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Abstract: Computer modeling is a method that is widely used in scientific investigations to predict
the biological activity, toxicity, pharmacokinetics, and synthesis strategy of compounds based on the
structure of the molecule. This work is a systematic review of articles performed in accordance with
the recommendations of PRISMA and contains information on computer modeling of the interaction
of classical flavonoids with different biological targets. The review of used computational approaches
is presented. Furthermore, the affinities of flavonoids to different targets that are associated with the
infection, cardiovascular, and oncological diseases are discussed. Additionally, the methodology of
bias risks in molecular docking research based on principles of evidentiary medicine was suggested
and discussed. Based on this data, the most active groups of flavonoids and lead compounds for
different targets were determined. It was concluded that flavonoids are a promising object for
drug development and further research of pharmacology by in vitro, ex vivo, and in vivo models
is required.

Keywords: computer modeling; molecular modeling; cheminformatics; in silico; docking; flavonoids;
phytomedicine; systematic review; limitations; bias risk

1. Introduction

Computer modeling is a rapidly developing scientific method that allows us to predict
the courses and results of various processes by the use of modern intelligent technolo-
gies [1,2]. Molecular modeling is one of the areas of computer modeling, and it is widely
used in drug design [3–5]. Several methods such as quantitative structure-activity rela-
tionship (QSAR) and quantitative structure-property relationship (QSPR) [6,7], molecular
docking [8], and molecular dynamics simulations [9–11] give an opportunity to identify the
potential biologically active compounds and establish the mechanisms of target-ligand in-
teraction. Molecular modeling is used for the prediction of chemical reactivity and synthesis
strategy optimization by, for example, density functional theory (DFT) calculations [12,13].
Moreover, this method has several benefits in ADMET prediction for small molecules that
have potential as drugs [14]. Of course, the successfully completed computer-performed
experiment (in silico) cannot guarantee the future implementation of a biologically active
molecule in clinical practice [15,16]. Nevertheless, using molecular modeling, it is possible
to identify the potential area of compounds’ medical applications and to assess the necessity
of further in vitro and in vivo assays [17,18].

Flavonoids are widely occurring secondary metabolites of plants. Currently, over
8000 compounds are classified as flavonoids [19]. Quercetin is a textbook example of
flavonols that decrease total sick days and severity of upper respiratory tract infection in
randomized, double-blinded, placebo-controlled trials [20]. Flavanonol, which belongs

Int. J. Mol. Sci. 2022, 23, 6023. https://doi.org/10.3390/ijms23116023 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23116023
https://doi.org/10.3390/ijms23116023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9206-8632
https://doi.org/10.3390/ijms23116023
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23116023?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 6023 2 of 18

to the structural type of quercetin, named taxifolin, demonstrated wound-healing ac-
tivity [21]. Luteolin, apigenin, and wogonin, which can be classified as flavones, show
induced neutrophil apoptosis and have potential as neutrophil apoptosis-inducing anti-
inflammatory, proresolution agents [22]. Flavanone hesperetin, in combination with sodium
cyclic lysophosphatidic acid, showed significant antiaging effects on skin hydration and
elasticity in a single-center clinical trial [23]. In general, data from several studies sug-
gest that higher dietary intake of flavonoids may be associated with better cognitive
health [24,25], improved prognosis for cardiovascular diseases [26,27], and decreased body
weight [28]. Taken together, due to antioxidant activity, selective affinity to several biologi-
cal targets, and high safety profiles, flavonoids are a prospective class of natural compounds
for drug development [29–32]. Flavonoids are usually divided into 12 groups based on the
structure of the molecule (Figure 1).
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Figure 1. Base structures of classical flavonoid groups.

The aim of this study is to identify the trends of in silico methods applied as a primary
screening tool for drug design on a flavonoid basis.

