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Simple Summary: Cancer-associated fibroblasts are important players of the tumour microenviron-
ment. They influence numerous processes during tumour development and progression, including
the response of cancer cells to treatment. As a consequence, this cell type has emerged has a promi-
nent target in anti-cancer therapy. In this review, we discuss the function and heterogeneity of
fibroblasts as well as their role during treatment. Moreover, we describe how different therapies
influence the phenotype of this cell type and the implications of these alterations. Finally, we provide
a detailed overview of the current strategies employed in the targeting of fibroblasts as well as
future perspectives. We believe that further dissection of the heterogeneity of fibroblasts and of their
dynamics, not only during tumour progression, but also in the course of treatment is essential for
successful targeting of this cell type and, consequently, for improving patient survival in cancer.

Abstract: Tumour cells do not exist as an isolated entity. Instead, they are surrounded by and closely
interact with cells of the environment they are emerged in. The tumour microenvironment (TME) is
not static and several factors, including cancer cells and therapies, have been described to modulate
several of its components. Fibroblasts are key elements of the TME with the capacity to influence
tumour progression, invasion and response to therapy, which makes them attractive targets in cancer
treatment. In this review, we focus on fibroblasts and their numerous roles in the TME with a special
attention to recent findings describing their heterogeneity and role in therapy response. Furthermore,
we explore how different therapies can impact these cells and their communication with cancer cells.
Finally, we highlight potential strategies targeting this cell type that can be employed for improving
patient outcome.

Keywords: cancer associated fibroblast (CAF); tumour microenvironment (TME); cell communication;
signalling; therapy resistance

1. Introduction

The observation that tumour cells do not act as an isolated entity but, instead, interact
with other cells in the human body was proposed in the mid-nineteen century by Rudolph
Virchow who first established a link between inflammation and tumour development [1].
A further suggestion of the importance of the interactions of cancer cells and their mi-
croenvironment arose a few years later when Stephen Paget observed that disseminated
tumour cells preferentially colonise certain organs and coined the famous ‘Seed and soil
hypothesis’ [2]. Nowadays, a huge body of evidence has been obtained for the role of the
TME in determining numerous aspects of tumour development, progression, metastasis
development and therapeutic response [3]. The term TME (also named stroma) comprises
a broad panoply, including all the components that surround the cancer cells, namely
immune cells, vasculature, extracellular matrix (ECM) and fibroblasts, as well as their
interactions [4].

The TME closely interacts with the malignant cells and can have either tumour re-
strictive or promoting effects. Moreover, these elements are not static and, as the tumour
develops, the tumour cells modulate their environment and often highjack it to promote
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their growth and progression. An important and dominant component of the tumour
stroma with broadly described pro-tumorigenic capacity is the cancer-associated fibrob-
last (CAF) [5]. CAFs are phenotypically different from normal quiescent fibroblasts and
have been described to resemble fibroblasts in the context of wound healing due to their
enhanced secretion of ECM components as well as other soluble factors such as cytokines
and chemokines [6,7]. This is now known to be true for a subset of fibroblasts present in
the tumour microenvironment, which can be identified based on their contractile character-
istics and expression of certain proteins such as alpha smooth muscle actin (αSMA) [8,9].
However, recent advances in molecular technologies such as single-cell sequencing [10]
have made the further dissection of stromal fibroblasts possible and has shown that this is
not the whole story. Nevertheless, challenges remain in the characterization of fibroblasts
and, consequently, their therapeutic targeting.

In this review, we summarise recent findings on the heterogeneity of CAFs and their
implications for tumour biology with an emphasis on the roles of the different subpop-
ulations in therapy response. Moreover, we highlight strategies for rational targeting of
fibroblasts in order to improve therapy in the field of cancer.

2. Fibroblasts

Fibroblasts were first described in the 19th century by Virchow [11]. These mesenchymal-
derived cells with a spindle-like appearance are the main cellular component of connective
tissue and are responsible for the synthesis of the majority of the constituents of the
fibrillar ECM, including collagens, elastin and fibronectin, which allows them to regulate
the morphology of tissues [12]. In wound-healing, the role of these cells is very well
established and the morphological and phenotypic changes that fibroblasts undergo have
been widely described [13–15]. Even though the first description of these cells was almost
two centuries ago, fibroblasts are often still identified based on their morphology, tissue
location and lack of epithelial markers. The absence of specific markers that would allow
the identification of this cell type has remained one of the biggest challenges in the study
of fibroblasts [16]. Despite the lack of a universal marker, fibroblasts have thus far been
identified by using a combination of commonly expressed mesenchymal markers and
other proteins associated with certain activation states. The markers that are common,
but not exclusive, to fibroblasts, regardless of their activation state, include vimentin [17],
fibroblast-specific protein 1 (FSP-1, also known as S100A4) [18,19] and platelet-derived
growth factor receptor α (PDGFRα) [20]. Several other markers have been shown to
detect specific activation states of fibroblasts and, consequently, define subpopulations of
fibroblasts. Among these, the most universally used are αSMA and fibroblast-activation
protein α (FAPα) [21,22]. In addition to these, several markers specific for certain tissues
have been identified. This high level of heterogeneity further complicates the connection
between findings from one study to another, since uniformity in analysing this cell type is
then missing. Novel advances in single-cell omics can overcome this major drawback and
have already proven invaluable for advancing our knowledge in fibroblast biology.

The subpopulations of fibroblasts in healthy tissues are a reflection of different tran-
scriptomic and epigenetic profiles that are dictated by the embryonic origin and architecture
of the tissue as well as their microenvironment [23,24]. Using a variety of in vivo models,
several studies aimed at dissecting fibroblast heterogeneity have identified numerous
distinct subpopulations of fibroblasts in several tissues and diseases [24]. In humans, due
to the higher complexity of sampling healthy tissues, studies have thus far extensively
focused on skin fibroblasts, but also include other tissues. There, comparable to what was
found in mouse models, several functionally distinct subpopulations have been shown
to exist [25,26]. If fibroblasts in healthy tissues are already characterised by a high degree
of heterogeneity, the picture in tumours is even more complex, not only due to possibly
distinct origins [23], but also as a result of the dynamics and selective pressure that charac-
terises tumour evolution [27]. Fibroblasts in the TME are exposed to a variety of factors,
such as cytokines, chemokines and growth factors, whose composition can reprogram and
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dictate the phenotype of these cells. Several molecules have been described to activate and
promote the pro-tumorigenic states of fibroblasts, including TGF-β, PDGF, FGF2, HGF, IL-1
and IL-6, among others [9]. In addition to reprogramming by secreted factors, fibroblasts
have been shown to be activated by different stress sources, such as ROS and damaging
therapy, and well as by alterations in the ECM [16].

