na(t)

[23,93]

6 Aa,CEa,Naf g?1 HDL particle holo-uptake kholo(d)|fAa(t),CEa(t),Na(t)g [28,29]

7 CEa?1 SR-B1 mediated removal of CE from HDL particles kHDL
SRB1CEa(t) [4,8,18,36]

8 1?CEVLDL Synthesis of CE in VLDL rVLDL
in

[20,21]

9 CEVLDL?1 Elimination of CE from VLDL kVLDL
out CEVLDL(t) [20,21]

10 CELDL?1 Elimination CE from LDL kLDL
out CELDL(t) [20,21]

11 CEVLDL?CELDL VLDL conversion to LDL via lipolysis kVLCEVLDL(t) [20]

12 CEa?CEVLDL CETP mediated CE transfer from HDL to VLDL kCETP
HV

CEa(t) [13,17,18,20,30]

13 CEa?CELDL CETP mediated CE transfer from HDL to LDL kCETP
HL

CEa(t) [13,20,30]

14 CELDL?CEa CETP mediated CE transfer from LDL to HDL kCETP
LH

CELDL(t) [13,18,20,30]

doi:10.1371/journal.pcbi.1003509.t002
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estimates. One exception is the parameter kHDL
SRB1, which is

increased significantly from its prior beyond the 1 SD value. This

result is in agreement with experimental evidence that SRB1 plays

a significant role in mediating HDL-CE removal from HDL

particles [36], in contrast to the expectation of a previous tracer

kinetics study [21]. The discrepancy may be attributed to the

limitation of tracer kinetics studies (for instance, [21]) to be able to

fully identify the SRB1 contribution. Finally, it can be seen that

the calibration data are sufficiently informative to allow relatively

precise estimates for the parameters kl
holo and kf , for which there

was no prior information. It is worth noting the negative sign in

the estimate for kl
holo, which implies that the a-HDL holo-particle

uptake rate decreases with particle size. The sign of this size-

dependence is consistent with the hepatic endocytic receptor

(mitochondrial ATP synthase subunit b) having a higher affinity

for the (smaller) HDL-3 as compared to the (larger) HDL-2

[29,37,38].

Calibration data and model explanatory power. In order

to identify parameter values using the Bayesian approach,

calibration data are needed. However, the choice of calibration

data should be made not only for the purpose of quantifying

parameters, but also with the consideration for the potential utility

and the explanatory power of the model. More specifically,

choosing the right types of calibration data can help to increase

confidence in a model’s predictions of specific scenarios; in

addition, model calibration is also an opportunity to test if the

model structure, together with prior information on the parameter

values, can explain important features of the system being studied.

In our current work, the LMK model was used to explain the

effects of CETP inhibition on ApoA-I level as well as the inverse

relationship between the FCR of ApoA-I and particle size. Based

on this, the calibration data were chosen. In Figures 2, 3 and 4 we

show the calibration data superimposed with the model simula-

tion, using the maximum a posteriori parameter set identified by the

calibration procedure (as described in the Methods section). In

Figure 2, the decrease in CETP level from 100% to 0% of the

nominal subject was simulated by decreasing the three parameters

associated with CETP activity (kCETP
HV

,kCETP
HL

,kCETP
LH

) by the

same factor. In particular, panels A and B show that the rise in

HDL-C (the concentration of HDL-C is computed by summing

CEa and free cholesterol pool, as discussed in the Methods section)

and ApoA-I in heterozygotes and homozygotes with CETP

deficiency are fairly well captured by the LMK model; the main

discrepancy is the under-prediction of HDL-C for CETP

heterozygotes. To our knowledge, the increase in ApoA-I under

CETP deficiency or inhibition has not yet been explained by

existing models: by incorporating the geometric ideas proposed in

[25] the LMK model provides, for the first time, a way to connect

the metabolism of ApoA-I and HDL-C. We remark that the LMK

model is focused on HDL rather than the metabolism of ApoB-

containing particles, which include LDL and VLDL. In particular,

the LMK model predicts negligible concentrations of LDL-CE

and VLDL-CE in CETP homozygotes, which are inconsistent

with the reported concentrations in these subjects [39–41]. We

believe that this discrepancy between the LMK model prediction

and reality is due to b-LCAT activity [42], which in CETP

homozygotes could compensate for the lack of CE influx from

HDL particles by converting free cholesterol on the surface of

ApoB-containing particles into cholesteryl ester. Finally, Figure 3

shows that the CE fluxes in the LMK model are consistent with

the values measured [20], in particular the CE flux from HDL to

LDL is close to that from LDL to HDL.

Another important and robust finding that has been observed in

HDL metabolism is the relationship between FCR of ApoA-I and

particle size (estimated using a surrogate measure) seen in normal

subjects [43,44]; in addition, heterozygotes and homozygotes of

CETP deficiency are also observed to have a decreased FCR of

ApoA-I [45]. Thus, an important objective of the calibration

process is to test whether the structure of the model, together with

an assumption on the linear size-dependence of HDL holo-particle

uptake rate, can explain this relationship. The inverse relationship

observed between the FCR of ApoA-I and the ratio HDL-C/

ApoA-I (a surrogate measure of HDL size) is shown in Figure 4: in

particular, data from Schaefer et al [44], Brinton et al [43] and

Ikewaki et al [45] are given. A linear fit was carried out using the

pooled data of Schaefer et al [44], Brinton et al [43] and normal

subjects from Ikewaki et al [45], with the mean shown as a dashed

pink line and the 1 SD confidence region shown as dashed black

lines in Figure 4. The ApoA-I FCR for CETP homozygotes (who

have large HDL particles) are assumed to be the lowest level

attainable, hence this value was taken as the ‘‘floor’’ of the fit. The

LMK model was calibrated to the piecewise linear relationship

represented by the pink line and Figure 4 shows that simulations

for normal and CETP mutation subjects (denoted by the asterisk

symbols) are all in good agreement with the inverse relationship.

The LMK model reproduces the dependence of ApoA-I FCR on

CETP primarily by changing the distribution of ApoA-I between

the lipid-poor and a-HDL pools (which have different clearance

rates), with a minor contribution from the explicit size dependence

of holo-particle uptake, kholo(d).

Model validation
In order to increase confidence in its predictions, the LMK

model has been validated by simulating a number of scenarios that

have not been used in the calibration process. In particular, since

ABCA1 and ApoA-I are important targets in the pathway, the

literature data on subjects with mutations in these genes [46,47]

are compared against the model simulations. The heterozygotes

and homozygotes of ABCA1 mutation are simulated by setting

kABCA1 (representing ABCA1 activity) to 50% and 0% of its

nominal value respectively; similarly, heterozygotes and homozy-

gotes of ApoA-I mutation are simulated by setting the parameter

r
lp
in

(representing ApoA-I synthesis rate) to 50% and 0% of its

nominal value respectively. Figure 5 shows the mean and 95%

confidence intervals of the model simulations, compared to the

literature data (mean and SD are given). An examination of the

results for the heterozygotes shows that, encouragingly, the LMK

model is able to differentiate between the effects of ABCA1 and

ApoA-I mutations on HDL-C and ApoA-I levels: both quantities

Table 3. Model constants.

