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ABSTRACT

Information diffusion on social media has become a major approach in people's daily communication, and the
value contained therein holds great interest for both academic and industrial communities. However, the process
of information diffusion is affected by many factors, and the complexity of that process has not been fully
explored. Most previous studies have concentrated on the strategies and driving forces in social media operations,
as well as the identification of influential seed nodes, yet analyses of consumer behavior choice in the process of
information diffusion are rare. Thus, This study proposes a multipoint cross-diffusion model based on MapReduce,
which improves the single-point model and can better describe the product information diffusion process. On that
basis, a Bayesian network model of product information diffusion was constructed to analyze the associations
between factors and consumer behaviors. Moreover, the posterior probability of consumer behavior choice
affected by a series of factors in the information forwarding process was considered and analyzed. This study's
findings can be used to estimate the posterior probability that users will purchase, forward, or stay silent, thereby
predicting the effect of product diffusion and obtaining the quantitative relationships between factors and con-
sumer behavior.

1. Introduction

As consumer-led media and technology—such as mobile intelligent
terminals, WeChat, and social media websites—rapidly develop, con-
sumers not only produce large quantities of data online but also spon-
taneously build their own marketing networks, thus blurring the
boundaries between enterprises and consumers. As content providers and
information publishers, consumers have built their own media networks.
Additionally, enterprises publish abundant product information through
various forms of social media—such as network platforms and intelligent
media terminals—to attract the attention of potential users. Incentives
have been used to encourage consumers to share product information on
their self-organized social media, such that consumers are transformed
from people who browse product information and purchase products into
product promoters and enterprise collaborators. Such partnerships can
benefit both enterprises and consumers.

As a social media platform, Facebook is valued at more than 100
billion US dollars. This is mainly because posts by Facebook users, and
the information users exchange, contain potential market demand. This
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represents not only a market resource that enterprises strive to explore
but also the commercial value of Facebook as a social media network.

Consumers have their own circles of friends on social media. Pre-
sented with massive amounts of data and media advertising, consumers
do not always know how to make the right choices. Therefore, for reasons
of trust, they prefer to receive recommendations from friends in their
communication circles.

Information diffusion is mainly a rumor-diffusion model developed
based on the epidemic model. It assumes that the relationship between
people is unknown, and this relationship constitutes an invisible
network. Therefore, the epidemic model is applicable for studying a
global model (e.g., trends and speed in information diffusion) when the
specific propagation path is not the focus.

Proposed by Anderson in 1991, the classic epidemic disease model
SIR (Susceptible-Infectious-Recovered) (Cheng et al., 2013; Dybiec,
2009) has been widely used and extended, especially in the spread of
rumor. Scholars have made many improvements to the SIR model, and
these improved models are summarized as follows. The -classic
rumor-spread model is the DK (Daley and Kendal) model (Daley &
Kendal, 1964, 1965), which posits that rumor spread is similar to the
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transmission of infectious disease. In the DK model, people are divided
into three categories: the ignorant, the spreader, and the terminator. The
SSIC model (Tian et al., 2015) can effectively interfere with the spread of
rumors on super networks (Denning, 1985) by (1) identifying rumors and
isolating them, and (2) improving the openness of rumors and allowing
the public to know more about them to weaken their spread. The SEIR
model (Xia et al., 2015) considers the attractiveness and ambiguity of
rumor content. Mean-field equations are used to characterize dynamics
in the SEIR model in homogeneous and heterogeneous networks. In the
SEIR model, rumors spread faster in the BA network than in the WS
network, while the diffusion scales of rumor spread in the two networks
are exactly the opposite. Mean-field equations are used to describe the
dynamics of rumor models to better understand the characteristics of
rumor spread and analyze the key events in rumor spread in complex
networks. A novel SIR model (Wang et al., 2013) was applied to homo-
geneous/heterogeneous networks. The finding was that rumors spread
faster in homogeneous networks than in heterogeneous networks, while
the diffusion scales of rumor spread in the two networks are exactly the
opposite. Naumov and Tao (2017) added marketing into the standard
threshold model of social networks and studied properties of the influ-
ence relation in social networks.