A clear evidence of functional heterogeneity in fibroblasts present in the TME arose
with the first trials to target this cell type in vivo. In pancreatic cancer, the depletion of
αSMA-expressing fibroblasts from the TME accelerated tumour growth and resulted in
an immunosuppressive TME [28,29]. Interestingly, the opposite effect was observed when
CAFs expressing FAP were therapeutically targeted, with this resulting in an impairment of
tumour growth [30,31]. As observed in a study by Özdemir and colleagues, this was also a
result of alterations in the immune milieu of the tumours. Contrary to what happened with
αSMA-expressing CAFs, the depletion of FAP-positive CAFs enhanced adaptive immunity
and reduced immunosuppression in the TME [30–32]. This clearly illustrates that prior to
any attempt to target these cells in the clinic, an improvement in our understanding in the
biology of fibroblasts is essential. With this in mind, numerous groups have attempted
to resolve this challenging problem and we will describe the main findings below. Al-
though we have seen an explosion of studies whose goal is to unravel both the molecular
and functional heterogeneity of CAFs, most of these have focused on investigating the
composition of fibroblasts at different stages of tumour development, still leaving the
picture incomplete. The impact of therapies in subpopulations of fibroblasts has been thus
far largely overlooked and studies that investigate the evolution of fibroblasts alongside
with other cell types, such as tumour and other TME cells, are absent. This could provide
important insights in the biology of fibroblasts in therapy response and provide essential
knowledge for the rational targeting of this cell type or of its interactions with tumour cells.

2.1. Fibroblast Heterogeneity

Prior to the development of single-cell sequencing, fibroblasts were often charac-
terised based on the expression of pre-defined markers using flow cytometry analysis or
immunohistochemistry. Despite the power of these techniques to provide single-cell and
spatial resolution, an unbiased approach, in which the full transcriptome of fibroblasts was
analysed without the pre-selection of certain markers, was missing. Bulk RNA-sequencing
of fibroblast-enriched fractions based on negative selection provided a broad overview of
gene expression in these cells but lacked the single-cell resolution. The development and
establishment of single-cell RNA sequencing (scRNA-seq) provided the cornerstone for
the study of tumour heterogeneity, including fibroblast heterogeneity. The development
of microfluidic platforms that allowed a dramatic improvement in the power of analysis
by increasing the number of sequenced cells [33], as well as the more recently proposed
method of sequential indexing, which promises to exponentially increase the number of
cells that can be sequenced at the single-cell resolution [34], are crucial developments to
allow us to dissect the biology of fibroblasts in the context of cancer.

Based on the analysis of different tumour entities and using single-cell technologies,
several fibroblast subpopulations have been identified and their roles in different aspects
of the tumour start to be unravelled. The most well studied entities include breast [35–37]
and pancreatic carcinomas [38–42], although studies in other tumour models are starting
to appear [43–47]. Despite the context-dependent variability, two recurrent subpopula-
tions that have now been identified in several tumour entities are inflammatory CAFs
(iCAFs) and myofibroblasts (myCAFs). Very briefly, these subpopulations are functionally
characterised by the secretion of inflammatory cytokines and cytoskeleton remodelling,
respectively [38,40,46,48–50]. In addition to different transcriptional profiles, these sub-
populations were shown to be located in distinct areas of the tumour, with myCAFs being
found in closer proximity to malignant cells and iCAFs localising distally [38]. More
importantly, these subpopulations have been shown to be functionally discrete and mu-
tually exclusive [38,51]. Using single-cell sequencing, Öhlund et al. [38] first described
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these subpopulations in a model of pancreatic cancer. Their findings were further con-
firmed by other studies, where the transcriptional program of myCAFs was shown to
be driven by TGF-β signalling and these cells were characterised by the expression of
high levels of αSMA. On the other hand, the activation of the NF-κB pathway driven
by IL-1β led to the acquisition of an iCAF phenotype. These cells were characterised by
the secretion numerous inflammatory cytokines, including IL-6, CXCL1, CXCL12, among
others [38,39,45]. These two subpopulations also seem to be regulated by sonic hedgehog
(Shh) signalling, whose activation supported the myCAF phenotype [52]. Interestingly,
iCAFs were shown to exclusively express HAS1 and HAS2, which are responsible for the
synthesis of hyaluronan, a component of the ECM, which has been shown to work as a
barrier in the treatment of pancreatic cancer [39]. In breast cancer, our group has shown
that a subset of fibroblasts in the luminal subtype is characterised by the expression of
NRG1, whose expression correlated with HAS2 expression [53]. Moreover, Biffi et al. have
shown that the two fibroblast states, iCAF and myCAF, seem to be mutually exclusively,
since exposure to TGF-β resulted in the downregulation of the IL-1β receptor (IL-1R1) and,
consequently, led to the differentiation of fibroblasts into myCAFs [51].

The observation that these two fibroblast populations are recurrently found in the
microenvironment of several tumour entities could arise from the fact that these are nu-
merically dominant subpopulations. Nevertheless, this does not invalidate the existence of
other subpopulations. In fact, several other subpopulations have been shown to co-exist, al-
though these were more variable and different compositions have been identified according
to the tumour entity studied. Moreover, it could be that these dominant subpopulations can
still be further divided into further distinct functional clusters. In a recent study, Friedman
et al. show three different clusters of inflammatory CAFs, each one being characterised by
the expression of IL-6, CXCL1 and CXCL12. However, a real functional distinction between
the three clusters is not shown in this study [36]. Furthermore, using flow cytometry, Costa
et al. showed that fibroblasts in breast cancer could be divided into four populations (CAF-
S1 to S4), according to the expression of commonly used markers such as FAPα, αSMA,
FSP1, PDGFRβ and Caveolin, demonstrating an immunosuppressive role of CAF-S1 in the
TME [37]. By analysing almost 20,000 cells from this CAF subpopulation using single-cell
sequencing, Kieffer et al. could divide CAF-S1 into eight distinct clusters. They further
show that fibroblasts from cluster zero and three were characterised by TGF-β signalling
and high αSMA expression and that these cross-talked with T-cells in the TME, driving
a regulatory phenotype in the T-cells (Treg) [54], which explains the immunosuppressive
role initially proposed by the same group [37]. As described above, the targeting of all
αSMA-positive cells and the depletion of these from the TME by Özdemir et al. led to the
outgrowth of pancreatic tumours [28,29]. Although the study from Kieffer et al. focused on
breast cancer, their findings clearly raise the question of whether the targeting of specific
clusters of αSMA-positive fibroblasts could indeed be beneficial for patients to elicit an
efficient T-cell mediated immunity against malignant cells. This highlights the importance
of the advances seen in single-cell omics that allow us to improve the power of single-cell
analyses and that will help us further dissect the complexity of fibroblasts in cancer.