Constant Description Unit Value Ref.

mA Molecular weight of ApoA-I g/mol 28500 [16]

mC Molecular weight of cholesterol
(free and esterified)

g/mol 386 [16]

VCE Molecular volume of cholesteryl
ester

Å3 1068 [25]

VTG Molecular volume of triglyceride Å3 1556 [25]

t Thickness of HDL surface Å 20.2 [25]

By convention, the cholesteryl ester mass is measured by quantifying the
equivalent mass of free cholesterol.
doi:10.1371/journal.pcbi.1003509.t003

A Model of Lipoprotein Metabolism and Kinetics
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decrease more for ApoA-I heterozygotes as compared to ABCA1

heterozygotes. Furthermore, the LMK model predicts that

heterozygotes of ABCA1 mutation have smaller HDL particles

(data not shown), consistent with the data of Asztalos et al [46].

Most of the calibration data are static in nature, hence it is of

particular interest to perform dynamic simulations of the LMK

model and compare them to existing data. As a validation, we

would like to see if the LMK model reproduces the characteristic

biphasic decay curves seen in tracer kinetic experiments with

labelled ApoA-I. In the LMK model, the injection of radio-

labelled dose is represented by a small addition to the pool of lipid-

poor ApoA-I and the fractional dose remaining in the sum of the

two pools of ApoA-I is plotted; refer to the Methods section for the

details of the simulation methodology. This is simulated using the

parameters identified for the nominal subject and the result is

shown in Figure 6: it can be seen that the simulated decay curve is

biphasic and similar to the data obtained by digitizing Figure 3 of

Ikewaki et al [48]. Furthermore, the mean residence time (which is

the inverse of FCR) of labelled ApoA-I computed from the model

simulation is 4.2 days, which is in good agreement with the result

of 4.860.3 days as measured in 4 subjects by Ikewaki et al [48].

Explaining epidemiological relationship using a virtual
population

Having calibrated and validated the LMK model, we use it as a

platform for exploring the observed epidemiological relationship

between HDL-C and CVD risk. For this purpose, a virtual

population is generated in a manner analogous to that of reference

[49]. In particular, model parameters are sampled from a

multivariate normal distribution and for each set of parameters

the ‘‘phenotype’’ of the corresponding virtual subject is simulated

using the LMK model. As there is no information available on the

correlation between model parameters in a real population, we

have assumed them to be uncorrelated and each is drawn from a

normal distribution with a relative SD = 15% around the value

corresponding to the posterior values for the nominal subject (see

Table 5).

Despite the fact that the parameter distribution in the virtual

population is uncorrelated, some of the simulation outputs show

significant correlations as a result of the model structure. Of

particular interest is the correlation between RCT rate (as defined in

(2)) and plasma biomarkers. Shown in Figure 7 is the relationship

between RCT rate and HDL-C within the virtual population: it can

be seen that there is a surprisingly strong correlation between the two

quantities (r = 0.95). We note that the RCT rate given in (2)

corresponds to the input rate of HDL-CE into plasma: in fact, the

plasma concentration of HDL-CE can be expressed as the following:

HDL{CE~
RCT rate

Clearance rate of HDL{CE
ð3Þ

where the clearance is defined as the plasma volume multiplied by

the sum of elimination rate constants. In the LMK model,

elimination processes for HDL-CE include those mediated by

CETP and SRB1, as well as the holo-particle uptake. While the

RCT rate shows a strong correlation with HDL-C, we see that in

Figure 8 the clearance of HDL-CE shows a much weaker negative

correlation with HDL-C (r~{0:32). Hence, the simulation results

suggest that the variation in HDL-C within the virtual population is

largely attributed to variations in the RCT rate and not due to its

clearance. Under the ‘‘HDL flux hypothesis’’ [2] that low RCT rate

results in high CVD risk, the relationship shown in Figure 7 provides

a plausible explanation for the epidemiological association

between HDL-C and CVD risk. The same set of virtual subjects is

also used in subsequent sections for target evaluation and biomarker

identification.

Table 4. Model parameters.

Description Unit

r
lp
in

Synthesis rate of ApoA-I mg/dL/day

kkidney Rate of kidney elimination pool/day

kdissoc Dissociation rate of excess ApoA-I pool/day

kABCA1 Rate constant in the lipidation of lipid-poor ApoA-I via ABCA1 pool/day

c Stoichiometry of FC to ApoA-I in nascent discs unitless

kCETP
HV

Rate constant of CE transfer: HDL to VLDL pool/day

kCETP
HL

Rate constant of CE transfer: HDL to LDL pool/day

kCETP
LH

Rate constant of CE transfer: LDL to HDL pool/day

kVL Rate constant of CE transfer: VLDL to LDL pool/day

rVLDL
in

Synthesis rate of CE to VLDL mg/dL/day

kVLDL
out

Rate constant of CE elimination from VLDL pool/day

kLDL
out

Rate constant of CE elimination from LDL pool/day

kHDL
SRB1

Rate constant of SRB1-mediated CE elimination from HDL pool/day

kc
holo

Constant contribution to the rate of a-HDL holo-particle uptake pool/day

kl
holo

Size-dependent contribution to the rate of a-HDL holo-particle uptake pool/day/nm

kf Parameter governing the particle concentration dependence of fusion rate 1/(mmol/dL)

doi:10.1371/journal.pcbi.1003509.t004
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HDL-C raising therapies
The LMK model can be used to evaluate actual and potential

HDL-C raising therapies, by modulating targets of interest. We

have used simulated the model for both the nominal subject, as

well as for a virtual population.

CETP inhibition. The model predictions of CETP inhibition

on the nominal subject, together with 95% confidence intervals,

are shown in Figure 9. In alignment with the calibration data, as

CETP level decreases both HDL-C and ApoA-I increase strikingly

(see panels A and B). These changes are associated with a

significant increase in HDL size as well as a small increase in HDL

particle concentration (HDL-P) (see panels C and D). Both the

absolute concentration of lipid-poor ApoA-I and RCT rate remain

essentially unchanged (see panels E and F).

To further illustrate the effect of CETP inhibition, in Figure 10

we simulate the therapy in a virtual population. In particular, we

select subjects with low HDL-C (40 mg/dL or less) for treatment

with a hypothetical drug that inhibits the plasma CETP by 80%

and simulate the changes in HDL-C and RCT rate in the treated

subjects. It can be seen that the rise in HDL-C does not

correspond to an increase in RCT rate. In fact, the effects induced

by CETP inhibition depart from the baseline relationship. This is

an illustration of a target impacting a biomarker which is

correlated but not causally linked with the disease mechanism:

the hypothetical drug does not bring about a therapeutic effect of

increasing RCT rate despite increasing HDL-C. However, there

could be a potential CV benefit due to a small (14%) decrease in

LDL-C (data not shown).

ABCA1 up-regulation. The model predictions for ABCA1

up-regulation on the nominal subject, together with 95%

confidence intervals, are shown in Figure 11. The simulation

results show that as ABCA1 activity increases, both HDL-C and

ApoA-I increases (see panels A and B). Panels C and D of Figure 11

show that these increases reflect not only an increase in HDL size,

but also increases in particle concentration. In stark contrast to

CETP inhibition, under ABCA1 upregulation the RCT rate is

predicted to increase markedly (panel E) and the absolute

concentration of lipid-poor ApoA-I decreases.