In general, rumor spread has been improved using the SIR model,
mainly in two aspects: (1) increasing the attributes of the study objects
and (2) constructing network structures based on different attributes.

The epidemic disease model and the improved rumor spread model
differ from the information diffusion model in networks self-organized by
consumers in two ways. First, information is diffused in different ways. In
the epidemic disease model, node infection is forced and spontaneous,
while information diffusion in a consumer network is voluntary and
optional. Second, the targets are different. Scholars study rumor models
to suppress and disturb rumor spread in hopes of minimizing its impact.
Meanwhile, studies of product information diffusion in consumer net-
works aim to encourage consumers' forwarding behaviors and maximize
their effects (Kempe et al., 2003; He et al., 2012; Li et al., 2013).
Therefore, the epidemic model and the improved rumor model based on
the epidemic model cannot abstractly represent information dissemina-
tion processes in consumer networks.

Moreover, existing information diffusion models are mostly single-
point models that do not consider multipoint cross diffusion. In reality,
users often use several types of social media, so different social media
tend to share some users in common who often spread messages across
platforms and groups; thus, cross-diffusion situations often arise. As such,
single-point models cannot adequately represent real information diffu-
sion processes. Hence, a multipoint cross-diffusion model improves upon
the shortcomings of single-point models and can better describe product
information diffusion processes. Moreover, the results obtained by such
an approach have great theoretical significance as well as practical value.

This study has conducted a multi-attribute analysis on the informa-
tion diffusion process. In previous studies, scholars mainly focused on the
analysis of the diffusion network structure and took a single influence
factor into account. However, information diffusion process is subjected
to multiple factors and the complexity is not fully considered. This study
investigates information diffusion process from four aspects, namely,
network structure, information attribute, users' attributes and the
leakage of users' information in transmission process. More specifically,
the strong and weak connections in social networks, information over-
load, controversies and emotions in information, the connection strength
among users, the influence of users, the users' transmitting behaviors and
the threats to security and privacy are examined in detail; in addition, the
effects of the above factors on information diffusion and the influence
relations among these factors are also analyzed. This section has provided
antecedent analysis for the subsequent modeling of information diffusion
process.

The diffusion model of the products' information is established. This
study proposes a multi-point cross communication model based on
MapReduce so as to spread the information in a wider range. It should be
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noted that the cross communication among multiple points is not to
transmit information simply and blindly and but to realizes the following
two functions: (1) filtering the information in one group; (2) sorting the
filtered dataset and finding the most interesting and unique subject for
diffusion. On that basis, the Bayesian network (BN) model for describing
the diffusion of products' information is established, in which the cor-
relations of influence factors and users' behaviors among the propagation
of products' information are analyzed. Further, this study explores the
model's three attributes, namely, conditional independence attribute,
factorization attribute and the minimum independent set attribute,
respectively. The established BN model of products' information diffu-
sion and the related features analysis provide a data structure of
knowledges representation and inference bases for subsequent inference.

We propose some effective methods for behavioral inference, which
refers to acquiring the posterior probability of the consumers' behavior
choice in information transmitting process under a series of influencing
factors. This study employs sum-product inference algorithm for gener-
ating the information diffusion clique tree, then applies influence passing
algorithm in the clique tree and acquires the marginal posterior proba-
bilities of the consumers purchasing, transmitting products' information
and taking no actions.

The structure of this paper is as follows. The subsequent section de-
scribes the construction of the multipoint model of product information
diffusion; this includes a multipoint cross-diffusion model based on
MapReduce technology and a Bayesian model of product information
diffusion. The third part explores consumer behavior reasoning in the
process of product information diffusion. The fourth part presents the
experiment and the discussion, and the fifth part provides the
conclusions.

2. Multipoint model of product information diffusion

In this study, the data used for the multipoint cross-diffusion model
were extracted from different social media or servers; thus, the data were
distributed. MapReduce can perform the parallel processing of distrib-
uted data (Fang et al., 2013); thus, multipoint cross diffusion based on
MapReduce was proposed in this study.