Yet another interesting subpopulation that has also been recently identified in pan-
creatic cancer is termed an antigen-presenting CAF (apCAF). These are characterised by
the expression of genes associated with MHC-class II antigen presentation [39], although
they lack co-stimulatory ligands necessary to activate immune cells. Instead, MHC-II
signalling in this subpopulation of fibroblasts seems to drive the expansion of regulatory T
cells and, in this way, promote an immunosuppressive microenvironment [39]. Despite all
these novel findings, further functional characterisation and validation of the importance
of these different subpopulations in patients is still needed. Another layer of complex-
ity arises when these subpopulations are analysed in the context of time, with studies
showing alterations in the composition of these subpopulations between early and late
tumours [36,40,42,45].
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In the next section, we will describe the current knowledge on how fibroblasts affect
the response of tumour cells to anti-cancer therapies and try to correlate the subpopulations
of fibroblasts described above with these events. We mostly focus on interactions that result
in a negative impact on therapy response and can, ultimately, result in therapeutic failure.
Nevertheless, it is important to mention that not all interactions between CAFs and cancer
cells drive tumour progression or resistance to therapy. Numerous studies have shown
that CAFs can have anti-tumorigenic functions in the TME [55], strengthening the view
that further dissection and understanding of the phenotypes and functions of fibroblasts is
essential prior to their therapeutic targeting.

2.2. Fibroblast and Therapy Response

Cancer cells can exploit a variety of mechanisms to escape therapy-induced cell death
or irreversible cell cycle arrest. These can be categorised into (1) drug-dependent mecha-
nisms, (2) target-dependent mechanisms or (3) drug- and target-independent mechanisms.
Very briefly, drug-dependent mechanisms include any alteration that interferes with the
availability of the drug. Mutations in the target protein that interfere with the drug activity
or alterations in signalling pathways that overcome target inhibition are some examples of
target-dependent mechanisms. Finally, the last category includes the acquisition of new
aberrations that switch the growth dependency of tumour cells to a different protein and/or
pathway as well as alterations in apoptotic pathways [56]. The TME dictates the way cancer
cells respond to therapy. Several studies investigating mechanisms of resistance nicely
showed that in vivo resistant cancer cells lose their resistant phenotype when they are
removed from their microenvironment and are grown alone in vitro [57,58]. Fibroblasts can
influence the vast majority of the mechanisms mentioned above by either (1) supporting
specific subpopulations of cancer cells, such as stem-like cancer cells [59–63], (2) rewiring
the signalling networks in cancer cells [64–67] and (3) modulating the tumour microenvi-
ronment, namely immune cells [68]. Interestingly, spatial analysis has revealed that the
close proximity of malignant cells to stromal fibroblasts is associated with an increased
cycling capacity of cancer cells after therapy, hinting to a protective role of fibroblasts [69].

A large number of studies have shown that, through a variety of mechanisms, fibrob-
lasts promote resistance to therapy due to their interplay with cancer stem cells (CSCs).
This is especially true for the current standard of care therapies that often depend on
the proliferative state of cancer cells, such as radiotherapy and chemotherapy. This is
an indirect effect, since fibroblasts promote the expansion of the subset of cancer cells
with stem-like properties that have been extensively described to be intrinsically more
resistant to numerous therapies, but do not directly modulate the way cancer cells respond
to the agent they are exposed to. A more direct mechanism through which fibroblasts can
modulate the response of cancer cells to therapy is by activating alternative signalling mech-
anisms, such as MAPK and PI3K signalling, that provide pro-survival signals and, thus,
prevent cancer cells from undergoing apoptosis. Interestingly, co-culture of fibroblasts with
healthy cells drove a similar rewiring of the same signalling networks as to when oncogenic
mutations, such as the classical G12D mutation in KRAS, were introduced in these healthy
cells [70]. Moreover, several of the above-described therapies, including chemotherapy,
depend on a functional immune system for effective tumour elimination. This effect is also
known as immunogenic cell death (ICD), in which the cytotoxic agents-induced cell death
of cancer cells leads to the recruitment of immune cells that enhance the efficacy of these
drugs [71–75]. By modulating the immune landscape in the tumour microenvironment [68],
fibroblasts can also affect the response of cancer cells to a multitude of agents including
chemotherapies. As expected, the influence of fibroblasts on the immune subpopulations
and immune infiltrate in the tumour is of major importance in determining the outcome of
cancer cells to several immunotherapies. These processes are shown in Figure 1 and will be
described in detail in the sections below.
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2.2.1. Cytotoxic Agents—Chemotherapy and Radiotherapy

An important way through which fibroblasts modulate the response of tumours to
cytotoxic agents, such as chemotherapy and radiotherapy, is via their interaction with CSCs.
These cells are at the top of the tumour hierarchy since, in addition to their self-renewal
capacity, they are also able to differentiate into committed tumour cells and, consequently,
repopulate the whole tumour [76]. CSCs have been shown to be intrinsically more resistant
to these agents, not only due to an enhanced DNA damage repair mechanisms or a higher
expression of ATP-binding cassette (ABC) transporters [77], but also due to their cycling
state. CSCs are often in a dormant, non-proliferative state [78] that makes them relatively
refractory to treatments that target an active proliferative state in cells. A mechanism
through which fibroblasts have been shown to drive the expansion of the CSCs fraction
in tumours was described by Su and colleagues [60]. The authors showed that a subpop-
ulation of fibroblasts characterised by the expression of two markers, CD10 and GPR77,
promoted chemoresistance by driving the survival of CSCs in both breast and lung cancer
models. Interestingly, they showed that this subpopulation of fibroblasts is present in the
tumours prior to any treatment, and that it becomes enriched upon therapy. CD10+GPR77+