2. Methods
2.1. Search Strategy

The systematic review adhered to PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analysis) [33] guidelines, including search strategy, selection criteria,
data extraction, and data analysis. The papers included in this analysis were selected from
the Google Scholar database. Studies were restricted to those published from January
2016 to October 2021 to ensure the literature was relevant. The following keywords were
used in the search strategy: “flavonoid”, “molecular modeling”, “chemoinformatics”,
“computational chemistry”, “computer modeling”, “docking”, “molecular dynamics”. An
example search strategy as applied to the scientific database is shown below in English: (“in
silico” OR “molecular modeling” OR cheminformatics OR “computational chemistry” OR
“molecular simulation” OR “computer simulation” OR docking OR “molecular dynamics”)
AND flavonoid; and in Russian: (“мoлекулярнoе мoделирoвaние” OR хемoинфoрмaтикa
OR дoкинг OR “мoлекулярнaя динaмикa”) AND флaвoнoид. Only studies published
in the English and the Russian languages were considered for inclusion due to a lack of
translation resources.



Int. J. Mol. Sci. 2022, 23, 6023 3 of 18

2.2. Review Protocol and Data Extraction

Two independent review authors (I.N. and A.T.) conducted the literature search in
the specified scientific databases. Results of the search were collected in Google Drive.
Duplicate publications were excluded. The same review authors independently screened
publications using the criteria for inclusion (Table 1).

Table 1. Overall inclusion and exclusion criteria for publication screening.

Section Criteria Include If:

Language English Yes
Russian Yes

Design
In silico studies, complex translational studies with the molecular

modeling stage Yes

In vitro and in vivo studies, reviews, editorials, letter to the editor No

Content

Studies examining the affinity of natural flavonoids aglycons to
different biological targets Yes

Studies examining the affinity of synthetic flavonoids aglycons to
different biological targets No

Studies examining the affinity of flavonoids glycosides or other
natural polyphenols to different biological targets No

Access Full-text article accessible Yes

Resolution of any disagreements occurred through discussion and required consul-
tation with the three other authors (R.T., A.Z., and I.S.) for consensus. As a result of the
annotations analysis, 66 articles were selected for in-depth study that met the objectives of
this research (Figure 2). Qualitative and quantitative content analysis was performed. Data
synthesis and required statistical analyses were conducted by I.N. and A.T. Findings are
presented as a narrative synthesis, as well as tables and figures.
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2.3. Assessment of Risk of Bias

Two review authors (R.T. and A.Z.) made systematic and independent assessments of
the risk of bias in each research using the methodological domains presented in Table 2.

Table 2. Overall inclusion and exclusion criteria for publication screening.

Bias Domain Issue Low Risk of Bias High Risk of Bias Unclear Risk of Bias

Ligand selection Ligand filtering Should be performed Did not applied No data

Ligands optimization

Ionization assessment

The ligands were
ionized according to
pKa and pH values

of media

The research was
performed without

reference to pKa values
of ligands and pH
values of media

No data

Generation of
energetically possible

conformations
Should be performed

Generation was
performed without

reference to potential
energy calculation

No data

Target selection

Resolution of
protein structure Not more than 2.5 Å More than 2.5 Å No data

Method of protein
target structure

obtaining
NMR spectroscopy

X-ray crystallography
or cryogenic

electron microscopy
No data

Target optimization

Control of histidine
protonation Should be performed

The structure of target
did not reference

biological conditions
No data

Protonation of amino
acids after X-ray

crystallography or
cryogenic electron

microscopy

Should be performed
The structure of target

did not reference
biological conditions

No data

Addition of missing
residues and side
chains after X-ray
crystallography or
cryogenic electron

microscopy

Should be performed Was performed
without special tools No data

Addition of metals Should be performed
The structure of target

did not reference
biological conditions

No data

Docking Molecular docking
software Glide, GOLD AutoDock, DOCK,

FlexX No data

Results assessment

Visual control Should be performed Structure defects
were observed No data

Re-docking Should be performed
The RMSD value is too

high compared with
the initial structure

No data

Verification of docking
results by in vitro study

Binding constant
should be determined

The quantitative
calculations were

not performed
No data

Disagreements in judgments about the risk of bias were resolved by discussion or,
when necessary, arbitrated by an independent third review author (I.S.).
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3. Results and Discussion
3.1. General View on Articles Sample

An increasing number of publications on molecular modeling with flavonoids was
observed. For example, in 2016, the 4790 articles were published, while in 2021, this
parameter was approximately four times higher and was 16,900 (Figure 3).
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3.2. Molecular Modeling Methods

Specialists in the field of medicinal chemistry show great interest in computer model-
ing of flavonoid pharmacological activities, which is confirmed by the annual increase of
publications on this topic.

