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Transcriptome analyses i
dentify hub genes and
potential mechanisms in adenoid cystic carcinoma
Hong-Bing Liu, BSa,∗, Guan-Jiang Huang, MDb, Meng-Si Luo, MSc

Abstract
Adenoid cystic carcinoma (ACC) is one of themost frequent malignancies of salivary glands. The objective of this study was to identify
key genes and potential mechanisms during ACC samples.
The gene expression profiles of GSE88804 data set were downloaded from Gene Expression Omnibus. The GSE88804 data set

contained 22 samples, including 15 ACC samples and 7 normal salivary gland tissues. The gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were constructed, and protein–protein interaction
network of differentially expressed genes (DEGs) was performed by Cytoscape. The top 10 hub genes were analyzed based onGene
Expression Profiling Interactive Analysis. Then, DEGs between ACC samples and normal salivary gland samples were analyzed by
gene set enrichment analysis. Furthermore, miRTarBase and Cytoscape were used for visualization of miRNA-mRNA regulatory
network. KEGG pathway analysis was undertaken using DIANA-miRPath v3.0.
In total, 382 DEGs were identified, including 119 upregulated genes and 263 downregulated genes. GO analysis showed that

DEGs were mainly enriched in extracellular matrix organization, extracellular matrix, and calcium ion binding. KEGG pathway analysis
showed that DEGs were mainly enriched in p53 signaling pathway and salivary secretion. Expression analysis and survival analysis
showed that ANLN, CCNB2, CDK1, CENPF, DTL, KIF11, and TOP2A are all highly expressed, which all may be related to poor
overall survival. Predicted miRNAs of 7 hub DEGs mainly enriched in proteoglycans in cancer and pathways in cancer.
This study indicated that identified DEGs and hub genes might promote our understanding of molecular mechanisms, which might

be used as molecular targets or diagnostic biomarkers for ACC.

Abbreviations: ACC = adenoid cystic carcinoma, BPs = biological processes, DEGs = differentially expressed genes, GEO =
Gene Expression Omnibus, GEPIA = Gene Expression Profiling Interactive Analysis, GO = gene ontology, GSEA = gene set
enrichment analysis, KEGG = Kyoto Encyclopedia of Genes and Genomes, MFs = molecular functions, PPI = protein–protein
interaction, RLE = relative log expression.
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1. Introduction
Adenoid cystic carcinoma (ACC) is one of the most frequent
malignancies of the minor and major salivary glands and has
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poor long-term prognosis.[1–4] ACC displays heterogeneous
morphology because of their slow growth and tendency for
perineural invasion, which makes it difficult to be diagnosed and
characterized. After primary tumor resection, ACC can recur
loco-regionally or with distant metastases in decades, which
would require the long-term surveillance of all patients with
ACC. Due to the resistance of ACC to chemotherapy or radiation
therapy, nonresectable cases would be usually fatal.[5,6] There-
fore, the understanding of the molecular mechanism involved in
proliferation, apoptosis, and invasion of ACC would be
extraordinarily important for more effective diagnostic and
therapeutic strategies.[4,7–10]

Microarrays are increasingly valued as a promising tool with
great clinical applications in medical oncology: from molecular
diagnosis to molecular classification of tumors, from new drug
targets discovery to tumor response prediction, from patients’
stratification to prognosis prediction, and so on.[10–12] The gene
expression profiling study on ACC samples has been performed
using microarray technology, which showed differentially
expressed genes (DEGs) involved in different pathways, biological
processes (BPs), or molecular functions (MFs). Now, microarray
technology made it able to analyze the expression changes of
mRNA comprehensively in the development and progression of
ACC. Andersson et al[13] collected tissue samples and investigated
differences in gene expression between ACC and NSG. However,
the interactions among the DEGs remain to be elucidated.
In this study, we downloaded the original data (GSE88804)

from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
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nih.gov/geo/).[14] Gene expression profiles of tumor cells in
patients with ACC were compared with those in normal salivary
gland (NSG) to identify DEGs. Whereafter, the DEGs were
screened using R and Morpheus, followed by gene ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis, integration of protein–protein
interaction (PPI) network, module analysis, expression analysis,
and survival analysis based on The Gene Expression Profiling
Interactive Analysis (GEPIA), and gene set enrichment analysis
(GSEA). Furthermore, miRTarBase and Cytoscape v3.6.0 were
used for visualization of the miRNA-mRNA regulatory network.
KEGG pathway analysis for predicted miRNAs was undertaken
using DIANA-miRPath v3.0. By the method of analyzing the
biological functions and pathways, we may explore the potential
biomarkers for diagnosis, drug targets, and prognosis of ACC.
2. Methods