We next consider ABCA1 up-regulation for the virtual

population as shown in Figure 7. In particular, we select the

same subjects with low HDL-C as was previously chosen for

CETP inhibition. We simulate a hypothetical drug that increases

ABCA1 activity in each of the treated subjects by 100% and

examine the changes in HDL-C and RCT rate. As shown in

Figure 12, under ABCA1 up-regulation both HDL-C and RCT

rate increase. In particular, the changes induced by ABCA1 up-

regulation are predicted to follow the baseline epidemiological

relationship.

In order to further elaborate on the differences between the two

target modulations, we compare in Figure 13 the changes in

biomarkers for CETP inhibition and ABCA1 up-regulation. The

simulation results show that for a given fold change in HDL-C,

CETP inhibition gives rise to larger particle sizes but fewer particle

numbers as compared to ABCA1 up-regulation. Due to the

differences in the particle size and number under the two target

modulations, for a given fold-change in HDL-C, ApoA-I is

predicted to increase more under ABCA1 up-regulation as

compared to CETP inhibition. Reassuringly, the simulated

increases in ApoA-I for CETP inhibition are in fair agreement

with literature data for the three CETP inhibitors, Dalcetrapib

[50], Torcetrapib [51] and Anacetrapib [52]. For CETP

inhibition the predicted decline in LDL-C as the fold-change in

HDL-C increases is in good agreement with data on the three

CETP inhibitors (Figure 13, panel E). Conversely for ABCA1 up-

regulation the LMK model predicts an increase in LDL-C with

increasing fold-change in HDL-C. This finding is a consequence of

the first-order CETP-mediated transfer processes between HDL,

VLDL and LDL particles. It is qualitatively consistent with the

GWAS study of Voight et al [53] which showed that ABCA1 SNP

rs3890182 raised HDL-C and LDL-C by comparable amounts.

Lipoprotein biomarkers
A number of studies have shown that CVD risk is correlated

with plasma biomarkers such as HDL-C [1], HDL-P [54] and pre-

b1 [55,56] levels. In addition, the combination of NMR analysis of

HDL with genotyping has also given a glimpse into the possible

genes associated with HDL particle measures [57]. However, the

mechanistic basis for these experimental observations as well as

what underlies the correlations between the plasma biomarkers are

not well understood. Using the proposed LMK model, we can

reproduce and explain the correlations between these plasma

biomarkers.

In addressing these questions, the simulated biomarkers within

the population of 2000 virtual patients (as previously shown in

Figure 7) were studied. The correlation between HDL-P and

HDL-C within this set of virtual patients (r~0:74) is shown in

Figure 14, panel A; we see that the simulation result is qualitatively

similar to the positive correlation shown by Mackey et al [54] (the

absolute values of HDL-P obtained by NMR are approximately 2-

fold greater than our simulations which are based on the updated

Shen model; the discrepancy is discussed in [25]). A positive

correlation also exists in the virtual population between HDL size

and HDL-C (r~0:71), consistent with Mackey et al [54] (see

Figure 14, panel B).

Table 5. Prior and posterior estimates of model parameters
corresponding to the ‘‘nominal subject.’’

Parameter Prior (mean±SD) Posterior (mean±SD)

r
lp
in

27.4461.18 28.4661.13

kkidney 5.1962.60 2.4260.78

kdissoc 1746312 1706191

kABCA1 96.24617.55 95.18615.73

c 7.5563.94 10.1762.19

kCETP
HV

1.4760.58 1.4960.24

kCETP
HL

5.4762.05 6.9260.81

kCETP
LH

1.9860.70 2.8960.34

kVL 7.5260.94 7.7060.84

rVLDL
in

0.9660.46 1.5060.45

kVLDL
out

0.8860.37 1.3060.35

kLDL
out

0.6760.08 0.6460.07

kHDL
SRB1

0.3160.12 0.6060.08

kc
holo

0.1460.026 0.1360.022

kl
holo

0 20.01660.004

kf 0 500061544

The prior parameter values were estimated from literature as discussed under
the Methods section. The SDs of the posterior distribution were estimated using
the Fisher Information Matrix.
doi:10.1371/journal.pcbi.1003509.t005
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Due to the growing appreciation for the importance of RCT

[2,8,58], there are on-going efforts in trying to quantitatively

assess the steps involved in the process. The ABCA1 transporter

is involved in the first step of RCT by removing cholesterol from

peripheral tissues to plasma and its activity level in patients has

been studied [59]. In particular, ABCA1 gene expression and

protein concentration on leukocytes has been measured in

patients with type 2 diabetes, where the data suggested a negative

correlation between ABCA1 expression and HbA1c levels [59].

While there are assays that can quantify ABCA1 protein levels in

specific cell types [60], an experimental technique for the

assessment of ABCA1 activity in-vivo at the whole body level

has yet to be developed. Given the current experimental

limitations, there is an interest to evaluate the potential

effectiveness of plasma-based biomarkers for quantitatively

assessing ABCA1 activity.

Using the LMK model, we evaluated the potential effectiveness

of two biomarkers for ABCA1 activity: firstly, the absolute

concentration of lipid-poor ApoA-I; secondly, the relative

concentration of lipid-poor ApoA-I as the percentage of total

ApoA-I. Figure 15 panel A shows that the former is only weakly

correlated with ABCA1 activity. In contrast, panel B shows that

the latter exhibits a strong inverse correlation with ABCA1

activity; in fact, given a measured value of % lipid-poor ApoA-I,

the relationship can be used to estimate ABCA1 activity. This

result can be better understood by the following analysis. From

equation (1a), the absolute concentration of lipid-poor ApoA-I at

steady state can be expressed as:

Alp~
r
lp
in

zkdissocFrem(CEa,Aa,Na)

kkidneyzkABCA1
ð4aÞ

Figure 2. The fit of the model to the calibration data for CETP deficiency: HDL-C (panel A), ApoA-I (panel B), LDL-CE (panel C) and
VLDL-CE (panel D). The data are as shown in Table 6, obtained by pooling HDL-C and ApoA-I data from references [81–83] and LDL-CE, VLDL-CE
data from references [20,21]. The model simulation curves were obtained by decreasing the 3 parameters representing CETP activity
(kCETP

HV ,kCETP
HL ,kCETP

LH ) from 100% to 0% of those corresponding to the nominal subject.
doi:10.1371/journal.pcbi.1003509.g002
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&
kdissocFrem(CEa,Aa,Na)

kABCA1
: ð4bÞ

On the other hand, from (1b) the % lipid-poor ApoA-I can be

expressed as the following:

Alp

Aa
~

kholo(d)zkdissocFrem(CEa,Aa,Na)=Aa

kABCA1
ð5aÞ

&
kdissocFrem(CEa,Aa,Na)=Aa

kABCA1
: ð5bÞ

Comparison of the denominators in (4a) and (5a) show that in the

former expression, an additional parameter kkidney enters;

however, it is small compared to kABCA1 (the mean values being

2.42 and 95.18 respectively; see Table 5). In the numerator, the

main quantitative difference between the two expressions is the

remodeling flux, kdissocFrem(CEa,Aa,Na), versus the ApoA-I

normalized flux, kdissocFrem(CEa,Aa,Na)=Aa. As shown in

Figure 16, the latter has a flatter dependence on kABCA1 as

well as less variability due to other parameters. As a result, the

ratio Alp=Aa allows for a more precise estimate of kABCA1

compared to Alp above. In conclusion, the analysis shows that the

stronger inverse relationship shown in Figure 15 panel B can be

attributed to the normalization of the remodeling flux by ApoA-I.