Molecular docking has the greatest prevalence, which was used in 92.4% of the
analyzed articles [34–39]. Molecular dynamics simulations were revealed in 31.8% of
the papers [40–43]. Pharmacophore modeling, QSAR/QSPR models, quantum chemical,
and hybrid quantum mechanical/molecular mechanical methods were found in 21.1% of
publications [44–48].

Interestingly, some articles presented the research that was realized in translational
design, including experiments in vitro, ex vivo, and in vivo. For example, Sun et al. con-
firmed the affinity of taxifolin to 11β-hydroxysteroid dehydrogenase 1 in rats and using
human HSD11B1, with IC50 values of 37,833 and 4981 nM, respectively [49]. During an-
other translational study, it was shown that taxifolin inhibits aryl hydrocarbon receptors
and some proteins of the cytochrome P450 system that may be promising for breast cancer
treatment [50]. The publication of such articles is a rather remarkable outcome.

3.3. Software and Databases for Molecular Docking

Considering that molecular docking is based on protein-ligand interaction, it was
interesting to analyze the software needed to create virtual supramolecular structures.
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Based on the frequency data of different compactional methods, it was suggested that the
majority of researchers prefer to optimize the study design by following the criteria:

• User-friendly software;
• Intuitive graphical interface;
• Lack of need for high-performance computing resources;
• Good predictive ability.

The majority (89%) of target protein structures were obtained from the RCSB Protein
Data Bank (PDB) [51–53]. In cases when the compounds of interest were not contained
in the database (11%), homology modeling was used to construct the necessary struc-
ture [45,54–56].

Three-dimensional structures of ligands were obtained in two ways: by extracting
information from various libraries (65%) [57–61] or by constructing a molecule using special
software (35%) [62–66]. PubChem (62%) was the most frequently used database, while
ZINC (15.0%) and ChemSpider (12.0%) were less common. PubChem belongs to the US
National Library of Medicine, and its leadership, despite the smaller number of compounds
(about 109 million) compared to ZINC (230 million), is due to having the richest information
about each molecule. ChemSpider has a smaller amount of information on each compound
and a smaller number of records (about 101 million). Ligand constructors are used only
when the molecular structure is not available in the computer library as the most time-
consuming method of virtual model generation. The most common software for flavonoid
molecular docking is AutoDock (47%), Glide (23%), and GOLD (9%).

3.4. Structure—Biological Activity Relationship: Qualitative Analysis

The parent structure of flavonoids is 1,3-diphenylpropane, and the aromatic fragments
are designated as ring A and ring B [67]. The majority of flavonoid groups are characterized
by the heterocycle (ring C) containing oxygen. This ring may be aromatic (flavones,
flavonols, etc.) or not (flavanones, flavanonols, etc.). As the rule, carbonyl and several
hydroxyl functional groups are present in the molecular structure of flavonoids that can act
as a pharmacophores.

The phenolic hydroxyl groups of the studied natural compounds serve as H-bond
donors. In cases when the hydrophobic interactions play a key role, the presence of the
methoxy group leads to an increase of affinity to the target compared with the hydroxyl
group [68]. Due to aromatic rings, the π,π-interactions with the side residues of hetero-
cyclic and aromatic α-amino acids (tryptophan, histidine, phenylalanine, and tyrosine) are
possible [69]. Figure 4 demonstrates all types of interactions.

It was found that the antiangiogenic potential of the flavonoid depends on the presence
of a C2-C3 double bond [70]; the hydroxyl group in the position 3′ of the ring C contributes
to an increase in antioxidant, anti-inflammatory, and antitumor activity [71]. If, along with
the multiple C2-C3 bonds, a catechol group is present in the ring B, then such a molecule
demonstrates a high affinity for the angiotensin-converting enzyme [72]. Substituents
3-OH, 5-OH, 6-OMe, 6-OH, 7-OH, 3′-OH, and 4′-OMe were identified as key fragments of
the molecules when interacting with multidrug resistance-associated protein 2 (MRP2) [55].