2.1. Microarray data

The gene expression profiles of GSE88804 were downloaded
from the GEO database, which were the only available data set of
ACC samples. And the original authors neither reported DEGs
data nor performed bioinformatic analysis based on this data set.
GSE88804, which was based on Affymetrix GPL6244 platform
(Affymetrix Human Gene 1.0 ST Array), was submitted by
Andersson et al.[13] The GSE88804 data set contained 22
samples, including 15 ACC samples (13 surgical samples of ACC
and 2 ACC xenografts) and 7 NSG tissues.
2.2. Differential expression analysis and identification of
DEGs

Gene microarray analyses were all conducted through R software
(version 3.5.1, https://www.r-project.org/; The R Foundation).
Raw CEL data were imported into R, and we performed relative
log expression (RLE) plots for detecting and visualizing the
unwanted variation in high dimensional microarray data among
all tissue samples through affyPLM package and RcolorBrewer
package. DEGs between ACC samples and NSGs tissues were
identified through GEO2R (https://www.ncbi.nlm.nih.gov/geo/
geo2r/) with the cut-off criterion (P-value < .05 and LogjFCj >
2).[14] Then, we clicked “Save all results” and the results of DEGs
were shown after entering into GSE88804 in GEO accession.
Then, the heat map of the DEG expression (top 50 upregulated
and downregulated genes) was carried out by Morpheus (https://
software.broadinstitute.org/morpheus/).
2.3. GO and KEGG pathway enrichment analysis of DEGs

The GO analysis is a common effective method for annotating
genes and identifying characteristic biological attributes.[15,16]

KEGG (http://www.genome.jp/) is a knowledge database for a
systematic analysis of gene functions.[17–19] Comprehensively,
mapping of the user’s gene to the related biological annotation in
the Database for Annotation, Visualization and Integrated
Discovery (DAVID) database (https://david.ncifcrf.gov/) is an
essential foundation for the success of any high-throughput gene
functional analysis.[20] To analyze the DEGs, GO enrichment and
KEGG pathway analysis were respectively performed using the
DAVID online tool. P< .05 was considered statistically of
significance.
2

2.4. PPI network and module analysis

Search Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org) database is the online tool, which is
designed to evaluate the PPI information.[21] STRING (version
10.5) covers 9.6 million proteins from 2031 organisms. To
evaluate the interactive relationships among the DEGs, we
mapped all the DEGs to STRING, and only validated interactions
with a combined score>0.4 were considered as significant. Then,
the PPI network was constructed using the Cytoscape software
(version 3.6.0, https://cytoscape.org/).[22] The plug-in cytoHubba
was used to select top 10 hub genes, while the plug-in Molecular
Complex Detection (MCODE) was used to screen the modules of
the PPI network in Cytoscape. The criteria were set as follows:
MCODE scores ≥4 and number of nodes ≥4. Moreover, KEGG
pathway analyses were performed for DEGs in these modules.
P< .05 was also considered to be significant.
2.5. Expression analysis and survival analysis

TheGEPIA is a new outstanding interactiveweb tool for analyzing
the RNA-seq expression data of 9736 tumors and 8587 normal
samples from The Cancer Genome Atlas and the Genotype-Tissue
Expressionprojects.[23]GEPIAcanprovide customizable functions
such as tumor/normal differential expression analysis, patient
survival analysis, profiling according to cancer types or pathologi-
cal stages, correlation analysis, and so on.
2.6. Gene set enrichment analysis

The GSEAwas also applied to identify the significant pathways in
GSE88804 based on GO-BP and KEGG pathway. The
coefficients of the Spearman correlation were defined as the
weight of genes between genes and sample label.[24,25] Statistical
significance was assessed with the enrichment score of enrichment
results, which generated from 1000 random permutations of the
gene sets to obtain P values. The pathways with levels of False
Discovery Rate (FDR) <25% and P< .01 were considered to
be significant.
2.7. Construction of the miRNA-mRNA regulatory network
and identification of miRNA-associated pathways