As a probabilistic digraph, a Bayesian network can intuitively express
people's causal knowledge with digraphs, conduct multifactorial
modeling, graphically represent joint probability distribution between
random variables, and deal with various uncertain factors. Therefore, in
this study a Bayesian network was used to represent the data structure of
the product information diffusion network, extract the multiattribute
characteristics of the information diffusion process, and model the in-
formation diffusion process.

2.1. Multipoint cross diffusion based on MapReduce

Current social media platforms mainly have two forms of information
diffusion: diffusion within one point and point-to-point diffusion, where
the “point” refers to a social media network (e.g., a WeChat group or QQ
group) that has community structures composed of closely related nodes.
These relationships are attached to the abovementioned social media and
are diffused within a specific small circle. Due to the clustering of the
community structure, trust between the nodes is high, and information
spreads rapidly within the community.

However, a drawback of such a clustered social media structure is that
it hinders large-scale information diffusion. Thus, to spread information
in a broader context, some network porters are needed to diffuse infor-
mation among multiple points. These network porters can be nodes
formed by the crossover of multiple social media or seed nodes cultivated
by enterprises. Among these, nodes formed by the crossover of multiple
social media may be ordinary nodes whose cross-diffusion behavior is
random. Nevertheless, the cross-diffusion behavior of seed nodes is
mostly deliberate. Therefore, they might not be that closely connected
with other nodes within the social media network. However, their



X. Sun et al.

important function is to perform cross diffusion and promote the spread
of new information so that information can quickly transfer from a fixed
small circle and spread across a wider range.

However, as opposed to blindly forwarding information, the nodes
responsible for cross diffusion between multiple points perform two
functions: they filter information within the group and sort filtered data
sets to determine the theme set of product information diffusion.

2.1.1. Information filtering in multipoint cross diffusion

There is substantial information spread in social media, and data sets
are quite large. However, in cross diffusion the nodes aim to focus on one
specific data subset and reduce the amount of data to be processed by
removing content that does not interest users. The nodes might make a
subsequent analysis of the removed content. The data subset might be the
most unique and valuable part of the entire data set, and it might also be
the part the seed nodes intention to deliver the most. In all of these cases,
it is necessary to use MapReduce's parallel extension capability to tra-
verse all the information and determine the needed parts.

Filtering is a mechanism that extracts data from a subset and provides
them for subsequent analysis. It is also a method for focusing on the data
in a subset that the seed nodes are most interested in. Filtering serves as
preparation for subsequent, more valuable actions.

The mapper task performs an evaluation function on each record it
receives. Normally, the types of keys/values output by mapper are the
same as the input ones since the record has not been changed. Function f
was applied to each record, and a Boolean-type value (true or false) was
returned. If the function returned true, the current record was saved;
otherwise, it was discarded. Mapper outputs keys and values in turn.

2.1.2. Determination of the top sets in multipoint cross diffusion

A relatively small TopK records set was obtained based on ranking the
data sets obtained after filtering, regardless of size.

By ranking the filtered themes, the most valuable TopK theme set, or
the one satisfying a particular preparation, was found. A ranking function
or comparison function was defined to determine which of the two
themes had greater communication value from the perspective of the
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seed nodes. Then, the model could be used to find the most valuable
record in the entire data set through MapReduce.

This model used mapper and reducer at the same time. The mapper
task found the TopK of the social groups at one specific point in the local
community; then, all independent TopK sets were collected in the
reducer for the final TopK operation. Because the largest number of data
records that mapper outputs is K, and K is usually small, only one reducer
is required to handle the final operation. Figure 1 shows the structure of
the TopK model of the themes.

2.2. Bayesian network modeling of the product information diffusion
process

2.2.1. Determination of random variables in the product information
diffusion process

The selection of variables for use in the Bayesian network modeling of
the information diffusion process was performed based on three aspects:
network structure, information attributes, and user attributes. The vari-
ables were defined as follows:

1) Network structure

Cross diffusion: By breaking the clustering within the community
structure of social media that hinders the large-scale diffusion of infor-
mation (Molaei et al., 2020), cross diffusion enables information diffu-
sion in multiple groups.

2) Information attributes

Theme: Product information purposefully created by enterprises is
diffused on social media. Additionally, social media users post messages
about specific products to form a theme. The themes for cross diffusion
were screened by TopK in MapReduce.