The simulation results may further explain why, in some

literature studies, % lipid-poor ApoA-I (note that the absolute

concentration of lipid-poor ApoA-I can be experimentally

estimated by assays that measure pre-b1 [61]) has been proposed

as a risk factor, as well as how increased % lipid-poor ApoA-I

could be associated with CVD risk. Our proposal of using the %

lipid-poor ApoA-I as a surrogate measure for ABCA1 activity is in

concordance with the previous suggestion by Asztalos et al [62]

that the ratio pre-b1=a1 is a measure of the efficiency of RCT: a

decrease in this ratio has been thought to reflect an enhanced

RCT [62,63]. In addition, our finding of the inverse correlation

between % lipid-poor ApoA-I and ABCA1 activity may explain

the observation that increased fractional pre-b1 is associated with

increased maximum intima-media thickness in both diabetics [64]

and non-diabetic subjects [65], as well as being associated with an

increased risk for coronary heart disease and myocardial

infarctions [66].

Future directions
We foresee a number of potential future applications of the

LMK model in the context of drug discovery and development,

including the following:

1. Confirmation of a molecule’s mechanism of action: this can be

done by checking the clinically observed changes in lipoprotein

Figure 3. The fit of the model to the calibration data: CE fluxes. The data are as shown in Table 8, taken from reference [20]. The model
simulation is produced using the point estimate of parameters for the nominal subject.
doi:10.1371/journal.pcbi.1003509.g003
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measures against the model predictions. This is an important

task, since a molecule that increases HDL-C may do so by

modulating the RCT pathway not only on its intended target but

may also have off-target effects. As the model shows, the choice

of mechanism in raising HDL-C could be crucially important for

whether or not it brings about cardiovascular benefit.

2. Determining the right dosage schedule for maximum cholesterol

removal: the LMK model could help to integrate the pharma-

cokinetics of a molecule with the dynamics of HDL metabolism.

3. Evaluating combinations of target modulations: the LMK

model could help to address the question of the potential

synergism between targets in the RCT pathway.

4. Development of personalized health care (PHC) strategy:

simulations of the model to generate virtual populations could

be used to address the question of which patient subpopulations

are most likely to benefit from a given therapy and how those

subjects might be selected using plasma-based diagonostic tests.

The LMK model is focused on capturing the dynamics of ApoA-I

and CE transfers. However, extensions of the model to incorporate

ApoA-II dynamics as well as explicitly representing triglyceride and

phospholipid metabolism would be important for describing the effects

of other drug classes, including the PPAR-a and c agonists [67,68] or

synthetic phospholipids [69,70]. These remain topics for further

research.

Figure 4. The fit of the model to the calibration data: FCR of ApoA-I versus HDL-C/ApoA-I ratio. The data sources are: Brinton et al [43],
Ikewaki et al [45], Schaefer et al [44]. The piecewise linear fit and the confidence interval are discussed in the Methods section. The model simulation
values are indicated by asterisk symbols, for the nominal subject and the heterozygote, homozygote of CETP mutation.
doi:10.1371/journal.pcbi.1003509.g004
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Conclusions
We have developed a novel, in-silico model of lipoprotein

metabolism focused on the reverse cholesterol transport pathway.

The model incorporates important concepts of HDL biology,

including the regeneration of lipid-poor ApoA-I via a-HDL

remodeling processes, and has been calibrated using literature data

Figure 5. Model validation: simulation of ABCA1 and ApoA-I mutations compared with literature data for HDL-C (panel A) and
ApoA-I (panel B). For the simulation results, the mean and the 95% confidence intervals are plotted. The data sources are Asztalos et al [46] and
Santos et al [47]; the mean 6 SD are shown. The model simulations of the mutation cases were obtained by taking the parameter values for the
nominal subject and set kABCA1 and r

lp
in to 50% and 0% of the nominal values respectively.

doi:10.1371/journal.pcbi.1003509.g005
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from a wide variety of sources. The model has been further

validated by simulating scenarios not considered in the calibration

process. These include its ability to reproduce the levels of HDL-C

and ApoA-I in hetero- and homozygous subjects with either

ABCA1 or ApoA-I mutation and the observed biphasic kinetics of

ApoA-I seen in tracer kinetics studies. This provides an increased

confidence in the LMK model predictions with respect to

modulations of these important targets and in the model’s ability

to simulate time-dependent scenarios.

In this paper, we have illustrated the applications of the LMK

model in comparing the two target modulations, CETP inhibition

and ABCA1 up-regulation. The results drawn from our model

provide a possible explanation for the non-efficacy of dalcetrapib in

the dal-OUTCOMES trial [7] as well as suggesting that ABCA1 is a

target that would increase the RCT rate. The model provides

predictions on the biomarker changes as a result of ABCA1 target

modulation. Furthermore, computational experiments using a virtual

population have shown why the % lipid-poor ApoA-I, rather than the

absolute concentration of lipid-poor ApoA-I, is a better biomarker for

assessing the in-vivo ABCA1 activity. By integrating mechanistic

concepts and data, the model provides a way to quantitatively

evaluate and explore hypotheses of lipoprotein metabolism.

Methods

Model derivation
Mass balance considerations. The LMK model (Figure 1)

explicitly represents the mass balance of ApoA-I and CE molecules

in plasma, whereas the mass balance of FC and PL molecules is

represented implicitly. The input of ApoA-I to plasma reflects its

synthesis rate, while the elimination of ApoA-I results from the

excretion of lipid-poor ApoA-I by the kidney and holo-uptake of a-

HDL particles by the liver. The remodeling of HDL particles by

particle fusion, CETP, SRB1 and other processes leads to the

recycling of ApoA-I from a-HDL particles to lipid-poor ApoA-I.

Recycling influences the kinetics of ApoA-I in plasma but does not

affect its mass balance. The input of CE to plasma reflects the

rapid esterification of FC molecules in the nascent discs as they are

converted to nascent spheres plus a small amount of CE which

enters plasma during VLDL synthesis. The rate at which CE

molecules appear in the a-HDL pool (via the nascent sphere) is

defined in the LMK model as the RCT input rate and is assumed

to equal the rate at which FC molecules are loaded onto the

nascent discs (equation (2)). Elimination of CE from plasma results

from holo-uptake and SRB1-mediated uptake of CE from all

lipoprotein species. The CETP-mediated transfer of CE between

a-HDL, VLDL and LDL does not affect the overall mass balance

in plasma.