It was also interesting to determine the specificity of the interaction of flavonoid
groups. Thus, flavones (6-hydroxyluteolin, scutellarein), flavonols (kaempferol), and fla-
vanones (naringenin, eridioctyol) exhibit a high affinity to the estrogen receptor α (ERα),
which has been proven in both AutoDock and Glide software. Representatives of these
groups of flavonoids can be recommended in the development of antitumor drugs for the
treatment of breast cancer [71,73]. Interaction with this protein target results in several
types of patient management, such as estrogen hormone replacement therapy and pre-
ventive care for breast cancer [74]. Flavones (baicalein, ladanein), flavonols (quercetin),
and their glycosylated forms (baicalin) interact with the E protein of various strains of the
dengue virus causing fever with a similar name [54]. Such ligands may be used in the
treatment of this disease [75]. It is worth noting that the width of the confidence interval of
the scoring function calculated for flavones is quite large. This indicates a different degree
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of protein-ligand binding within this group. Flavones (5-hydroxyflavone) and flavonols
(quercetin) have a high affinity for the potassium channel Kir6.1, acting on which some
cardiovascular diseases can be treated [56]. Flavones (luteolin, apigenin) can serve as the
basis of drugs that control the pathogenicity of Helicobacter pylori due to their ability to
bind to one of the main virulence factors of bacteria of this species—vacuolating cytotoxin
protein (VacA) [76]. Flavonols (quercetin), their glycosides (avicularin, hyperoside), and
flavanonols (taxifolin) with comparable effects function as arginase inhibitors, which is
a potential target for the development of new approaches to the treatment of leishma-
niasis [77]. Flavan-3-ols (catechin, epicatechin) are characterized by the best values of
the scoring function when binding to the CA II-F complex in comparison with flavones,
flavanones, and flavanonols and are of interest for the treatment of fluorosis [78]. According
to the silico results, flavanones (eriodictyol) and flavanonols (taxifolin) are able to inhibit
transcription factors Tec1 and Rfg1 because they can be used in the treatment of infection
caused by Candida albicans fungus [79].
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3.5. Structure—Biological Activity Relationship: Quantitative Analysis

Meta-analyses of scoring functions calculated during molecular docking was studied
in [54,56,71,73,76–79]. General information about the average affinities of each flavonoid
group to the biological targets is presented in Tables 3 and 4 for AutoDock and Glide
software, respectively.

Table 3 provides the experimental data on docking flavonoids of different groups
to several biological targets, as performed by AutoDock. The extracted affinity values
demonstrate the potential ability of small molecules to form supramolecular complexes
with selected proteins in their active sites resulting in multiple pharmacological effects.
Apparently, flavanonols form significantly more stable complexes with ERα compared with
flavonols, which was approved by in vitro experiment [57]. This may be explained by the
non-plane structure of the carbon skeleton, which can be quite similar to estrogen. Fur-
thermore, the affinity value for flavones with protein VacA seems high compared to other
targets, so it may be interesting to perform similar calculations for other flavonoid groups.
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Table 3. Comparison of the average affinity of flavonoid groups to target proteins in the AutoDock.

Flavonoid Group
Affinity to the Biological Target, kcal/mol *

ERα
E Protein

DENV2-Thai
E Protein

DENV2-My
Potassium

Channel Kir6.1 Protein VacA

Flavones −8.3 ± 0.6 −7.8 ± 1.3 −7.5 ± 0.9 −6.7 ± n/a −8.5 ± 0.3

Flavonols −7.9 ± 0.5 −8.4 ± n/a −8.6 ± n/a −8.1 ± n/a -

Flavonol
glycosides - −8.1 ± n/a −7.7 ± n/a - -

Flavanones −8.5 ± n/a - - - -

Flavanonols −9.0 ± n/a - - - -

* A lower value of the scoring function corresponds to a better binding.

The results obtained from the meta-analysis of affinity values of flavonoid groups
to target proteins calculated via Glide are summarized in Table 4. Compared with the
previous table, the heterogeneity of values is obvious. The scoring functions for flavonoids
docking with complex CA II-F and RFG1 were notably lower than for other biological
targets. Surprisingly, the results of Glide calculations confirmed the previous in silico data
obtained by AutoDock: Flavonones demonstrate a significantly higher affinity with ERα
and RFG1 than other flavonoid groups. At the same time, flavan-3-ols show significantly
higher scoring functions with complex CA II-F.