The miRNAs, a class of noncoding RNA with 20 to 22
nucleotides, can bind to the 30Untranslated Regions of targeted
mRNAs to induce translational repression or degradation of
mRNAs.[26] In our study, miRNAs interacting with hub mRNAs
were predicted using an experimentally validated microRNA-
target interactions database (miRTarBase).[27] Cytoscape was
used for the construction of the miRNA-mRNA regulatory
network. We also performed KEGG pathway analysis for
predicted miRNAs based on DIANA-miRPath v3.0 is a useful
web tool which can provide experimentally supported miRNAs-
mRNA interaction.[28] The results of KEGG enrichment for
predicted miRNAs were visualized using package ggplot2 in R.
3. Results

3.1. Differential expression analysis and identification of
DEGs

Supplementary Figure 1, http://links.lww.com/MD/D569 illus-
trated the RLE among all of the samples after normalization.
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Figure 1. Volcano plot of differentially expressed genes. Red dots =
upregulated genes, blue dots = downregulated genes.

Figure 2. Heat map of the top 100 differentially expressed genes (50
upregulated genes and 50 downregulated genes). Red = upregulation; blue =
downregulation.
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Based on data preprocessing and Student t test, a total of 20,329
genes were identified. Based on the criteria of P< .05 and LogjFCj
> 2, we identified a total of 382 DEGs in ACC samples compared
with NSG, which were shown in Supplementary Table 1, http://
links.lww.com/MD/D566. About 119 DEGs were found to be
upregulated in ACC, while 263 genes were downregulated
(Fig. 1). DEGs expression heat map (top 50 upregulated and
downregulated genes) are shown in Figure 2.

3.2. GO term enrichment analysis

We uploaded all the DEGs to the online software DAVID to
identify overrepresented GO categories and KEGG pathways.
GO analysis results showed that upregulated DEGs were
significantly enriched in BPs, including extracellular matrix
organization, cell adhesion, mitotic nuclear division, cell division,
and skeletal system development (Table 1 and Supplementary
Figure 2, http://links.lww.com/MD/D570); the downregulated
DEGs were significantly enriched in BPs, including retina
homeostasis, ethanol oxidation, detection of chemical stimulus
involved in sensory perception of bitter taste, biomineral tissue
development, and transmembrane transport (Table 1 and
Supplementary Figure 2, http://links.lww.com/MD/D570). For
MF, the upregulated DEGs were enriched in calcium ion binding,
glycosaminoglycan binding, extracellular matrix structural
constituent, cyclin-dependent protein serine/threonine kinase
activity, and chromatin binding, and the downregulated DEGs
were enriched in extracellular exosome, extracellular space,
extracellular region, microvillus, and endoplasmic reticulum
(Table 1 and Supplementary Figure 2, http://links.lww.com/MD/
D570). In addition, GO cell component (CC) analysis also
displayed that the upregulated DEGs were significantly enriched
in extracellular matrix, proteinaceous extracellular matrix,
plasma membrane, spindle microtubule, and spindle, and
downregulated DEGs enriched transporter activity, aldehyde
3

dehydrogenase (NAD) activity, oxidoreductase activity (acting
on the aldehyde or oxo group of donors, NAD or NADP as
acceptor), protein homodimerization activity and alcohol
dehydrogenase activity, zinc dependent (Table 1 and Supplemen-
tary Figure 2, http://links.lww.com/MD/D570).
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Table 1

Gene ontology analysis of differentially expressed genes associated with adenoid cystic carcinoma.