FC and PL molecules are present on the surfaces of all spherical

lipoprotein particles in plasma as well as on the membranes of red

blood cells (RBCs) and other cells that are in contact with the

plasma. Based on ShenJs model of lipoprotein structure (Shen et al

[71] and Mazer et al [25]), we assume that FC is in rapid

equilibrium between all of these species and that the amount of FC

present on each particle surface (at equilibrium) is dependent only

on the surface curvature, that is, the radius of the hydrophobic

Figure 6. Model validation: Simulation of tracer kinetic experiment with labelled ApoA-I compared to experimental data. The data
are obtained by digitization of tracer kinetics measurements carried out in 4 subjects and shown in Figure 3 of Ikewaki et al [48]. The model
simulation corresponds to the nominal subject.
doi:10.1371/journal.pcbi.1003509.g006
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core of the particle (as represented in equation (10), below). The

FC needed for the surface of the nascent spheres is assumed to be

provided by the large pool of FC present in blood, including

RBCs, and is largely replenished by the HDL remodeling

processes. It can be shown that the rate at which FC is eliminated

from plasma via holo-uptake of HDL particles is very small

compared to the RCT rate (,4%) and is therefore negligible from

the perspective of mass balance. Similar considerations apply to

the mass balance of PL.

Particle size. The size of spherical a-HDL particles is

computed in the model as follows. From the pool size of CE in

a-HDL and the particle concentration, the number of CE

molecules per HDL particle is given by:

n
particle
CE

~
CEa(t)

Na(t)mC

: ð6Þ

Since CEa is expressed as an equivalent mass of FC and mC is the

molecular weight of FC, n
particle
CE

is appropriately determined.

With an assumed ratio of TG/CE = 0.13 in the core of HDL

particles [25], we sum the volumes occupied by CE and TG to

obtain the total core volume and determine the core radius (rcore)

from it. Finally, the surface thickness t~20:2 Å is added to the

Figure 7. The distribution of RCT rate and HDL-C and their correlation in the simulated virtual population. By drawing the parameters
of the model from an uncorrelated, multivariate normal distribution, a set of 2000 virtual patients is generated and the model simulations of RCT rate
and HDL-C are shown. The right-hand axis represents the hypothetical inverse relationship between RCT rate and CVD risk.
doi:10.1371/journal.pcbi.1003509.g007
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core radius, giving rise to following expression for the particle

diameter, d (in Å):

rcore~
3

4p
n
particle
CE

|(VCEz0:13|VTG)

� �1=3

, ð7Þ

d~2|(rcorez20:2): ð8Þ

Note that the molecular volumes VCE and VTG are defined in

Table 3.

Remodeling flux. In the derivation of the remodeling flux,

we compute the excess (or deficit) of ApoA-I compared to that

derived using the updated Shen’s model [25]. Given the pool size

for Aa(t) and the particle concentration Na(t), we compute the

number of ApoA-I molecules per particle:

n
particle
ApoA{I

~
Aa(t)

Na(t)mA
: ð9Þ

Using the expression for rcore given in (7), the number of ApoA-I

molecules needed to cover the surface is derived in the following

manner [25]: firstly, the number of free cholesterol is computed,

nC~

((rcorez20:2)3{r3
core)|exp({84:4=(rcorez20:2){6:09):

ð10Þ

Then, the number of phospholipid molecules needed to cover the

remaining surface area of the core is computed:

nPL~
4pr2

core{nCAC
APL

, ð11Þ

where the cross-sectional surface areas of cholesterol and

phospholipid are AC~39:1 Å2 and APL~68:5 Å2 respectively.

The number of amino acids needed to cover the hydrophobic area

exposed at the outer surface layer of HDL particle is:

Figure 8. The distribution of the clearance of HDL-CE and HDL-C and their correlation in the simulated virtual population. By
drawing the parameters of the model from an uncorrelated, multivariate normal distribution, a set of 2000 virtual patients is generated and the
model simulations of HDL-CE clearance rate and HDL-C are shown.
doi:10.1371/journal.pcbi.1003509.g008
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nAA~
4p(rcorez20:2)2{nPLAPL

AAA
, ð12Þ

where the cross-sectional area of an amino acid AAA~15:6 Å2.

Since there are 243 amino acids in ApoA-I, under the further

assumption that the weight fraction of ApoA-I in the HDL

proteome is 60% [25], the number of ApoA-I molecules needed to

cover the surface of HDL is given by:

nShen
ApoA{I~

nAA|0:6

243
: ð13Þ

Figure 9. Model predictions for the dependence of HDL measures (HDL-C, panel A; ApoA-I, panel B; HDL size, panel C; HDL particle
concentration, panel D; lipid-poor ApoA-I, panel E) and RCT (panel F) on the CETP level. The model simulation curves were obtained by
decreasing the 3 parameters associated with CETP activity (kCETP

HV ,kCETP
HL ,kCETP

LH ) from 100% to 0% of those corresponding to the nominal subject. For
each prediction, the mean and the 95% confidence intervals are plotted.
doi:10.1371/journal.pcbi.1003509.g009
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Finally, the discrepancy between the number of ApoA-I on the

HDL (9) and the number needed from the Shen model (13), is the

excess (or deficit) ApoA-I. Given the HDL particle concentration

Na, the following is the concentration of ApoA-I on a-HDL which

is available to dissociate as the remodeling flux:

Frem(CEa(t),Aa(t),Na(t))~

mA|Na| n
particle
ApoA{I

{nShen
ApoA{I

� �
:

ð14Þ

HDL holo-particle uptake. Our model allows for the

possibility of a linear size dependence of the HDL holo-particle

uptake rate. However, no prior assumption is made regarding

the size dependency; using the calibration data, the sign and

magnitude of the linear dependence is determined. In particular,

the rate of holo-uptake has the following form, where the

calculation of size d is given by equation (8) and the division by

10 accounts for the conversion from Å to nm:

kholo(d)~kc
holozkl

holo|(
d

10
{7nm): ð15Þ

Parameter priors
In this section, prior estimates of model parameters are given,

including references to the original literature and the rationale for

the choice of prior and the level of uncertainty. In a manner

similar to a previously proposed Bayesian approach [35],

uncertainty is increased by a factor mmap~2 in the following

cases:

N quantities that are measured in-vitro and mapped to the in-vivo

context;

Figure 10. Simulation of CETP inhibition on a virtual population with low HDL-C (#40 mg/dL). Each virtual patient selected for the

treatment simulation had its rate constants associated with CETP activity (kCETP
HV

,kCETP
HL

and kCETP
LH

) decreased to 20% of their original values.
doi:10.1371/journal.pcbi.1003509.g010
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N quantities that are measured in a population with mutation(s)

and mapped to normal subjects;

N quantities that result from pooling data obtained using distinct

experimental techniques/assumptions.

No explicit prior correlations are assumed.