Emotion conveyed by each piece of information: this includes dis-
putes over a specific theme (Fu et al., 2019) or thought, including posi-
tive and negative information (Zhu et al., 2020).

TopK Single point Topk
mapper
TopK Single point Topk
mapper
Single pojint Topk
._' e ~
mapper >
»  TopK Final Topk
Single point Topk reducer
TopK _|—‘p_>
mapper —>
TopK Single poin{ Topk
mapper
TopK Single point Topk
mapper

Figure 1. TopK model of the theme.
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Origin of information: Social media produce a great deal of real-time
content at an incredible rate, and relationships between users can affect
users' judgment of information. Meanwhile, the value of the information
will in turn affect relationships among users. Therefore, the source of the
information is important for information diffusion.

Resonance of users toward the information: The way emotions
conveyed by information resonate with users is of great importance for
information forwarding.

3) User attributes

User state: This refers to seed nodes, diffusion nodes, and information
nodes. Seed nodes have a large number of connections affecting the
diffusion of information, and are usually an effective information source
in product information diffusion (Li et al., 2019). Their most important
function is to inform consumers about new products and trigger large
information cascades. Diffusion nodes (Lin and Li, 2021) drive users'
forwarding behaviors along with the information cascades triggered by
the seed nodes. It is often difficult for information nodes to launch long
chain responses, but they have the advantage of quantity and are also the
creators of ultimate value.

Connection strength between nodes: This includes strong and weak
connections. Weak connections provide a large number of bridges con-
necting other networks, and abundant weak connections diffuse new
information, playing a leading role in information diffusion. Strong
connections bind user nodes together through intimate personal re-
lationships. Almost all social relationships occur between intimate
friends who are likely to know each other in real life. Strong connections
contribute to spreading human behaviors on social media, either online
or in real life, and strong connections are more influential among
individuals.

User effect: This refers to behaviors or abilities affecting others
without obvious compulsory measures or direct orders.

User preference: Whether users are interested in the information they
receive.

User activity (Wang et al., 2021): User activity has high- and
low-attribute values.

Limited user attention: Whether the information attracts users.

Similarities between users: This refers to the convergence of user
attributes in terms of behavior, interest, activity, language, and other
aspects. Similar individuals are more likely to be connected than dis-
similar individuals.

User behavior: This includes three behaviors: forwarding, purchasing,
and becoming information nodes. Forwarding refers to spreading infor-
mation users receive in their own social media. Purchasing means that
users are interested in the product recommended by the information and
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then purchase it to create value, thus becoming value nodes. Becoming
information nodes refers to users seeing information but not responding
to it. For the convenience of subsequently analyzing the model features,
each variable was represented by a corresponding symbol (Table 1).

2.2.2. Construction of the Bayesian network model of information diffusion

A general way to build a structure is through backward construction.
This begins with a variable we are interested in (e.g., user behavior),
whose prior probabilities we then try to determine. If the probability is
uncertain because it depends on other factors, then other factors will be
added as the father nodes of the variable and brought into the network.
However, when determining the structure, it should be noted that
approximation is difficult to avoid.

For the above variables, we can construct a situation where a variable
depends on another variable. There are many weaker effects in addition
to the relationships between the above variables. However, if they were
all taken into consideration, the network would become very compli-
cated. From the perspective of representation, such networks are difficult
to understand and fix, and the parameters are difficult to determine.
Moreover, since Bayesian network reasoning is strongly dependent on
connection function, the addition of such edges would undoubtedly make
the cost of using the network very high. Figure 2 shows the network
structure of product information diffusion and its corresponding symbol
representation.

Generally speaking, each variable in the model is associated with a
conditional probability distribution (CPD). This is used to specify the
distribution of the value of this variable under the condition that each
joint assignment of its father node is known. For nodes without father
nodes, CPD is subject to an empty variable set. Thus, CPD was trans-
formed into a marginal distribution, such as P(T) and P(N). The network
structure of information diffusion constituted the Bayesian network
Bdfussion together with CPD.

In B#fussion_there are two types of special variable nodes, one of which
is “S-Strength of Connection.” Variable S is referred to as the multiplexer
of CPD. In other words, the value of the selected variable is a copy of one
of the values of its father nodes.