fibroblasts were characterised by the activation of the NF-κB pathway, and their secretion
of IL-6 as well as IL-8 was essential to drive resistance to chemotherapy. Based on more
recent knowledge on the different subsets of fibroblasts, it could be hypothesised that these
GPR77- and CD10-positive fibroblasts form a subcluster of the iCAFs. Kanzaki [79] has
shown that, in breast cancer, the expression of CD10 and GPR77 is restricted to one of
the clusters identified in a study from Bartoschek and colleagues [35]. Unfortunately, in
this early study, no inflammatory CAF cluster was defined and the parallel is thus hard
to establish. Nevertheless, the study from Su et al. further highlights the importance of
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uncovering fibroblast heterogeneity in the context of cancer. Moreover, it supports the
significance of regarding the fibroblast dynamics during therapy. Several other studies
have described mechanisms through which fibroblasts can support and expand tumour-
initiating cells. Boelens et al. uncovered a paracrine crosstalk between cancer cells and
stromal fibroblasts in which RIG-I and NOTCH signalling cooperate to drive the expansion
of therapy resistant CSCs [59]. Briefly, they showed that exosomes secreted by stromal
fibroblasts activate the anti-viral machinery in cancer cells via STAT1, which, in turn, drives
the expression of interferon-stimulated genes (ISGs). This signature had previously been
identified as a gene signature for radiotherapy and chemotherapy resistance [80,81] and
was termed as interferon-related DNA damage resistance signature (IRDS). By facilitat-
ing the expression of NOTCH target genes in a STAT1-dependent manner, the stromal
interaction with cancer cells drove the expansion of CSCs and, consequently, resistance to
chemotherapy. Further studies have implicated JAK-STAT and NF-κB signalling in CAFs
in the support of tumour-initiating cells. In pancreatic cancer, Chan et al. demonstrated
that the secretion of ELR+ chemokines, CXCL1, CXCL2, CXCL5 and CXCL6 by CAFs bind
and activate the CXCR2 downstream signalling in cancer cells, driving the expansion of
CSCs [82]. Other pathways that modulate stem-like features in cancer cells have also been
described to be activated by fibroblasts, namely Hedgehog [61] and Wnt signalling [83,84].

Several of the mechanisms described above seem to be mediated by iCAFs. Never-
theless, the myCAFs and ECM they synthesise can also strongly affect the way tumours
respond to therapy. For example, a desmoplastic tumour can create a physical barrier that
will prevent the exposure of cancer cells to the drug [85,86]. Moreover, the activation of
integrin signalling in cancer cells as a result of a dense ECM, can promote the survival of
malignant cells [87,88]. Modulation of the ECM by fibroblast-derived Anexin A6-loaded
extracellular vesicles (EVs) also resulted in integrinβ1-FAK-YAP activation and drove
chemoresistance in gastric cancer [89]. The secretion of immunosuppressive factors such as
TGF-β by myCAFs can inhibit ICD and, consequently, impair the effect of radiation and
chemotherapy in tumours [90]. In addition to its effect in immune cells, TGF-β can also
modulate the processes of epithelial-to-mesenchymal transition (EMT) in cancer cells as
well as regulate the expansion of CSCs [91].

2.2.2. Targeted Therapies

In breast cancer, numerous targeted therapies have been used for a long time as
the first line of treatment. These include endocrine therapies that modulate oestrogen
receptor signalling [92] and, more recently, anti-HER2 therapies [93,94]. In endocrine-
treated patients, a subset of fibroblasts characterised by the expression of CD146 were
shown to regulate the response of cancer cells to the treatment. Briefly, CD146- fibroblasts
were able to activate IGF1R tyrosine kinase signalling in the cancer cells that drove their
oestrogen-independent growth, and was, therefore, hypothesised to be the cause of the
irresponsiveness of cancer cells to the treatment [95]. Moreover, CAF-secreted IL-6 acted in
an autocrine fashion to drive the secretion of mir221/222-loaded microvesicles, which, in
its turn, induced a stem-like phenotype in cancer cells [96]. In another hormone-driven
tumour type, namely prostate cancer, Zhang et al. have shown that the secretion of
NRG-1 by fibroblasts could result in resistance against anti-androgen therapy [97]. We
have recently shown that CAFs in luminal breast cancer can be clustered based on their
expression of NRG-1 [53]. It would be interesting to understand if stromal fibroblasts
expressing high-NRG-1 could be involved in modulating the response of cancer cells to
hormone therapy. CAFs might also play an important role in determining the success of
tumour responses to anti-HER2 therapies such as trastuzumab, since the effectiveness of
this therapeutic antibody is known to depend on the induction of an immune response,
similarly to chemotherapy and radiotherapy [74,98,99]. Due to their immunosuppressive
role, CAFs can antagonize the effect of trastuzumab [100]. Additionally, the activation
of fibroblast growth factor (FGF) receptor 2 (FGFR2) by CAF-derived fibroblast growth
factor 5 (FGF5) results in the activation of c-Src, which bypasses the inhibition of HER2 by



Cancers 2021, 13, 3526 8 of 25

lapatinib, a TKI used in the treatment of HER2-positive patients [101]. The induction of the
PI3K/AKT/mTOR pathway in cancer cells by fibroblasts can also promote the survival of
cancer cells and impair their response to anti-HER2 kinase targeted therapies [102].

In more recent years, the advances in cancer research have provided the basis for
identifying novel oncogenic vulnerabilities and molecular drivers of disease. With these
advances, novel targeted therapies, including several kinase inhibitors (KI) such as BRAF
inhibitors (BRAFi), EGFR inhibitors (EGFRi) and CDK4/6 inhibitors, have been introduced
in the clinics [103–106] for the treatment of a variety of cancer entities. It is now increasingly
evident that stromal fibroblasts are also important in dictating the outcome of cancer cells
to this type of therapy. In melanoma, BRAFi can lead to an enhanced ECM deposition by
fibroblasts that induced high integrin β1-FAK signalling in cancer cells. This resulted in
the activation of MAPK/ERK signalling, which helped overcome the inhibitory effect of
the BRAFi [64]. Hepatocyte growth factor (HGF) production by stromal fibroblasts can also
drive the activation of MAPK/ERK signalling in cancer cells, which can reduce the efficacy
of targeted therapy [67,107].