Synthesis rate of ApoA-I (r
lp
in

). The kinetics of ApoA-I were

measured in n = 20 (11 males, 9 females) healthy subjects, with

mean HDL-C = 46 mg/dL and ApoA-I = 115 mg/dL [44]. The

Figure 11. Model predictions for the dependence of HDL measures (HDL-C, panel A; ApoA-I, panel B; HDL size, panel C; HDL
particle concentration, panel D; lipid-poor ApoA-I, panel E) and RCT (panel F) on ABCA1 activity. The model simulation curves were
obtained by increasing the parameter representing ABCA1 activity (kABCA1) from 100% to 300% of the nominal subject. For each prediction, the
mean and the 95% confidence intervals are plotted.
doi:10.1371/journal.pcbi.1003509.g011
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ApoA-I synthesis rate has been estimated to be 27:44+5:29 mg/

dL/day (mean6SD). Hence, we take r
lp
in

~27:44+1:18 mg/dL/

day (mean6SEM).
Rate of kidney elimination (kkidney). There have been a

number of papers describing the measurement of the FCR of

pre-b1 [22,72]. However, the quantification of pre-b1 can be a

challenging task and a more direct assessment of the clearance

rate of lipid-poor ApoA-I is estimated by the FCR of ApoA-I in

Tangier patients. In the model representation of homozygous

Tangier patients (kABCA1~0), the FCR of ApoA-I equals the

kidney clearance of lipid-poor ApoA-I. The hypothesis that

kidneys is responsible for a large fraction of ApoA-I clearance is

supported by the study of Braschi et al done using rabbits [73],

where it was estimated that the kidneys contribute around 70%

of total ApoA-I clearance. The residence times (RT) of ApoA-I

in Tangier disease patients have been measured to be 0:30,0:13
day in [74] and 0:22 day in [75]. It is assumed that in Tangier

patients, kkidney = 1/RT. Thus, kkidney has been estimated to

be 5:19+1:30 pool/day (mean6SEM). Because of the assump-

tion made in mapping ApoA-I clearance measured in the

Tangier patients to the normal population, we apply the factor

mmap~2 to give kkidney~5:19+2:60 pool/day (mean6-

SEM).

Dissociation rate constant of labile ApoA-I (kdissoc). In

[76], fluorescence resonance energy transfer spectroscopy was

used to quantify the rate of ApoA-I exchange. In this in-vitro

set-up using synthetic rHDL incubated with 5-molar excess of

lipid-free ApoA-I, the exponential relaxation time (defined as

the time by which 50% of the exchange has occurred) was

inferred to be 0.94 hour. This gives rise to the estimate of

kdissoc~17:7 pool/day [76]. The ApoA-I found on a-HDL

particles can be divided into a tightly-bound pool [77] and a

labile pool [78]. The study of the dissociation of ApoA-I

molecules from the labile pool is carried out in [78], where

surface plasmon resonance was used to study the kinetics of

ApoA-I interaction with HDL particles. A two-state binding

Figure 12. Simulation of ABCA1 up-regulation on a virtual population with low HDL-C (#40 mg/dL). Each virtual patient seleted for the
treatment simulation had its ABCA1 activity (kABCA1) increased by 100% of its initial value.
doi:10.1371/journal.pcbi.1003509.g012
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Figure 13. Comparison of CETP inhibition with ABCA1 up-regulation: changes in RCT rate (panel A) and biomarkers (ApoA-I, panel
B; HDL size, panel C; HDL particle concentration, panel D; LDL-C, panel E) versus the rise in HDL-C. The nominal subject is taken as the
baseline. The model simulation of CETP inhibition is compared with literature data of CETP inhibitors, Dalcetrapib [50], Torcetrapib [51] and
Anacetrapib [52].
doi:10.1371/journal.pcbi.1003509.g013
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model was used to describe the association and dissociation

reactions and the rate parameters were identified from

the time-course data. It has been found that for the pool of

ApoA-I molecules that are bound to HDL particles in a stable

conformation, the half-time of dissociation is around 3 minutes,

corresponding to kdissoc&330 pool/day. Computing the

mean and SD of the two estimates of kdissoc and using

mmap~2 to account for the fact that these values were

measured in-vitro, we obtain kdissoc~174+312 pool/day

(mean6SEM).

Rate constant of the lipidation of lipid-poor ApoA-I via

ABCA1 (kABCA1). The model assumes that the lipidation

of ApoA-I is initiated by ABCA1, leading to the formation of

nascent discs and subsequently to nascent spheres (via

LCAT). While LCAT is crucial for the esterification of

free cholesterol to cholesteryl ester, ABCA1 activity is

assumed to be rate-limiting in the formation of a-HDL. In

the model, the rate at which the concatenation of

processes leading from lipid-poor ApoA-I to mature, a-HDL

is described by the ABCA1 activity, kABCA1. Based on the

size exclusion chromatographic technique for separating HDL

into subclasses, the rate constant in the conversion of lipid-

poor ApoA-I to the a-HDL pool has been estimated to be

96:24+42:99 pool/day (mean6SD, n = 6) [22]. Thus, the

mean and SEM is given by kABCA1~96:24+17:55 pool/day

(mean6SEM).

Figure 14. Correlations between HDL-C and HDL-P (panel A), and HDL-C and HDL size (panel B) in a virtual population of 2000
subjects.
doi:10.1371/journal.pcbi.1003509.g014

Figure 15. Correlations between kABCA1 and absolute concentration of lipid-poor ApoA-I (panel A), and between kABCA1 and % lipid-
poor ApoA-I (panel B) in a virtual population of 2000 subjects.
doi:10.1371/journal.pcbi.1003509.g015
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Stoichiometry of FC to ApoA-I in nascent discs (c). In the

model, c denotes the stoichiometry (or molar ratio) of FC to ApoA-

I in nascent discs. Due to the model assumption that FC in nascent

discs are all esterified and result in the formation of nascent

spheres, c also equals the stoichiometry of CE to ApoA-I entering

the a-HDL pool. Given these two interpretations of the model

parameter c, there are alternative ways to estimate it from

literature data. In [79], plasma was fractionated using two-

dimensional electrophoresis and the composition of pre-b1 was

analyzed. The weight fraction of FC to ApoA-I was found to be

0:16+0:04 (n = 4). Using the given molecular weights of ApoA-

I and FC, we obtain the molar ratio of FC/ApoA-I = 11:7+1:5
(mean6SEM). An alternative estimate of c is obtained using

the estimates for the rate of cholesterol esterification to HDL-

CE (77:2+12:5 mg/dL/day, n = 3) [20] as well as the

production rate of a-HDL from pre-b1 (882+540 mg/dL/

day, n = 6) [22]. Thus, using these sets of data c is estimated to

be 6:46+2:22 (mean 6 SEM). Finally, an in-vitro experiment

has been carried out to characterize the composition of nascent

HDL (nHDL) formed by the action of ABCA1 on ApoA-I [80].

For the small nHDL formed (diameter <7.5 nm), the particles

were found to contain, on average, 2 ApoA-I and 9 total

cholesterol. This gives the estimate for c of 4.5. Thus,

combining all three estimates we get c~7:55+1:97 (mean6-

SEM). Using the factor mmap~2 to take into account that in-

vitro estimates were used, we obtain the final estimate of

c~7:55+3:94 (mean6SEM).

Rate constant of CE transfer from HDL to VLDL

(kCETP
HV ). In [20], the unidirectional movement of CE from

HDL to VLDL was quantified using a two -pool model for CE in

the Apo B-100 particle classes (VLDL and LDL) and a single pool

for CE in HDL particles. Using the data from n~3 subjects,

kCETP
HV

is estimated to be 2:24+1:31 pool/day (mean6SD). The

rate of CE movement from HDL particles to VLDL has also been

quantified in [21]. In this compartmental analysis, a 3-pool model

has been used for CE in Apo-B particles (VLDL, IDL and LDL)

and bidirectionality of transfer has been assumed between HDL

and VLDL as well as between HDL and LDL. Due to the fact that

our model does not account for IDL, the CE transfers for this

density class are pooled into those of VLDL. For n~7 normal

subjects, the net transfers of CE from HDL to VLDL and IDL are

36:5+9:5 mg/dL/day. Normalizing by the individual concentra-

tions of HDL-CE, this gives the estimate of kCETP
HV

~1:14+0:37

pool/day (mean6SD). By pooling the data sets from both

Ouguerram et al [20] and Schwartz et al [21] and using

mmap~2 to account for the difference in the structures of

compartmental models, we obtain: kCETP
HV

~1:47+0:58 pool/

day (mean6SEM).