Packaged CPD variables are another type of special variable
node—namely, “N-Near” and “I-Effect,” whose values were obtained
externally and determined by the values of other variables.

2.3. Characteristics of the Bayesian network of information diffusion
In this study, a Bayesian network was used as the data structure

framework to show the diffusion process of product information on social
media. A local probability model was combined with this framework to

Table 1. Symbolic representation, type, and value of variables in information diffusion networks.

Name of variable

Symbolic representation

Type Value

Cross diffusion
Connection

Theme

Emotion conveyed by information

Origin of information

Resonance toward the theme

User state

Connection strength between nodes

User effect

User preference

User activity

Limited user attention
Similarities between users

User behavior

D-Cross diffusion
C-Connection
T-Themes
E-Emotion
0O-Origin
R-Resonance
U-Users

S-Strength of connection
I-Effect
F-Preference
A-Activity
L-Limited attention
N-Near

B-Behavior

Binary variable
Binary variable
Integer variable
Binary variable
Boolean variable
Binary variable
Three-valued variable
Binary variable
Binary variable
Binary variable
Binary variable
Binary variable
Binary variable
Binary variable

{d® to the disadvantage of, d' to the advantage of}

{c° hard, c' easy}

{e® negative, e! positive}

{0° no, o' yes}

{r° not friends, r! friends}

{u® information node, u! diffusion node, u? seed node}
{s® weak, s! strong}

{i® small, i* big}

{f° disinterested, f! interested}

{a® low, a' high}

{I° not attracted, I! attracted}

{n° low, n' high}

{b° forward, b! purchase, b*> information node}
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Figure 2. Network structure and symbolic representation Gggusion Of product information diffusion.

define joint distribution. Below, a series of characteristics of the Bayesian
network of information diffusion are analyzed.

2.3.1. Conditional independence of the model

In Bdfusion the edges denote direct dependencies. For instance,
“whether the user will resonate with the information depends on the
content and implied emotions of each message” and “nodes depend on
their father nodes” are the semantic core of the Bayesian network. This is
the conditional independence hypothesis implied by BYsion: when fa-
ther nodes E and T are given, R is conditionally independent of all
nonchild nodes in the network:

(RLO,U,I|E,T).

In other words, once the content and emotion implied by each mes-
sage are known, whether the user will resonate with the message will not
be affected by the information provided by any variable other than the
child node. Similarly, “whether it is easy for users to befriend and

connect with each other is determined by the similarity between the
users.” That is, with the father node N given, C is conditionally inde-
pendent of all other nonchild nodes in the network:

(CLO,U,IAN).

To put it another way, under the condition of given N, it is very
important to confirm the independence of C and O,U,I,A, which will be
used in the follow-up reasoning. That is, once the value of N, the father
node of C, is known, the reliability of C will not be affected by any in-
formation directly or indirectly related to its father node or other
ancestor nodes. However, information about its descendant nodes (e.g.,
B) can still change our judgment by affecting the reasoning, which
comprises the core semantics of the Bayesian network.

2.3.2. Factorization of the model
The Bayesian network of information diffusion is a graph with CPD as
the note that defines a joint distribution for the information diffusion
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process following Bayesian chain rules. In this section, the I— map feature
of Bdffusion is analyzed.

Here, Bdffusion is taken as an example to prove the mutual trans-
formation characteristic of I — map and factorization.

Proposition 1: Let G be a Bayesian network structure defined on the
variable set X and P the joint distribution in the same space. If G is an I—
map of P, then P is factorized according to G.