2.2.3. Immunotherapy

Another important component of the TME are the immune cells. Pioneering work by
James Alisson [108] and Tasuko Honjo [109–111] in immune regulation has revolutionised
the field of cancer immunology and established the groundwork for the development of
numerous immunotherapies. Their respective findings that CTLA-4 and PD1 immune
checkpoints inhibit the activity of cytotoxic T-cells and allow tumours to grow, led to
the design of inhibitors against these molecules with the goal to enhance T-cell-mediated
cell death of tumour cells [112]. These checkpoint inhibitors showed remarkable results,
especially in melanoma patients [113–115]. However, it is not fully understood what fac-
tors dictate their efficiency and the durability of the patients’ response to these therapies.
In addition to checkpoint inhibitors, several other immunotherapies are now available,
including cancer vaccines [116,117] and the adoptive transfer of immune cells, such as
chimeric antigen receptor (CAR) T-cells [118,119], and oncolytic viruses [120]. Due to the
strong influence that fibroblasts can exert in the immune milieu of the TME [68,121,122],
this cell type has emerged as a key modulator of the outcome of patients to these thera-
pies. The aforementioned immunosuppressive molecules secreted by fibroblasts, namely
TGF-β, IL-6, IL-8, CXCL12, can inhibit cytotoxic T-cell activity [123–126], drive myeloid-
derived suppressor cell (MDSC) differentiation [127–129], modulate the phenotype of
macrophages [130–133], promote Treg formation [54,134] and regulate the activity of nat-
ural killer (NK) cells [132,135]. In addition to these, further studies have described other
mechanisms through which fibroblasts regulate the immune landscape in tumours. α-
SMA+ CAF (myCAFs) also secrete metabolic reprogramming factors, such as IDO1, Arg2
and galectin, which are responsible for generating an immunosuppressive TME via in-
ducing T cell anergy and inhibiting CD8+ T cell proliferation [136]. The production and
deposition of ECM proteins by CAFs strongly regulate the T-cell location within the tu-
mours [137]. A dense stroma can result in the exclusion of lymphocytes from areas rich
in tumour cells, which results in poor adaptive immunity against the tumour [138,139].
Moreover, the production of certain ECM proteins by fibroblasts, namely tenascin C or
thrombospondin 1 (TSP1), can negatively impact the adhesion of T-cells [140] and their ac-
tivity [141] in the TME, respectively. Fibroblasts can express immune checkpoint molecules
themselves, such as PD-L1 [142], PD-L2 [37,142] and B7H3 [37,143,144], which can all
inhibit T-cell activation. The production of CCL5 by stromal fibroblasts leads to an im-
munosuppressive environment as a result of the recruitment of Treg cells into the TME [145].
The secretion of PGE2, which was recently shown to characterise the apCAF subpopulation,
can also result in the expansion of regulatory T-cells [39]. Furthermore, PGE2 is capable of
inhibiting NK cell function [146–148].

Fibroblasts not only communicate with the immune system via secreted factors, but
they can also directly interact with CD8+ T-cells. The HLA-class I antigen-presentation by
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stromal fibroblasts along with the expression of PD-L2 and FASL results in the killing of
antigen-specific cytotoxic T-cells [149]. Direct interaction between stromal fibroblasts and
cancer cells also seems to drive resistance to oncolytic viruses as a result of the induction of
a STING/IRF3-dependent inflammatory program in fibroblasts, which upregulates IFNβ1.
The secretion of IFNβ1 into the TME induces an IFN-transcriptional program in cancer
cells, rendering them less sensitive to infection by oncolytic viruses [150].

2.3. Impact of Anti-Cancer Therapies in Fibroblasts

Further evidence that supports the study and detailed investigation of fibroblast dy-
namics during therapy is that stromal populations are strongly modulated and influenced
by a wide variety of treatments applied in the clinics, ranging from cytotoxic agents to
targeted agents [151–153].

2.3.1. Direct Effects on CAFs

Most cytotoxic agents, such as chemotherapy and radiotherapy, lead to extensive
DNA damage, which can result in cell cycle arrest and, consequently, senescence [154,155].
Senescence is associated with the secretion of a vast array of cytokines, chemokines and
growth factors, such as CCL2, IL-6, VEGF and TGF-β, which can aid cancer cell survival
and, thus, contribute to therapeutic failure [155–157]. Chan et al. showed that high doses
of chemotherapy induce a potent remodelling of fibroblasts by activation of the JAK-
STAT1 and NF-κB pathways, which results in the upregulation and secretion of several
chemokines that, in their turn, support tumour-initiating cells and lead to chemoresis-
tance [82]. Similarly, another study described an increased risk of developing resistance
to chemotherapy after treatment with the maximum tolerated dose due to drug-induced
changes in the tumour stroma [158]. In both cases, the effects observed in the tumour stroma
could be prevented by adopting a metronomic (low-dose) chemotherapy regimen [82,158].
In general, chemotherapy seems to activate an inflammatory gene signature in stromal
fibroblasts, which is associated with a pro-tumorigenic state [159]. The activation of the
NF-κB signalling pathway by therapy-induced damage also promoted chemoresistance
by driving the expression and secretion of WNT16B by fibroblasts and the subsequent
activation of the Wnt program in cancer cells [160]. The secretion of interleukins (ILs) by
CAFs has been reported after treatment with chemotherapy. For example, IL-17A derived
from chemotherapy-treated CAFs led to the expansion of tumour-initiating cells and, conse-
quently, was shown to contribute to therapeutic failure [63]. The exposure of fibroblasts to
chemotherapy also resulted in a higher secretion of IL-11, which activated STAT3 signalling
in cancer cells and drove the upregulation of anti-apoptotic pathways [161]. In addition
to the effects mentioned above, chemotherapeutic agents can also drive a myCAF pheno-
type in stromal fibroblasts. Exposure to these drugs can increase the amount of secreted
ECM by CAFs that, among other effects, can form a physical barrier and prevent the drug
from reaching the cancer cells [85,162]. Chemotherapy-induced secretion of exosomes
by fibroblasts can also play an important role in resistance to chemotherapy. In PDAC,
Richards et al. showed that fibroblast-derived exosomes regulate EMT pathways in cancer
cells in a Snail-dependent way and that targeting this pathway increased the sensitivity of
cancer cells to chemotherapy [163]. Transfer of miRNAs from CAFs to cancer via secreted
extracellular vesicles has also been shown to be induced by chemotherapy and to promote
resistance [164].