Expression Category Term/gene function Gene count % P-value

Upregulated GOTERM_BP_DIRECT GO:0030198/extracellular matrix organization 10 9.01 2.34E-06
GOTERM_BP_DIRECT GO:0007155/cell adhesion 11 9.91 3.75E-04
GOTERM_BP_DIRECT GO:0007067/mitotic nuclear division 8 7.21 6.61E-04
GOTERM_BP_DIRECT GO:0051301/cell division 9 8.11 .001084
GOTERM_BP_DIRECT GO:0001501/skeletal system development 6 5.41 .001301
GOTERM_CC_DIRECT GO:0031012/extracellular matrix 9 8.11 2.41E-04
GOTERM_CC_DIRECT GO:0005578/proteinaceous extracellular matrix 7 6.31 .003781
GOTERM_CC_DIRECT GO:0005886/plasma membrane 33 29.73 .022332
GOTERM_CC_DIRECT GO:0005876/spindle microtubule 3 2.70 .024736
GOTERM_CC_DIRECT GO:0005819/spindle 4 3.60 .029731
GOTERM_MF_DIRECT GO:0005509/calcium ion binding 13 11.71 8.99E-04
GOTERM_MF_DIRECT GO:0005539/glycosaminoglycan binding 3 2.70 .004804
GOTERM_MF_DIRECT GO:0005201/extracellular matrix structural constituent 4 3.60 .006948
GOTERM_MF_DIRECT GO:0004693/cyclin-dependent protein serine/threonine kinase activity 3 2.70 .016586
GOTERM_MF_DIRECT GO:0003682/chromatin binding 7 6.31 .026341

Downregulated GOTERM_BP_DIRECT GO:0001895/retina homeostasis 8 3.29 6.26E-07
GOTERM_BP_DIRECT GO:0006069/ethanol oxidation 5 2.06 1.15E-05
GOTERM_BP_DIRECT GO:0001580/detection of chemical stimulus involved in sensory perception of bitter taste 6 2.47 1.44E-04
GOTERM_BP_DIRECT GO:0031214/biomineral tissue development 5 2.06 2.58E-04
GOTERM_BP_DIRECT GO:0055085/transmembrane transport 12 4.94 2.93E-04
GOTERM_CC_DIRECT GO:0070062/extracellular exosome 86 35.39 1.48E-15
GOTERM_CC_DIRECT GO:0005615/extracellular space 52 21.40 1.19E-12
GOTERM_CC_DIRECT GO:0005576/extracellular region 55 22.63 2.51E-11
GOTERM_CC_DIRECT GO:0005902/microvillus 5 2.06 .005965
GOTERM_CC_DIRECT GO:0005783/endoplasmic reticulum 19 7.82 .01904
GOTERM_MF_DIRECT GO:0005215/transporter activity 13 5.35 8.76E-06
GOTERM_MF_DIRECT GO:0004029/aldehyde dehydrogenase (NAD) activity 4 1.65 .001135
GOTERM_MF_DIRECT GO:0016620/oxidoreductase activity, acting on the aldehyde or oxo group of donors,

NAD or NADP as acceptor
4 1.65 .001587

GOTERM_MF_DIRECT GO:0042803/protein homodimerization activity 20 8.23 .001961
GOTERM_MF_DIRECT GO:0004024/alcohol dehydrogenase activity, zinc-dependent 3 1.23 .002236
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3.3. KEGG pathway analysis

Table 2 and Supplementary Figure 3, http://links.lww.com/MD/
D571 contain the most significantly enriched pathways of the
upregulated DEGs and downregulated DEGs analyzed by KEGG
analysis. The upregulated DEGs were enriched in p53 signaling
pathway, glycosphingolipid biosynthesis-lacto and neolacto
series, while the downregulated DEGs were enriched in salivary
secretion, tyrosine metabolism, peroxisome proliferator-activat-
ed receptor (PPAR) signaling pathway, fatty acid degradation,
regulation of lipolysis in adipocytes, glycolysis/gluconeogenesis,
histidine metabolism, arginine and proline metabolism, drug
metabolism-cytochrome P450, glycine, serine and threonine
metabolism, phenylalanine metabolism, gastric acid secretion,
ABC transporters, metabolic pathways and AMP-activated
protein kinase signaling pathway.