Proof: Assuming that Xi, ..., X, is a variable in X and is a topological
order relative to G, the chain rules of the probability are first applied:

P(X,,...X, HPX|XI, X,). m

One of the factors, P(X;|X1,...,Xi_1), is considered. As G is the I— map
of P, (X; L NonDescendants,, |Paxi)_ (P) Based on this assumption, all the
father nodes of X; are concentrated in the set Xi,...,X;_;. In addition, this
set does not contain any descendant node of X;. Thus,

{X,..,X,} =Pa, UZ, @

where ZCNonDescendants,,. According to the local independence and
decomposition properties of X;, it can be concluded that (X;LZ|Pay,).
Thus, the following formula is workable:

P(XilX1, ..., Xi1) = P(X| Pay,). 3)
To apply the conversion to Bfsn factorized by the chain rules, the
following formula can be obtained:

P(T,F,L,E,R,0,U,1,A,N,C,S,B) = P(T)P(F|T)P(L|F)P(E)P(R|T, E)
P(N)P(C|N)P(S|C)P(B|L,R,0,U,I,A,S). 0)

Therefore, the conditional independence assumption contained by
Bdiffusion jg that Bdifusion i 3 series of smaller CPDs factorized from P, which
is the distribution of an I — map. It should be noted that this demon-
stration is constructive and is a method to factorize construction factors
given the conditions of distribution P and graph G.

In general, 2" — 1 independent parameters are needed to specify a
joint distribution defined among n binary random variables. If the dis-
tribution is factorized according to graph G, while each node of graph G
has at most k father nodes, then the number of independent parameters
required will be less than n - 2%, In many applications, assumptions can be
made about specific zones where the variables mutually affect each
other. Although each variable is usually associated with a number of
other variables, it often depends only on a small number of other vari-
ables. Therefore, in many cases, even when n is very large, k will still be
very small. Thus, the number of parameters in the Bayesian network is
exponentially smaller than that of joint distribution. This is a major
advantage of the Bayesian network.

The conditional independence contained in the Bayesian network and
the factorization of distribution factors form the basic relationship be-
tween local probability models. Conditional independence implies
factorization, and the contrary is true as well—that is, factorization ac-
cording to G implies relevant conditional independence.

Proposition 2: Let G be a Bayesian network defined on random vari-
able set X, and let P be the joint distribution in the same space. If P is
factorized per G, then G is an I — map of P.

Proof: Let P be the probability distribution factorized per B&ffusion 1t
should be proven that I(B##on) works in P. (LLT,R,E|F), the indepen-
dence assumption of L, should be taken into consideration. To prove that
it works in P, the following formula should be proven:

P(LLT,R,E,F)=P(L|F). ®)

According to the definition,
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P(L,T,R,E,F)

PT.R.EF) ©

P(LLT,R,E,F)=

Based on the chain rules of the Bayesian network, the numerator of the
fraction is P(T)P(F|T)P(L|F)P(E)P(R|T, E). By marginalizing the joint
distribution, the denominator obtained is

P(T,R,E,F) ZP T,R,E,F,L)

(
—ZP(T) (FIT)P(E)P(R|T, E)P(L|F) -
(T)P(FIT) (E)P(RIT, E)>_P(LIF)
P(T)

T)P(F|T)P(E)P(R|T,E).

The last step was performed because P(L|F) is a distribution defined on L.
Thus, the sum is 1, and the following formula can be obtained:

P(L,T,R,E,F)
P(T,R,E,F)
P(T)P(FIT)P(E)P(R|T, E)P(LIF) _

= P(T)P(FIT)P(E)P(R|T,E) PLIF).

P(LLT,R,E,F) =
(€)]

3. Consumer behavior reasoning in information diffusion

Cooper (1990), for the first time, conducted a formal analysis of the
computational complexity of probability reasoning in the Bayesian
network. Variants of the variable elimination algorithm were invented
independently by multiple teams. An early variant came from the peeling
algorithm proposed by Cannings et al. (1976 & 1978), which is a sys-
tematic exposition of genetic lineage analysis.

The general problem of probability reasoning in the graph model
proposed a local message passing algorithm in the Bayesian network
featuring the multiple tree structure. These views provoked the devel-
opment of various algorithms that are more common, including a series
of methods proposed by scholars, such as Schachter (1998) and Dechter
(1999), all of these methods end with the variable elimination algorithm.

Following the idea of the multi-tree algorithm, Kim and Pearl (1983)
presented a simple approach, namely generating multiple trees with
clustering nodes, but the efficiency of the process is low. The
sum-product message passing algorithm was developed by Shenoy and
Shafer (1990). They described it with a very broad form, which, in
addition to the probability graph model, also applies to many factoriza-
tion models. The sum-product-division method was developed in a series
of papers by Lauritzen and Spiegelhalter (1988) and Jensen et al. (1990).
Studies in this direction have also produced the theory that takes message
passing operations as a re-parameterization implemented on the initial
distribution. The sum-product-division algorithm described by Andersen
et al. (1989) formed the basis of the Bayesian network system, which
then led to the extensive application of this method.