Similar effects have been described for fibroblasts exposed to radiotherapy [151].
Strong desmoplastic reactions often characterise the irradiated areas. This is a conse-
quence of fibroblast activation and enhanced deposition of ECM [165]. Indeed, an en-
richment in αSMA-positive fibroblasts can be found in chemo and radiotherapy treated
tumours [158,166] and stromal signatures are often associated with a worse outcome
regarding disease free survival [166–169]. High amounts of ECM can then activate pro-
survival pathways in cancer cells and impair the response to radiotherapy as well as to
chemotherapy, in an integrin β1-dependent manner [87,88,170–172]. As with cytotoxic
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agents, radiation can drive a senescent phenotype in stromal fibroblasts, which is charac-
terised by the expression of, among others, TGF-β [154]. The presence of elevated levels of
TGF-β can then not only increase ECM production but also drive an immunosuppressive
environment [154]. Tommelein et al. also found that irradiated fibroblasts could promote
the survival of cancer cells via insulin-like growth factor receptor-1 (IGF1R) signalling. This
pathway activation was driven by a senescence-like phenotype of the fibroblasts that was
characterized by the secretion of IGF1 after treatment [173].

Despite their intended specificity, targeted therapies can also directly affect and mod-
ulate the phenotype of stromal fibroblasts. In colorectal cancer, the treatment of tumours
with an EGFR inhibitor led to an increased secretion of EGF by stromal fibroblasts and
conferred resistant of neighbouring cancer cells to the treatment via activation of MAPK
signalling [174]. Matrix remodelling by fibroblasts exposed to BRAF inhibitors can also
impair the response of cancer cells to the treatment. In this system, resistance was driven
by elevated activation of integrin β1-FAK-Src signalling in malignant cells because of high
ECM-production by fibroblasts [64].

2.3.2. Indirect Effects in CAFs

Fibroblasts can further be indirectly modulated by therapy, since it has been described
that cancer cells acquire a specific secretory profile after exposure to drugs, named therapy-
induced secretome [175]. In the same way that cytotoxic agents can drive the senescence
of fibroblasts, the cancer cells exposed to these agents can also undergo therapy-induced
senescence and acquire the aforementioned senescence-associated secretory phenotype
(SASP) [175], which then modulates the phenotype of fibroblasts. We have recently shown
that cancer cells exposed to high doses of chemotherapy upregulate the expression of
IFNβ1, which acted in a paracrine manner to drive a pro-tumorigenic state of fibroblasts
that then drove the recovery of cancer cells after treatment [176]. This upregulation of
IFNβ1 after treatment with cytotoxic agents goes in line with previous studies that have
shown that high levels of damage in cancer cells after treatment results in the activation
of the STING/IRF3 pathway and drives IFNβ1 expression [177–179]. Moreover, therapies
such as chemotherapy and radiation can strongly modulate the immune milieu of the TME
and, consequently, affect the profile of stromal fibroblasts [74]. Radiation can result in
vascular damage, which triggers an inflammatory response and, consequently, promotes
myofibroblast differentiation [151]. This vascular damage can also lead to hypoxia and
increase the production of HIF1α [180,181]. In colorectal cancer, it was shown that HIFα
and TGFβ cooperate to induce hedgehog transcription factor GLI2 expression in tumour-
initiating cancer cells, which drives stemness and chemoresistance [62]. The increased
secretion of TGF-β by melanoma cells after exposure to Vemurafenib, a BRAF-inhibitor,
was also able to drive fibroblast activation. Fibroblasts were then shown to produce
increased levels of ECM, but also growth factors such as NRG-1 and HGF. Combined, these
factors promoted the survival of cancer cells to treatment [182]. Apicella et al. described
a non-autonomous cancer cell mechanism in non-small cell lung cancer (NSCLC) that
drove resistance to targeted therapies. Interestingly, they show that in vivo resistant cancer
cells become re-sensitized to the therapy when treated in vitro in the absence of the TME.
Mechanistically, they show that cancer cells treated with TKIs targeting MET and EGFR
secrete higher levels of lactate, which then instructs CAFs to secrete HGF, resulting in the
non-responsiveness of cancer cells to the treatment [58].

The effects of therapies in fibroblasts are vast and complex. Despite the attempts to
understand these mechanisms, further investigations are required. All the studies thus
far have addressed these alterations in a bulk-fashion and detailed single-cell studies
are still lacking. Moreover, it is necessary to unravel whether the mechanisms described
above are tumour type- or context-specific, to develop strategies to identify which patients
would benefit from their inhibition and, importantly, at what time-point during treatment.
Understanding these complex dynamics is hard, but it would provide essential insights for
the targeting of this cell type for cancer treatment.
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2.4. Targeting Fibroblasts in Cancer Treatment

Several strategies have been developed for the targeting of fibroblasts in cancer treat-
ment. In pre-clinical models, attempts to (1) directly target fibroblasts, (2) target secreted
molecules such as ECM or soluble signalling molecules or (3) inhibit pro-tumorigenic
signalling pathways have been described. Regardless of the strategy used the major goals
have been to either eliminate stromal fibroblasts in general or certain subpopulations from
the tumour, or to normalise the stroma/tumour-stroma interactions to ensure that the
crosstalk between fibroblasts and cancer cells or the immune milieu does not support
tumour progression, invasion or therapeutic failure. A summary of these strategies is
described in Figure 2.
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Figure 2. Strategies for cancer therapy targeting fibroblasts and their interactions in the TME. Several
approaches have been proposed to target CAFs, including direct targeting and elimination of specific
subpopulations of fibroblasts, namely FAP-positive cells. Therapies against secreted factors and their
respective signalling, such as ECM or cytokine signalling inhibitors have also been developed to
improve immunity and to block pro-tumorigenic interactions between CAFs and their surroundings.