3.4. Module screening from the PPI network

Based on the information in the STRING database, the top 10
hub nodes with higher degrees were screened using plug-ins
CytoHubba through Cytoscape. These hub genes included
TOP2A, CDK1, KIF11, BUB1B, CCNB2, DTL, KIF23, ANLN,
CENPF, and NUSAP1. Among these genes, TOP2A showed the
highest node degree, which was 39. Moreover, a total of 226
nodes and 519 edges were analyzed using plug-ins MCODE. The
top 4 significant modules were selected, and the functional
annotation of the genes involved in the modules was analyzed
4

(Fig. 3). Enrichment analysis showed that the genes in modules 1
to 4 were mainly associated with cell cycle, p53 signaling
pathway, PPAR signaling pathway, tyrosine metabolism, drug
metabolism-cytochrome P450, histidine metabolism, renin
secretion, and morphine addiction.

3.5. Expression analysis and survival analysis based on
GEPIA

We applied GEPIA to validate gene expression level and survival
rates of the TOP 10 hub genes between ACC tissues and normal
tissues, and 7 genes significantly increased expression levels with
obvious changes of survival analysis in ACC tissues. Then, box
plots of expression and corresponding survival plots were
conducted based on GEPIA (Fig. 4A–G).

3.6. Gene set enrichment analysis

The DEGs between ACC samples and NSG samples were also
analyzed by the GSEA method which used a database of several
thousand predefined sets of genes. GSEA is able to detect small
and significant expression changes in these connected genes that
cannot be revealed by gene-by-gene comparisons. Then, the
results of GSEA showed that 1363 gene sets are upregulated, in
which 898 gene sets are significant at FDR < 0.25 and 354 gene
sets are significantly enriched at nominal P-value<.01; and 2305
gene sets are downregulated, in which 768 gene sets are
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Table 2

Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially expressed genes associated with adenoid cystic
carcinoma.

Pathway ID Name Gene count % P-value Genes

Upregulated DEGs
hsa04115 p53 signaling pathway 4 3.60 .010 CDK1, CCNB2, SERPINB5, CDK6
hsa00601 Glycosphingolipid biosynthesis-lacto

and neolacto series
3 2.70 .013 GCNT2, B3GALT5, ST3GAL4

Downregulated DEGs
hsa04970 Salivary secretion 18 7.41 1.96E-14 LPO, PRH2, STATH, AQP5, LYZ, CST2, CST1, MUC7,

HTN3, ATP2B2, HTN1, PLCB4, CST5, ADRA1A,
TRPV6, PRKACB, SLC9A1, DMBT1

hsa00350 Tyrosine metabolism 7 2.88 1.85E-05 MAOA, MAOB, ADH1C, ADH1B, HGD, ADH1A, AOC3
hsa03320 PPAR signaling pathway 8 3.29 1.00E-04 LPL, ACSL1, CD36, PLIN1, SCD, FABP4, ACADL, ADIPOQ
hsa00071 Fatty acid degradation 6 2.47 6.99E-04 ACSL1, ADH1C, ALDH2, ADH1B, ADH1A, ACADL
hsa04923 Regulation of lipolysis in adipocytes 6 2.47 .002 PTGS2, PLIN1, PDE3B, MGLL, FABP4, PRKACB
hsa00010 Glycolysis/gluconeogenesis 6 2.47 .005 GALM, ADH1C, ALDH2, FBP1, ADH1B, ADH1A
hsa00340 Histidine metabolism 4 1.65 .006 ASPA, MAOA, MAOB, ALDH2
hsa00330 Arginine and proline metabolism 5 2.06 .009 GATM, CKMT2, MAOA, MAOB, ALDH2
hsa00982 Drug metabolism - cytochrome P450 5 2.06 .025 MAOA, MAOB, ADH1C, ADH1B, ADH1A
hsa00260 Glycine, serine and threonine metabolism 4 1.65 .025 GATM, MAOA, MAOB, AOC3
hsa00360 Phenylalanine metabolism 3 1.23 .031 MAOA, MAOB, AOC3
hsa04971 Gastric acid secretion 5 2.06 .031 KCNJ16, KCNJ15, PLCB4, PRKACB, SLC9A1
hsa02010 ABC transporters 4 1.65 .035 ABCA8, ABCA9, ABCD2, ABCA6
hsa01100 Metabolic pathways 29 11.93 .037 ETNPPL, PTGS2, FUT8, GNE, ENPP3, ADH1C, ADH1B, ADH1A,