Table 4. Comparison of the average affinity of flavonoid groups to target proteins in Glide.

Flavonoid Group
Affinity to the Biological Target, kcal/mol *

ERα Complex CA II-F Arginase Tec1 Rfg1

Flavones −8.5 ± 0.3 −3.3 ± 0.0 - - -

Flavonols −8.8 ± n/a - −8.1 ± n/a - -

Flavonol
glycosides - - −8.2 ± 0.3 - -

Flavanones −10.2 ± n/a −2.7 ± 0.2 - −7.7 ± n/a −6.7 ± n/a

Flavanonols - −2.9 ± n/a −8.2 ± n/a −7.7 ± n/a −4.9 ± n/a

Flavan-3-ols - −4.7 ± 0.6 - - -

Isoflavones −9.0 ± 0.20 - - - -

Dihydrochalcones −8.3 ± n/a - - - -

* A lower value of the scoring function corresponds to a better binding.

In general, the data of Glide calculations seemed more appropriate for decision support
in further study design due to significant differences in affinity values compared with
AutoDock.

3.6. Limitation Section

The study was performed in agreement with the PRISMA guidelines to prevent
reviewer biases in the review process, including independent, duplicate inclusion and
exclusion of identified studies, risk of bias assessments, and data extraction.

Nevertheless, it is important to notice that systematic reviews summarize the limita-
tions of primary studies [80]. Thus, to measure the reliability of current research, it was
necessary to assess the bias risk in the studies included in the review. There are many
guidelines for considering bias in papers for randomized controlled clinical trials. However,
to our data, there is no such instrument for in silico studies. Because of this, we developed
average criteria that can serve this goal based on the literature information and considered
discussion with professional society (see Table 2).
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The domains included in our research primarily cover all types of bias that are cur-
rently understood to affect the results of molecular docking. These are:

• Bias arising from ligands selection process;
• Bias due to ligands structure optimization;
• Bias arising from protein target selection process;
• Bias due to protein target processing;
• Bias arising from molecular docking process;
• Bias in results assessment.

Ligand filtering results in optimization of calculation processes and gives opportu-
nity to exclude the molecules with huge volumes, low safety profiles, and inappropriate
pharmacokinetic behavior from the ligand set [81,82]. Ionization is a critical parameter
of ligand structure because it impacts the formation of a supramolecular complex with
the target. Because of this, the ionization assessment should be performed correctly with
reference to the pKa value of small molecules and the pH value of media [83,84]. Another
important stage of ligand structure optimization is the generation of all possible conformers
that would be characterized by the lowest potential energy and optimal bond lengths,
angles, and dihedrals. The affinity of conformers may differ significantly, so it influences
the bias risks [85,86]. The resolution is one of the most obvious characteristics of the protein
target models. In case it is higher than 2.5 Å, the position of atoms cannot be identified
unequivocally, and such structures should not be used for molecular docking [87]. Fur-
thermore, the method of target structure generation makes sense because only the NMR
spectroscopy gives an opportunity to get the 3D model at the conditions that would be
near to the biological ones [88]. However, it was shown that the protonation of amino acid
residues, as well as the addition of missing residues and side chains, that was performed
by a special toolkit, decreased the bias risks during the target structure generation by X-ray
crystallography and cryogenic electron microscopy [89,90]. Checking the histidine charge
and addition of metals are the critical stages that should be performed during the protein
target processing to make the model biochemically correct [91,92]. The choice of an appro-
priate tool for molecular docking is a main issue of the bias domain. The software differs by
using algorithm methods and scoring functions. The Monte-Carlo algorithm and empirical
scoring functions demonstrate better results compared with other calculation methods
and are confirmed by in vitro methods [87,93]. Finally, to assess the results of molecular
docking correctly, we should be sure that the parameters of modeling are appropriate
for the analyzed system, and the re-docking serves this goal [94]. The visual control of
docking results is an essential part of in silico research that helps exclude the presence of
structural artifacts that are formed by computer calculation [95]. Of course, the verification
of the molecular docking results by in vitro study should be performed. Only chemical
experiments may confirm the results of theoretical modeling [96]. Additionally, the risk
of bias by a conflict of interest of authors was assessed using the information regarding
funding source.