2.4.1. Direct Targeting of Fibroblasts

Numerous attempts of targeting fibroblasts have focused on their direct targeting via
specific cell surface markers. Some early studies in PDAC have targeted αSMA-expressing
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fibroblasts. However, contrary to what had been expected, tumours in which this stro-
mal population was eliminated grew at even higher rates, demonstrating that, at least
in this tumour type, αSMA-positive fibroblasts restricted tumour growth [28,29]. Simi-
lar attempts to eliminate or directly target fibroblasts in the TME have instead focused
on the FAP expressing fibroblast population. In this case, regression of the tumour was
indeed observed [123,129]. Diverse FAP-targeting strategies have since been developed
and tested in pre-clinical models, including genetic deletion [123,129], molecular inhibitors
that block FAP enzymatic activity [129,183–186], anti-FAP monoclonal antibodies [187]
and FAP-antigen vaccination [188], all with promising tumour-restraining results. Most of
these studies correlate the observed effects with the impact of the treatment in the immune
milieu. The tumours in which FAP was targeted were characterised by a reversion of
the immunosuppressive environment and an increase in T-cell infiltration [123,185,186].
Consequently, clinical trials targeting this protein have been undertaken to investigate the
potential of such treatments in patients. The usage of blocking antibodies, namely sibro-
tuzumab (a humanised anti-FAP antibody, F19), proved to be safe in a phase I trial [189,190],
but failed to significantly improve overall survival. Similar results were obtained with
the FAP-inhibitor PT100 (talabostat) [191–194]. Even though the application of anti-FAP
antibodies showed very limited clinical efficacy, these agents exhibited very good stroma-
targeting properties [190]. This has led to the development of antibody conjugates, in
which FAP is used for the localised delivery of the conjugate. One such fusion antibody
that is currently in a phase I clinical trial (NCT02627274) is called RO6874281, in which
FAP is cross-linked with IL-2. The main goal of using this antibody is to activate T-cells
in the TME [195]. Other strategies involve the conjugation of FAP with other immune
modulators, such as IL15 [196], co-stimulatory ligands as B7.2 [197] and CD40 [198], or
immunotoxins [199,200]. Moreover, FAP antibodies can be conjugated with agents that
will directly induce apoptosis, such as the cytotoxic drug DM1, which have shown potent
inhibitory activity in pre-clinical models [187]. Finally, the ablation of FAP-expressing cells
in the TME was also achieved by using CAR-T cells directed against FAP [201,202].

In summary, a broad variety of strategies targeting FAP are available, although clinical
trial results have been disappointing thus far. This might be improved with optimised
strategies to directly target and eliminate FAP-positive cells, such as conjugated antibodies,
vaccination or bispecific CAR-T cells. The enhanced immune response that has been
observed in the pre-clinical models suggests that a combination of these strategies with
other therapies, such as immune checkpoint inhibitors or chemotherapy, will likely be
advantageous. Moreover, several studies clearly showed that these approaches are highly
effective to target specific conjugates to the tumour site, which can be further explored.

Another cell surface marker that has been explored in pre-clinical models is GPR77.
This protein, in combination with CD10, has been shown to identify a subpopulation
of fibroblasts that is responsible for driving chemoresistance. The blockage of GPR77
using a neutralising antibody was shown to reduce the CSCs in tumours and enhance
the response to chemotherapy [60]. Moreover, since these fibroblasts were identified as
being present in the tumour prior to treatment, the concomitant targeting of these with the
chemotherapeutic regiments could likely provide a benefit for the patient. Further studies
along these lines are required.

2.4.2. Targeting of the ECM

Stromal rich tumours can have impaired drug delivery as a result of the physical
barrier presented by the ECM. Moreover, the ECM can activate pro-survival signalling
pathways in tumour cells. This makes approaches targeting the ECM and/or its down-
stream signalling attractive for the treatment of a variety of tumours. Numerous pre-clinical
studies blocking integrin signalling have shown that this axis is critical for the development
of drug resistance and that its abrogation in combination with cytotoxic agents could
improve therapy response and overall survival [87,203]. A blocking antibody, FG-3019,
that interferes with integrin signalling activation is being tested in a phase I/II clinical



Cancers 2021, 13, 3526 13 of 25

trial (NCT02210559). Moreover, the biosafety of defactinib, a small molecule inhibitor that
targets FAK and thereby prevents downstream pathway activation in cancer cells, has
been investigated in a phase I clinical trial (NCT02546531) [204]. Direct targeting of ECM
proteins, namely fibronectin [205], tenascin C [206] and hyaluronan [138,207,208] have also
been studied in pre-clinical models with promising results. The targeting of hyaluronan
for degradation using a PEGylated enzyme, PEGPH20, in combination with chemother-
apy showed positive results in early phase clinical trial in patients with PDAC [209,210].
Losartan, a small molecule inhibitor that targets the angiotensin receptor and, conse-
quently, leads to a decrease in hyaluronan levels, is currently tested in a phase I clinical
trial (NCT03563248) [211]. Another strategy employed in pre-clinical trials exploits the
inhibition of matrix metalloproteinases (MMPs). These enzymes are critical players in
the remodelling of the ECM [212]. Unfortunately, disappointing results have emerged
from all the MMP inhibitors tested in clinical trials thus far [213]. Novel strategies are also
emerging, with the use of CAR-T cells engineered to express heparanase, an enzyme that
degrades ECM proteins, having shown promising pre-clinical results by enhancing T cell
infiltration and anti-tumour activity [214].

2.4.3. Targeting of Cytokines and Growth Factors

One of the most extensively studied and described pro-tumorigenic axes involved
in the communication between cancer cells and their microenvironment is the IL-6/IL-
6R/JAK-STAT3 pathway. Not surprisingly, attempts to target this pathway soon emerged
and were tested in pre-clinical models [215]. The targeting of this axis is threefold, since
(1) it has been described to be involved in the activation of fibroblasts [216,217], (2) its effect
in tumour cells drives pro-tumorigenic states by, among others, modulating stemness and
invasiveness [218] and (3) it negatively regulates tumour-infiltrating immune cells [219].
An IL-6 monoclonal antibody, siltuximab, was tested in a phase II clinical trial for the
treatment of prostate cancer and demonstrated a safe profile but failed to improve patient
outcome [220]. The efficacy of this antibody is currently evaluated in a phase Ib/II trial
for the treatment of advanced pancreatic cancer (NCT04191421). Furthermore, several
clinical trials investigating the activity of molecules that inhibit downstream signalling
of IL6-, namely ROCK and STAT3 inhibitors, have been undertaken. A dual ROCK-AKT
inhibitor, AT13148, was tested in phase I, but failed to show a safe profile [221]. The STAT3
inhibitor, AZD9150, was well tolerated in a phase I clinical trial [222] and an investigation
of its efficacy is undergoing.