ACSS3, ALDH1A1, GALM, ASPA, ACSL1, PLCB4, CKMT2,
MGLL, PIK3C2G, GATM, MAOA, MAOB, FBP1, HGD, MAN1A1,
ACADL, ATP6V1C2, ALDH2, ATP6V0A4, PON3, AOC3

hsa04152 AMPK signaling pathway 6 2.47 .049 CD36, SCD, FBP1, ADRA1A, IGF1, ADIPOQ

DEGs = differentially expressed genes, PPARs = peroxisome proliferator-activated receptors.
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significant at FDR <0.25 and 763 gene sets are significantly
enriched at nominal P-value <.01. The top 3 upregulated and
downregulated GO and KEGG pathways are listed in Figure 5.

3.7. MiRNA-target regulatory network

The miRNAs binding to DEGs in subnetworks were predicted
using miRTarBase. The miRNA-mRNA regulatory network
included 82 nodes and 111 edges. Of these, hsa-miR-192-5p and
hsa-miR-215-5p can antagonize ANLN, CENPF, and DTL,
while hsa-miR-193b-3p can antagonize CDK1, KIF11, and
TOP2A (Fig. 6A). Also, we performed KEGG pathway
enrichment analysis of these predicted miRNAs, which mainly
enriched in proteoglycans in cancer, pathways in cancer, fatty
acid metabolism, hippo signaling pathway, and Transforming
growth factor-b (TGF-b) signaling pathway (Fig. 6B and
Supplementary Table 3, http://links.lww.com/MD/D568).

4. Discussion

The ACC is a product of somatic, cumulative genetic, epigenetic,
and endocrine aberrations.[5,8,29–34] The relative rarity and slow
growing of ACC aggressive nature have complicated the
molecular markers. The understanding of the molecular mecha-
nism of ACC is of critical importance for its diagnosis and
treatment. Because microarray and high-throughput sequencing
provide expression levels of thousands of genes in the human
genome, they have been widely applied to predict the potential
therapeutic targets for ACC.[5,11,35,36] Owing to the original
paper (PMID: 28954282) for their contribution to the micro-
array data, we can conduct this study.[13] Gao et al[37] identified
a unique ACC signature with parallel MYB-dependent and
5

MYB-independent biomarkers and identified VCAN/HAPLN1
complexes as a potential target, which showed that forced MYB-
NFIB expression in NSG cells alters cell adhesion and cell
morphology in vitro and depletion of VCAN blocked tumor cell
growth of ACC tumor. Rettig et al’s research proved that NFIB
was a vital role in ACC oncogenesis.[38,37] Mitani et al[40]

conducted whole-genome sequencing in 21 salivary ACCs,
defining novel molecular subclasses characterized by MYBL1
rearrangements and 50-NFIB gene fusions. Brayer et al[2]

suggested that proteins of MYB and MYBL1 were oncogenic
targets in ACC. Ho et al[4] also observed MYB-NFIB trans-
locations and somatic mutations in MYB-associated genes,
suggesting these aberrations as critical events. Bell et al[30] implied
that EN1, DLX6, and OTX1 may be potential drivers of ACC.
Andersson et al[13] indicated that the MYB-NFIB fusion drives
ACC cells’ proliferation, which is regulated through AKT-
dependent signaling induced by IGF1R overexpression. In a
recent research, Frerich et al[39] performed detailed RNA-
sequencing (RNA-seq) analysis on 68 ACC tumor samples,
which resulted that MYB or MYBL1 would be direct targets of
Myb proteins in ACC tumors.
In our study, we extracted the data from GSE88804 and

identified 119 upregulated and 263 downregulated DEGs
between ACC and NSG using bioinformatics analysis. Function
annotation showed that these DEGs were mainly involved in
extracellular exosome, extracellular region, extracellular space,
and salivary secretion. Cumulative evidence has detailedly
demonstrated that coexpression gene normally consists of a
group of genes with similar expression profiles, which
participate in the parallel BP as well. To better understand the
interactions of the DEGs, we performed GO and KEGG pathway
analysis.
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Figure 3. Top 4 modules from the protein–protein interaction network. (A) Module 1. (B) The enriched pathways of module 1. (C) Module 2. (D) The enriched
pathways of module 2. (E) Module 3. (F) The enriched pathways of module 3. (G) Module 4. (H) The enriched pathways of module 4.
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The GO term analysis showed that upregulated DEGs were
mainly involved in extracellular matrix organization, extracellular
matrix, cell adhesion, mitotic nuclear division, and calcium ion
binding, while downregulatedDEGswere involved in extracellular
6

exosome, extracellular space, and extracellular region. Further-
more, the enrichedKEGGpathways of upregulatedDEGs included
p53 signaling pathway and glycosphingolipid biosynthesis-lacto,
and neolacto series. A previous study has shown that related