The developed methodology was implemented in the articles (Figure 5) and used for
the meta-analysis [54,56,71,73,76–79]. Whilst this study included a total of eight papers,
there is very poor information about the processing of protein targets and the assessment
of results of molecular docking. Apparently, it is a result of a gap in clear guidelines of
reporting for in silico studies that would sign the critical issues of such research. Moreover,
half of the studies or even more reported the use of methods during protein target selection
and molecular docking characterized by a confirmed high risk of bias. It may be associated
with the absence of suitable target models and free software. Based on the data, it can be
considered that there are limitations in the applicability of the evidence. Of course, these
results of bias risk assessment in our meta-analysis cannot be transferred to all studies
that conducted the molecular docking of flavonoids. However, the tendency reflects the
necessity of paying more attention to the quality of such papers. Nevertheless, the conflict
of interests was not identified in the analyzed studies.
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We could not assess publication bias with a Begg funnel plot or an Egger test because
the included studies were quite heterogeneous. In general, we may have missed some
potentially eligible studies in languages other than English or Russian and studies with
negative results.

We have not identified any other systematic reviews or meta-analyses that evaluated
the pharmacological effects of flavonoids based on in silico studies. Meanwhile, we cannot
draw any conclusions about agreements and disagreements with other reviews.

3.7. Lead Compounds

Molecular docking makes it possible to evaluate the affinity of the ligand with the tar-
get. Based on this criterion, it is possible to compile a list of the most active compounds for
each specific interaction of a flavonoid with a macromolecule. The structures of the leader
compounds are shown in Figure 6. Thus, taxifolin (dihydroquercetin) has a high potential
for tuberculosis therapy, as it has demonstrated the ability to interact with DNA gyrase and
aminoacyl-tRNA synthetase—two enzymes involved in the translation, transcription, and
replication of bacterial DNA [97]. The pathogenic effect of the Ebola virus can be disrupted
by affecting the vital protein structures VP40, VP35, VP30, and VP24 with flavonoids such
as gossypetin or taxifolin. These compounds proved to be leaders in the study of more
than 4500 flavonoids [98]. It is interesting to notice that despite the near structures of
the molecules, they have similar interaction patterns with only two proteins among four
targets. Both taxifolin and gossypetin can form H-bonds with His124, Gly126, and Gln170
in VP40. Furthermore, they interact with Gln103, Ser123, Asp124, and Asn185 or Gln184
in the active site of VP24. Key amino acid residues in VP35 are Gln244(2) and Asp302 for
taxifolin, while for gossypetin, it is only the Gln241(2). Finally, gossypetin interacts with
Asp158(2), Arg196, and Gln233(2) in VP30. However, taxifolin forms H-bonds with Arg196,
Gly200(3), Gln233, Ser234, and Phe238 residues of the VP30. Differences in the affinity of
these flavonoids are apparently associated with the spatial structure of the heterocyclic
ring. Gossypetin has a plane aromatic structure, and the taxifolin molecule is characterized
by two chiral centers. Thus, taxifolin can exist as four stereoisomers. Saltillin, taxifolin, and
6-methoxyflavone have a high affinity for N-myristoyltransferase (NMT), a target for the
treatment of candidiasis [99]. There is also information indicating the feasibility of studying
a number of flavonoids in the following diseases: lung cancer [100], breast cancer [50,71],
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metabolic syndrome [49], pathological conditions caused by Pseudomonas aeruginosa [101],
hypoestrogenism [102], and depressive disorders [103].
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Taxifolin is one of the most promising lead compounds, mentioned in Figure 6, due
to its wide range of pharmacological activity, rich raw material base, and high safety
profile. Prospective taxifolin use in medicine was discussed in a number of articles and
reviews [104–106]. Moreover, in Russia, this compound is registered as an active phar-
maceutical ingredient, and in Europe, it is a supplement (Regulation EU 2017/2470).
(2R,3R)-taxifolin is the most investigated isomer.