Rate constant of CE transfer from HDL to LDL

(kCETP
HL ). In [20], the movement of CE from HDL to LDL was

quantified using a two -pool model for CE in the Apo B-100

particle classes (VLDL and LDL) and a single pool for CE in HDL

particles. Using the data from the 3 subjects, kCETP
HL

is estimated

to be 9:20+2:54 pool/day (mean6SD). A different estimate is

obtained using the data for n~7 normal subjects given in [21]: by

dividing the rates of CE movement from HDL particles to LDL by

the concentrations of HDL-CE at the individual level, kCETP
HL

is

estimated to be 3:88+2:11 pool/day (mean6SD). By pooling the

data sets from both Ouguerram et al [20] and Schwartz et al [21]

and using mmap~2 to account for the difference in the structures

of compartmental models, we obtain: kCETP
HL

~5:47+2:05 pool/

day (mean6SEM).

Rate constant of CE transfer from LDL to HDL

(kCETP
LH

). In [20], the rate of CE transfer from LDL to HDL

was quantified using a two -pool model for CE in the Apo B-100

particle classes (VLDL and LDL) and a single pool for CE in HDL

particles. Using the data from the 3 subjects, kCETP
LH

is estimated

to be 3:12+1:17 pool/day (mean6SD). An alternative estimate is

obtained using the data for n~7 normal subjects given in [21]: by

dividing the rates of CE movement from LDL particles to HDL by

the concentrations of LDL-CE at the individual level, kCETP
LH

is

estimated to be 1:49+0:64 pool/day (mean6SD). By pooling the

data sets from both Ouguerram et al [20] and Schwartz et al [21]

and using mmap~2 to account for the difference in the structures

of compartmental models, we obtain: kCETP
LH

~1:98+0:70 pool/

day (mean6SEM).

Rate constant of transfer of CE from VLDL to LDL

(kVL). In [20], the rate constant of CE transfer from VLDL to

LDL (due primarily to lipolysis) was inferred in n~3 normal

subjects: this gives rise to the parameter estimate kVL~7:52+0:94
pool/day (mean6SEM).

Flux of CE to VLDL (rVLDL
in ). In [20], the flux of CE into the

VLDL pool was inferred in n~3 normal subjects to be

0:96+0:8 mg/dL/day (mean6SD). The cholesteryl ester pro-

duction to VLDL was also measured by Schwartz et al in [21], but

due to the large uncertainty as represented by the greater than

100% SD in some of the individual data, these values have not

been used. Thus, we take rVLDL
in

~0:96+0:46 mg/dL/day

(mean6SEM).

Rate constant of CE elimination from VLDL (kVLDL
out ). In

[20], the rate constant of CE elimination from the VLDL pool was

inferred in n~3 normal subjects to be 0:88+0:64 pool/day

(mean6SD). The quantification of CE elimination rate from

VLDL was also carried out by Schwartz et al in [21], but the mean

of the data was not shown in the paper because most values were

undefined (fractional SD .80%). Thus, we use only the values

given by Ouguerram et al [20] and take kVLDL
out ~0:88+0:37 pool/

day (mean6SEM).

Rate constant of CE elimination from LDL (kLDL
out ). In

[20], the rate constant of CE elimination from the LDL pool was

inferred in n~3 normal subjects to be 0:67+0:14 pool/day

(mean6SD). The quantification of CE elimination rate from LDL

was also carried out by Schwartz et al in [21], but the mean of the

flux to the extra-hepatic pool was not shown in the paper because

most values were undefined (fractional SD .80%). Thus, we use

only the value given by Ouguerram et al [20] and take

kLDL
out ~0:67+0:08 pool/day (mean6SEM).

Rate constant of SRB1-mediated CE elimination from

HDL (kHDL
SRB1). In [20], the rate constant of selective CE

elimination from the HDL pool was inferred in n~3 normal

subjects to be 0:31+0:20 pool/day (mean6SD). The selective

Figure 16. Comparison of two expressions involving remodeling flux: kdissoc|Frem (panel A) and kdissoc|Frem=Aa (panel B). The
distributions of absolute and ApoA-I adjusted remodeling flux in the virtual population are plotted against kABCA1. The simulations of the nominal

subject with only the parameter kABCA1 varied are shown as solid lines.

doi:10.1371/journal.pcbi.1003509.g016
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uptake of HDL-CE by the liver was not observed in Schwartz

et al in [21]. Hence, we use only the value given by

Ouguerram et al [20] and take kHDL
SRB1

~0:31+0:12 pool/day

mean+SEMð Þ.
Rate constant of size-independent holo-particle uptake

for a-HDL (kc
holo

). The FCR of ApoA-I in the a-HDL pool

has been estimated to be 0:112+0:026 pool/day (mean6SD,

n = 6) using HDL subclasses separated with size exclusion

chromatography [22]. In another reference [72], using a

separation technique based on agarose gel electrophoresis, the

FCR of ApoA-I in the a-HDL pool has been estimated to be

0:17+0:039 pool/day (mean6SD, n = 6). Thus, by pooling the

data we obtain kc
holo

~0:14+0:013 pool/day (mean6SEM).

Finally, using the factor mmap~2, we get kc
holo

~0:14+0:026

pool/day (mean6SEM).

Calibration data
In this section, we give the quantitative values and references for

the data used in the calibration procedure.

CETP mutation. Lipoprotein data for CETP mutation

patients were taken from 3 sources: Inazu et al [81], Yamashita

et al [82] and Asztalos et al [83] and were pooled to yield the mean

and SEM. In particular, both HDL-C and ApoA-I were available

for each of the 3 data sources shown in Table 6. The values for

LDL-CE and VLDL-CE for the control subjects were not given in

the references for CETP mutation [81–83]; hence, the values from

Ouguerram et al [20] and Schwartz et al [21] were used in Table 7.

The value of LDL-CE for CETP heterozygotes was also used for

calibrating the model, which was estimated using the given value

of LDL-C with an assumption on the ratio of FC/CE for LDL

particles. In Asztalos et al [83], the ratio of FC/CE for all

lipoprotein particle classes of CETP heterozygotes was given as

0.37, which gives CE = 0.736TC. Given the approximations

made, we assumed that LDL-CE = LDL-C |(0:7+0:05). There

is literature data for LDL-CE and/or VLDL-CE in CETP

homozygotes [39–41], but these were not used in the calibration

process due to the known inconsistency of the model in lacking the

b-LCAT activity [42].

Cholesteryl ester flux. There are 2 literature data sources

on the in-vivo flux of CE between HDL and ApoB-containing

particles: Ouguerram et al [20] and Schwartz et al [21]. While both

data sets have been used in estimating the prior distribution of

parameters involved in the exchanges of CE (see Methods section),

for the purpose of model calibration a choice between the 2

disparate data needed to be made. Given that the model structure

in the description of CE exchanges between HDL, LDL and

VLDL is based on that of Ouguerram et al [20], it was decided that

the same calibration data should be taken for the CE fluxes. The

values used are shown in Table 8.