Figure 4. Expression analysis and survival analysis based on Gene Expression Profiling Interactive Analysis (GEPIA). (A) ANLN. (B) CCNB2. (C) CDK1. (D) CENPF.
(E) DTL. (F) KIF11. (G) TOP2A.

Liu et al. Medicine (2020) 99:2 www.md-journal.com
upregulated genes of the p53 signaling pathway in human
development could predict the overall survival of patients with
ACC.[36] Recent evidence indicated that p53 signaling pathway
might be associated with ACC metastasis and progression.[41]

Downregulated DEGs were related to salivary secretion, tyrosine
7

metabolism, and PPAR signaling pathway. Porto-Figueira et al[12]

reported that butanoate metabolism and tyrosine metabolism
might be highly activated in cancers, as well as tyrosinemetabolism
in a lesser extent. Antonosante et al[42] highlighted the different
roles of PPAR isotypes in various cancer cells.

http://www.md-journal.com


Figure 5. The top 3 representative upregulated and downregulated enrichment plots of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for
adenoid cystic carcinoma (ACC) were analyzed by gene set enrichment analysis (GSEA). (A–C) Upregulated. (D–G) Downregulated.

Liu et al. Medicine (2020) 99:2 Medicine
By constructing the PPI, we identified 10 hub genes that can
provide new ideas for the therapeutic studies in ACC. The top 10
hub genes were TOP2A, CDK1, KIF11, BUB1B, CCNB2, DTL,
KIF23, ANLN, CENPF, and NUSAP1. TOP2A was identified as
8

one of the hub genes that exhibit the highest degree of
connectivity. TOP2A, as a protein-coding gene, might promote
the development of the tumor, especially in proliferation and
differentiation.[35] Ren et al[43] reported that high TOP2A



Figure 6. MiRNA-mRNA regulatory networks in adenoid cystic carcinoma (ACC). (A) MiRNA-mRNA regulatory networks. (B) Bubble graph for TOP 20 Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of predicted miRNAs.

Liu et al. Medicine (2020) 99:2 www.md-journal.com
expression suggested that the more significant relationship with
worse prognosis of cancer. The 2nd hub gene CDK1, one of the
Ser/Thr protein kinase family, is markedly related to transferase
activity, transferring phosphorus-containing groups, and protein
9

tyrosine kinase activity. Chu et al[44] demonstrated the treatment
of human lung high metastasis cell line of ACC cells with 5 to 20
mM sulforaphane resulted in G(2)/M cell cycle arrest. The third
hub gene KIF11 is one of the kinesin-like protein family, and the

http://www.md-journal.com
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function of this gene product includes centrosome separation,
chromosome positioning, and establishing a bipolar spindle
during cell mitosis. A recent study has proposed that KIF11
upregulation represented an independent prognostic indicator for
the survival of patients with cancer and it might be a therapeutic
target for cancers.[32] BUB1B encodes a kinase, which is involved
in spindle checkpoint function. Lee et al[45] developed evidence
that BUB1B might offer a predictive marker for aggressiveness
and drug response. Another hub gene, CCNB2, is a member of
the cyclin family. Qian et al[46] reported that overexpression of
CCNB2 protein may be associated with clinical progression,
which may lead to poor prognosis. The other 5 hub genes are
DTL, KIF23, ANLN, CENPF, and NUSAP1, respectively.
Expression analysis and survival analysis based on GEPIA
showed that the top 10 genes may be related to the poor overall
survival rate, but only ANLN, CCNB2, CDK1, CENPF, DTL,
KIF11, and TOP2A are highly expressed in ACC tumor samples.
Chen et al[47] indicated that DTL is a potential novel target gene
for the treatment of cancers. Vikberg et al[48] showed that the
level of KIF23 could be elevated due to the additional copy of
chromosome 15 demonstrated. Recently, Long et al[7] demon-
strated that ANLN may be involved in developmental processes
through the regulation of nuclear division pathway. Moreover,
CENPF encodes the protein that associates with the centromere–
kinetochore complex. Aytes et al[49] reported that coexpression of
FOXM1 and CENPF would be a robust prognostic indicator of
poor survival and metastasis. Overexpression of NUSAP1 might
impact prostate cancer progression by increasing proliferation or
invasion of cancer cells.[50] In addition, some groups have also
published their data about RNA-seq of ACC samples and normal
control samples. Feng et al[51] found that miR-155 may be
involved in ACC metastasis through UBA2-related pathways,
and UBA2may act as a mediator of ACCmetastasis. Han et al[52]