It is known that the (2R,3R)-taxifolin obtained from natural sources is safe [107]. The
low toxic potential of taxifolin was predicted by different methods, such as the ORISIS
DataWarrior program [108]. Furthermore, it is quite important to note that not only the
major trans-stereoisomer is characterized by a high safety profile. The VirtualToxLab
platform determined (2S,3S)-taxifolin as one of the lowest toxic molecules from the set
of 29 molecules that demonstrated affinity to the SARS-CoV-2 main protease [109]. This
software is based on calculating individual binding affinities to 16 validated off-targets,
including intracellular receptors, metabolic enzymes, and the hERG potassium channel.
Taxifolin is the safest flavonoid in comparison with eriodictyol, luteolin, isoscutellarein,
and quercetin. It has shown in silico potential as the main protease of SARS-CoV-2 [108].

Despite the great pharmacological potential, this flavonoid is characterized by low
bioavailability [110,111]. To explain the observed efficacy, research on taxifolin metabolism
was performed. More than 190 structures of different compounds were found as the result
of taxifolin biotransformation by the HPLC-MS/MS method [112]. There was research that
tested most of them as COX-2 inhibitors by in silico study [39]. To evaluate the affinity of
metabolites to target, molecular docking was performed. A significant number of these
compounds were absent in databases. For this reason, the ligand set of 214 3D-structures of
all taxifolin stereoisomers and their metabolites was generated manually using ChemBio-
Draw Ultra (v. 13.0, PerkinElmer, Waltham, MA, USA). Then, the GOLD software (v. 5.4,
CCDC, Cambridge, UK) was used to conduct the modeling of intramolecular interaction.
During this research, all metabolites were classified into three groups. Compounds that
contain all three rings of the initial structure (A, B, and C—see Figure 1) can interact with the
three most important amino acid residues in the active site of the target: SER353, SER530,
and ARG513. Metabolites that contain two rings (A, C or B, C) do not interact with ARG513
and, for this reason, are less selective. The third group consists of molecules with only one
ring. These compounds have a low affinity to COX-2. Thus, research in the field of the
design of anti-inflammatory drugs based on taxifolin should be continued.
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Crystal engineering is another area of taxifolin research. Microtubes are one of the most
significant achievements in the development of new crystal forms in the last 5 years [113].
They were synthesized by precipitation with water from an ethanol solution of taxifolin
in the presence of urea. This modification showed notable differences in comparison
with the initial active pharmaceutical ingredient. To characterize the properties of the
new taxifolin forms in silico, the 3D-models of nanoparticles were generated based on
the different crystal unit structures. The simulation of the nanoparticle deformation was
carried out by molecular dynamics modeling to evaluate the physical characteristics of
taxifolin modifications. This investigation was performed using Materials Science Suite
2018-2 (Schrodinger, New York, NY, USA). A cross-shaped pore was observed at the core
of the taxifolin nanoparticle (Figure 7). The diameter of this pore varied from 4 nm at the
narrow part to 11 nm at the widest part. These findings make it possible to suggest that
the taxifolin microtubes are a mesoporous material. Taxifolin microtubes may have an
application in drug delivery.
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A wide range of pharmacological activity of flavonoids is a potential for the design of
drugs on these bases. After the in silico stage, preclinical and clinical trials are required to
verify the safety and efficacy of the candidate molecule. At this moment, on the website
https://clinicaltrials.gov (accessed on 25 January 2021) 253 clinical trials of drugs containing
flavonoids have been registered. It is worth noting that the number of trials currently being
conducted or planned for the near future is 45, and these include pathologies such as
post-thrombotic syndrome, sickle cell anemia, chronic kidney disease, psoriasis, glaucoma,
type 2 diabetes, and others. It is interesting to note that the possibility of flavonoids being
used for the COVID-19 treatment is being studied in 11 trials.

3.8. COVID-19 Treatment

Undoubtedly, the Coronavirus disease 2019 (COVID-19) pandemic is one of the most
socially important problems nowadays. There have been approximately 448 million con-
firmed cases of COVID-19, including more than 6 million deaths, reported by the World
Health Organization (WHO) [114]. According to these epidemiological data, it is extremely
important to find effective remedies against COVID-19. The flavonoid group is a promis-
ing object for this purpose. Indeed, thousands of investigations have been carried out.
Obviously, most of them were conducted by in silico approaches.