Another major pro-tumorigenic molecule that is secreted by CAFs is CXCL12. This
chemokine is mostly involved in the modulation of immune cells in the TME, and its target-
ing can alleviate immunosuppression and drive effective anti-tumour immunity. Therefore,
the inhibition of this axis using antagonists or antibodies targeting its receptor, CXCR4, has
been extensively studied [223,224]. The efficacy of some of these molecules, namely the
CXCR4 antagonist AMD3100, is currently evaluated in clinical trials for the treatment of
several tumour entities, including haematological malignancies and advanced pancreatic
cancer (https://www.cancer.gov/about-cancer/treatment/clinical-trials/intervention/
plerixafor, accessed on 1 June 2021), after having displayed a safe profile in phase I clinical
trials [225,226].

The inhibition of Shh and TGFβ has also been extensively studied in an attempt to
‘normalise’ the tumour stroma by reverting the activated state of fibroblasts. Moreover,
these molecules have broad activities and are capable of regulating several other pro-
cesses, as described in the previous sections. Despite the exciting results of Shh inhibition
in pre-clinical studies [52,61,227], evaluation of the FDA-approved inhibitors, saridegib
and vismodegib, in early phase clinical trials showed very disappointing results with
no improvement in disease-free survival (DFS) and overall survival (OS) (NCT01064622;
NCT01088815) [228]. To date, several TGFβ inhibitors have been developed and their
efficacy studied using pre-clinical models [229–231]. Following these results, clinical trials

https://www.cancer.gov/about-cancer/treatment/clinical-trials/intervention/plerixafor
https://www.cancer.gov/about-cancer/treatment/clinical-trials/intervention/plerixafor
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have been established and, while some have failed to demonstrate a significant overall
benefit, other trials showed a benefit of inhibiting TGF-β signalling [231].

Despite the many attempts to target the TME and to significantly improve patient
outcomes, most of these strategies have fallen short. Improved combinatorial strategies will
likely be required to achieve an effective inhibition of tumour growth. Moreover, most of
the clinical trials enrol patients with heavily pre-treated tumours and advanced/metastatic
disease, which can hinder the effectiveness of these drugs. The rational targeting of these
axes in early treatment could provide an advantage by preventing the development of
resistance and inhibiting the invasive properties in cancer cells. However, more studies are
required to evaluate this hypothesis. Furthermore, increasing knowledge in CAF biology
and the unravelling of subpopulation-specific markers will likely drive the development
of more effective treatments as this might allow the targeting of particularly relevant
subpopulations with enhanced specificity. Finally, the identification of biomarkers and the
better stratification of patients will be necessary to see a potential improvement in disease-
free survival and overall survival in particular patient groups, as with other targeted
therapies in cancer therapy.

3. Conclusions

The role of stromal fibroblasts in the TME is complex. Advances in molecular biology
have just started to unravel how heterogeneous the function of these cells are. Several
subpopulations with distinct roles have been identified and further dissection will likely
drive the discovery of further relevant markers and states of this cell type. Another layer
of complexity arises when the impact of the numerous treatments in these cells is brought
into the picture. The drugs used in the treatment of cancer strongly modulate both the
phenotype and the secretory profile of fibroblasts, which should be investigated in detail
in the future. A broad comprehension of the interactions between stromal fibroblasts and
the surrounding cells will be of the utmost importance toward the development of novel
targeted strategies that can improve the outcome of cancer patients.
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Abbreviations

αSMA alpha smooth muscle actin
ABC ATP-binding cassette
apCAF Antigen-presenting CAF
Arg2 Arginase 2
CAR Chimeric antigen receptor
CAF Cancer-associated fibroblast
CD10 Cluster of differentiation 10
CSCs Cancer stem cells
ECM Extracellular matrix
CXCL1 C-X-C Motif Chemokine Ligand 1
CXCL12 C-X-C Motif Chemokine Ligand 12
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
ELR Glu-Leu-Arg motif
EMT Epithelial-to-mesenchymal transition
ERK Extracellular signal-regulated kinase
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EVs Extracellular vesicles
FAK Focal adhesion kinase
FAPα Fibroblast-activation protein alpha
FGF Fibroblast growth factor
FGF2 Fibroblast growth factor 2
FSP-1 Fibroblast-specific protein 1
GLI2 GLI Family Zinc Finger 2
GPR77 G-protein coupled receptor 77
HAS1 Hyaluronan synthase 1
HAS2 Hyaluronan synthase 2
HER2 Human epidermal growth factor receptor 2
HGF Hepatocyte growth factor
HIF1α Hypoxia-inducible factor 1-alpha
HLA Human leukocyte antigen
iCAF Inflammatory CAF
ICD Immunogenic cell death
IDO1 Indoleamine 2,3-Dioxygenase 1
IFNβ1 Interferon-beta 1
IGF1 Insulin-like growth factor
IGF1R Insulin-like growth receptor-1
IL-1 Interleukin 1
IL-6 Interleukin 6
IL-15 Interleukin 15
ILs Interleukins
IRDS Interferon-related DNA damage resistance signature
IRF3 Interferon-regulatory factor 3
ISGs Interferon-stimulated genes
KRAS Kirsten rat sarcoma viral oncogene homolog
MAPK Mitogen-activated protein kinase
MDSC Myeloid-derived suppressor cell
MHC Major histocompatibility complex
miRNAs microRNAs
MMPs Matrix metalloproteinases
myCAF Myofibroblast CAF
NF-κB Nuclear factor-κB
NK Natural killer
NRG1 Neuregulin 1
PD1 Programmed cell death protein 1
PDAC Pancreatic ductal adenocarcinoma
PDGF Platelet-derived growth factor
PGE2 Prostaglandin E2
PI3K Phosphoinositide 3-kinase
RIG-I Retinoic acid-inducible gene I
RNA Ribonucleic acid
ROS Reactive oxygen species
SASP Senescence-associated secretory phenotype
Shh Sonic Hedgehog
STAT1 Signal transducer and activator of transcription 1
STING Stimulator of interferon genes
T reg Regulatory T cell
TGF-β Transforming growth factor beta
TME Tumour microenvironment
TKI Tyrosine kinase inhibitor
TSP1 Thrombospondin 1
VEGF Vascular endothelial growth factor
YAP Yes-associated protein
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