revealed that SCUBE3 may play an essential role in epithelial
mesenchymal transition of ACC. Chen et al[53] concluded that
TGF-b1 might play a important role during lung metastasis of
ACC and be considered as a candidate target for treatment of
metastatic ACC. Kasamatsu et al[54] showed that CACNA1C,
CCND2, COL18A1, CTNNB1, HES1, ITGA9, MLL, NCAM1,
PLXNB1, PTTG1, SCARB1,SEMA3F, TIAM1, and TP73L were
cancer-related genes of ACC.
Module analysis of the PPI network revealed that the

development of ACC was associated with renin secretion,
PPAR signaling pathway, and salivary secretion. The aspartyl-
protease renin is the key regulator of the renin-angiotensin-
aldosterone system, which is critically involved in extracellular
fluid volume and blood pressure homeostasis of the body. Renin
secretion was still considered to be one of the main functional
circuits of miR-210.[8] PPARs are nuclear hormone receptors
which are activated by fatty acids and their derivatives. Salivary
secretion always occurs in response to stimulation by neuro-
transmitters.[42]

Many differential expression of miRNAs, such as miR-130a,
miR-320a, and miR-21, were associated with ACC development
and progression.[55,56] In the present study, we identified 75
miRNAs based on DEGs from subnetworks and these miRNAs
mainly enriched in proteoglycans in cancer, pathways in cancer,
fatty acid metabolism, hippo signaling pathway, and TGF-b
signaling pathway. Also, miRNA-mRNA regulatory network
analysis indicated that miR-192-5p, miR-193b-3p, and miR-
215-5p may act as potential key miRNAs to regulate corre-
sponding mRNAs. Actually, previous studies did not verify these
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predicted miRNAs and related pathways, but some experts
verified MYB/miR-130a activated the STAT3 and AKT path-
ways by downregulating NDRG2, while some experts indicated
that downregulation of miR-125a-5p promotes ACC progres-
sion through p38 signal pathway and miR-125a-5p can be a
potential therapeutic target of ACC.[55,57] Therefore, these
predicted miRNAs and signaling pathways can be served as
potential diagnostic biomarkers and therapeutic targets forACC,
which may provide potential hallmarks for further experimental
studies.
In this study, we are the first to observe that ACC was

associated with farmer breast cancer cluster 2, Kauffmann DNA
repair genes, Mori immature B lymphocyte double negative,
glycolysis and gluconeogenesis, citrate cycle/TCA cycle, and
pentose phosphate pathway by GSEA, but the association ACC
with these pathways and BPs need to be validated.
However, there are also several limitations in this study. First,

only 15 ACC samples and 7 NSG samples were included.
Second, owing to the relative rarity of ACC and its slow growing
of ACC tissue, we could not collect enough ACC tissues to
validate the results based on the bioinformatic analysis. Third,
our study was concluded from the bioinformatics analysis of the
expression profile data, which was downloaded from the GEO
database. So, further experiments will be needed to verify our
results.
5. Conclusion

Our work provides a comprehensive bioinformatics analysis of
the DEGs, which may be involved in the progress of ACC. The
study provides a set of potential targets for future investigation.
However, further molecular biological experiments would be
required to confirm the function and pathways of the DEGs in
ACC, with the goal of improving treatment response and patient
outcome.
5.1. Ethics

Ethics approval and patient written informed consent were not
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