For instance, one study aimed to establish flavonoid’s affinity to the spike protein
of SARS-CoV-2. The ligand set included apigenin, chrysin, fisetin, galangin, hesperetin,
luteolin, morin, naringin, quercetin, and rutin. Docking studies showed that all flavonoids

https://clinicaltrials.gov
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demonstrate considerably high binding affinity, but naringin is characterized by the highest
one. This compound shared hydrophobic interactions with the following residues: Asn290,
Ile291, His374, Leu370, Leu410, Ala413, Pro415, Phe438, and Gln442. Furthermore, hy-
drogen bonds were formed with Asp367, Thr371, Lys441, Glu406, and Ser409 amino acid
residues [115].

Six polyphenolic compounds, namely leucopelargonidin, morin, myricetin, eriodictyol,
taxifolin, and enterodiol, exhibited a significant binding affinity for SARS-CoV-2 papain-
like protease (PLpro) and main protease (Mpro) during another investigation via molecular
docking [116]. The analysis of free binding energy showed that taxifolin has the highest
affinity against Mpro and forms H-bonds with Cys145, Ser144, Gly143, Asn142, Leu141
(hydroxyl groups of ring A), Glu166, Met165, His164 (carbonyl group of ring C), Tyr54,
Pro52, and Met49. Morin was determined as a compound with the highest affinity toward
Plpro. Hydrogen bonding interactions of morin were observed with the following amino
acid residues: Gly266, Asn267 (hydroxyl groups of rings A and B), Thr301 (carbonyl group
of ring C), Tyr273, Tyr264, and Tyr268 (phenolic hydroxyl groups of ring B). Moreover,
further molecular dynamics simulation showed that the binding of bioactive molecules
on the corresponding proteases is characterized by structural changes that can disrupt the
functions of enzymes and, thus, enhance their antiviral activity.

Another approach considers angiotensin-converting enzyme 2 (ACE-2) receptors as
a target. Molecular docking was used to predict the activity of flavonoid sets, including
hesperetin, chrysin, kaempferol, galangyn, myricetin, and rutin [117]. The last molecule
showed the best binding affinity to the ACE-2 enzyme. It was found that rutin forms the
strongest hydrogen bond with Asn149, Met270, His345, Lys363, Asp368, and Thr445 amino
acid residues of the ACE-2 protein. Likewise, this compound has the π-anion interaction
with Arg269, π-π stacking interaction with Phe274, π-alkyl interaction with Ala153, and
alkyl interaction with Pro346, Met360, and Cys361 residues.

Moreover, in our recent study, 163 flavonoids were screened [118]. ATP-binding
domain SP3, main protease NSP 5, RNA-dependent RNA polymerase NCP12, and endori-
bonuclease NCP15 were considered as targets. Much of the recent COVID-19 treatment
research in silico has focused on the identification of lead compounds, while our study pays
more attention to the binding affinity of the all-flavonoids groups to biological targets. The
median binding energies were −7.4, −7.4, −8.9, and −7.3 kcal/mol for the ADP-binding
domain NSP3, main protease NSP5, RNA-dependent RNA polymerase NSP12, and en-
doribonuclease NSP15, respectively. Therefore, these data suggest that flavonoids can find
application in the complex therapy of COVID-19.

The potential benefits of flavonoids in COVID-19 therapy were confirmed by a random-
ized controlled trial [119]. Groups that obtained quercetin in combination with antiviral
drugs demonstrated significantly lower serum levels of critical markers involved in COVID-
19 severity and better respiratory rate. However, further clinical trials with other flavonoids
and bigger group sizes are required.

These results are very promising and require further research.

4. Conclusions

Currently, there is a trend of article numbers increasing, which focuses on the computer
modeling of flavonoid interactions with biological targets. Such studies help to accumulate
the data on lead compounds that can find medicinal implementation, including COVID-19.
In drug discovery, in silico research plays the role of the first screening stage. Assessment
of bias risk showed the necessity of clear guidelines of reporting for in silico studies that
would sign the critical issues for such research. The results of computational calculations
should be supported by a large-scale study of candidate molecules by in vitro, ex vivo, and
in vivo methods. The implementation of this translational research model is a promising
way for the creation of new phytomedicines based on flavonoids.
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