Fractional catabolic rate of apoA-I. Brinton et al have

shown that a strong association exists between the fractional

catabolic rate (FCR) of ApoA-I and the estimated HDL size, using

a surrogate marker [43] (Brinton et al used HDL-C/(ApoA-

I+ApoA-II), we re-analyzed their data taking HDL-C/ApoA-I as

the surrogate marker). Their work has demonstrated that as much

as 70% of the variability in the FCR of ApoA-I may be attributed

to variations in HDL size, as estimated using
HDL{C

ApoA{I
[43]. This

finding is corroborated with the individual data of ApoA-I

metabolism from Schaefer et al [44] measured in healthy

volunteers. Finally, FCR of ApoA-I was also studied by Ikewaki

et al [45] in comparing CETP mutation subjects with controls. All

Table 6. Calibration data: HDL-C and ApoA-I in normal and CETP deficient subjects.

Type Data
Inazu [81]
(mean±SD)

Yamashita [82]
(mean±SD)

Asztalos [83]
(mean±SD) Pooled (mean±SEM)

Normal Subjects n 16 20 50 86

HDL-C 52.9613.9 5068 52614 5261

ApoA-I 124621 140.9616.1 144629 13964

Heterozygotes of CETP deficiency n 20 15 5 40

HDL-C 66615 84625 85626 7564

ApoA-I 149643 155.3622.1 154625 15265

Homozygotes of CETP deficiency n 10 4 9 23

HDL-C 163.7639 193628 157629 16667

ApoA-I 213647 233.5622.3 252625 23268

All concentrations are given in mg/dL.
doi:10.1371/journal.pcbi.1003509.t006

Table 7. Calibration data: CE in ApoB particles.

Type Data [20,21] Pooled (mean±SEM)

Normal subjects n 10

LDL-CE 8363 mg/dL

VLDL-CE 561 mg/dL

Heterozygotes of CETP
deficiency

n 23

LDL-CE (LDL-C 60.7) 7269 mg/dL

doi:10.1371/journal.pcbi.1003509.t007

Table 8. Calibration data: CE fluxes.

CE flux (mean±SEM) Data (mg/dL/day)

HDL to VLDL 6462

HDL to LDL 268651

LDL to HDL 266652

doi:10.1371/journal.pcbi.1003509.t008
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these data consistently show that the ApoA-I FCR exhibits an

inverse relationship with the surrogate measure of HDL size.

However, the trend does not continue indefinitely: even for CETP

homozygous subjects with very large particles, ApoA-I FCR

appears to reach a minimum of 0.135 pool/day. Hence, we have

tried to describe the data in the simplest way, assuming a linear

relationship between ApoA-I FCR and
HDL{C

ApoA{I
, with a lower

bound of 0.135. Using this linear assumption, the fit and

confidence interval was computed and shown in Figure 4. The

piecewise linear fit to the combined data is given by

FCRApoA{I~max(0:50{0:63|
HDL{C

ApoA{I

� �
,0:135); the

mean confidence interval corresponding to 1 SD in the line fit is

approximately 60.065 pool/day.

Model calibration
In this work, we assume that both the parameter prior and the

data error are normally distributed. We employ the methodology

of maximum a posteriori (MAP) [31] to combine the prior information

with calibration data. Due to the conjugacy property [31] of the

distributions, the posterior also has a normal distribution and the

MAP solution is obtained by solving a nonlinear least squares

problem. In our model, most of the parameters have an

informative prior. For the set of parameters for which an

informative prior is available, let kprior denote the expected

value of the prior distribution; otherwise, set kprior~0 to

represent the lack of information. We take the covariance matrix

for the prior distribution Ck to have a diagonal structure: for

parameters ki that have an informative prior, (Ck)ii is the

variance of the prior distribution; for parameters that have an

uninformative prior, (Ck)ii~?. That is, the prior distribution is

assumed to be of the form [33]:

p(k)!exp {
1

2
(k{kprior)T C{1

k (k{kprior)

� �
: ð16Þ

Let d[Rm denote the vector of calibration data and G(k) the

nonlinear mapping from model parameters to the observation,

representing the model simulation of the data. Let Cd denote the

covariance matrix for the data. Hence, the conditional distribution

of the data given the model parameter k is [33]:

f (d Dk)!exp {
1

2
(G(k){d)T C{1

d (G(k){d)

� �
: ð17Þ

Thus, the posterior distribution q(kDd) for the model parameters is

given by

q(kjd)!f (djk)p(k)~exp {
1

2
(G(k){d)T C{1

d (G(k){d){

�

1

2
(k{kprior)

T C{1
k (k{kprior)

�
:

ð18Þ

To find the MAP solution, the following nonlinear least squares

problem is solved: with the objective function defined as,

x2(k):

(G(k){d)T C{1

d (G(k){d)z(k{kprior)T C{1

k (k{kprior),
ð19Þ

the MAP solution is the minimizer:

kMAP/min
k

x2(k): ð20Þ

Using parameter priors as given in Table 5 and calibration data as

described in the previous section, the nonlinear least-squares

problem was solved using genetic algorithm ga from the MatlabH
Global Optimization Toolbox of MathWorks (http://www.

mathworks.com/) to obtain kMAP. In particular, the hybrid option

was selected: 100 generations of the genetic algorithm was run

with a PopulationSize = 500, followed by constrained minimiza-

tion (fmincon) using the setting MaxFunEvals = 10000, MaxI-

ter = 1000. In all numerical integration of ODEs, the relative and

absolute tolerances were set to 1029.

Estimation of 95% confidence intervals
The confidence interval is estimated using the following

procedure: parameters are sampled around kMAP and for each

parameter the Dx2 (with respect to its minimum, x2(kMAP)) is

computed according to the expression (19). An estimate of the

confidence region is obtained by examining the set of all parameters

that lie within Dx2
ƒd, where d is computed from the number of

degrees of freedom (df) and the desired confidence level [84]. Using

df = 29 for the model and choosing the 95% confidence level,

d~42:557. A set of 1000 parameters satisfying Dx2
ƒ42:557 are

selected in estimating confidence intervals shown in the paper.

Simulation of tracer kinetic studies
The model simulations of the tracer kinetic experiment with

labelled ApoA-I and the calculation of the FCR of ApoA-I were

carried out using the technique of complex variable differentiation

[85]. In particular, a small quantity of imaginary number

representing the radio-labelled dose of ApoA-I is added to the

lipid-poor pool at the start of tracer experiment and the imaginary

component of the numerical solution is extracted to represent

the dose remaining in the two pools of ApoA-I (lipid-poor and

a-HDL). This method relies on the complex extension of analytic

functions from the real line, which can be easily implemented on

the Matlab platform [85]. As compared to the finite-differencing

approach, the complex variable methodology does not suffer from

subtractive cancellation error and hence is more accurate [85].

While this approach has not been applied to tracer kinetic

simulations, it has been applied to the sensitivity analysis of

biological models [86,87].

Supporting Information

File S1 LMK model implementation in SimBiology and
Matlab formats.
(ZIP)
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