Consumer behavior reasoning used the clique tree data structure to
pass information between adjacent cliques. In the Bayesian network of
information diffusion described above, consumer behavior reasoning
was performed to estimate the posterior probability of user behaviors
such as purchasing, forwarding, and staying silent; predict the effect of
product information diffusion; and obtain the quantitative relationships
between the factors and user behavior.

3.1. Generation of clique tree via sum-product reasoning
Assume

P(AvB7C7D):¢A¢B[pC(ﬂD' (9)

The marginal probability distribution of D is

=>"3">"P(4,B,C,D). (10)
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It is worth noting that the effect caused by the multiplication and
addition of factors is exactly the same as that caused by the multiplication
and addition of numbers. Calculating any marginal probability includes
calculating the product of all CPDs and summing all variables other than
query variables. In general, the task to be completed can be regarded as
calculating the value of the following formula:

> I1e an

z ped

The limited scope of a factor is the key idea for efficiently calcu-
lating this formula; thus, some sum formulas can be “inserted” and
executed only on the product of a subset of the factors. The basic idea of
the algorithm is to sum one variable at a time. When one variable is
summed, all factors associated with it can be multiplied to generate a
product factor.

Now, let us return to B4fusson  the information diffusion network
constructed in this study, as shown in Table 2. The Bayesian chain rule of
this network was asserted as

P(T,F,L,E,R,0,U,I,A,N,C,
P(O)P(U)P(I)P(A)P

= or(T)pr(F, T)p (L, F)op

on(N)pc(C,N)ps(S,

B) = P(T)P(F|T)P(L|F)P(E

S,B) = (E)P(RIE,T)
)P(C|N)P(S|C)P(BIL,R,0,U,1

Jox(

B,

V@5 (

\ LA, S)
R.E, T)go(0)py(U)e(I)pa(A)

(N
p(E
C ,R,0,U,IA,S).

(12)

P(B) was calculated by the above sum-product reasoning method. The
following elimination sequence was used:

T,F,E,N,C,L,R,0,U,IA,S.

Theorem 1: If I, . is the induction graph of factor set @ and one
specific elimination sequence <, then the scope of each factor produced
in the variable elimination process is a clique in I .. Figure 3 shows the
clustering tree educed according to Theorem 1.

In view of the sum-product reasoning process in Table 2, altogether
there are 12 factors, i1, ......1y1 5, Whose scopes are shown in Table 2. 7; (F,

E), the effect generated from y/(F, T,R,E), participated in the calcula-
tion of y,. Therefore, there is an edge from C; to C,. Similarly, the factor
73(L, R) was generated according toy and used to calculate . Thus, an
edge could be added from C3 to Cg, with the complete structure shown in
Figure 2. The edges in the figure are annotated by direction to indicate
the information flow between clusters during the execution of the sum-
product algorithm. Each factor in the initial factor set @ is also corre-
lated with cluster Cj; for example, ¢p(F,T) (corresponding to the
CPDP(F|T)) is correlated with C;, and ¢gz(B,L,R,0,U,I,A,S) (corre-
sponding to the conditional probability P(B|L,R,0,U,I,A,S)) is correlated
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By multiplying the existing factors, each step in the sum-product
reasoning generated factor y; and eliminated a variable in y; to
generate the new factor 7;; then, 7; was used to generate another factor.
Here, y; was considered as a calculated data structure that carried the
“effect” 7; caused by y; and generated effect 7; to be used in y;.7;. Each
intermediate factor in the sum-product reason algorithm could only be
used once at most: when ¢; generated y;, it could be removed from
factor set @ and could not be used again. Therefore, the clustering di-
agram obtained through an implementation of the sum-product
reasoning must be a tree. If T is the clustering tree generated by the
sum-product reason algorithm in one specific factor set @, C; and C; are
two adjacent clusters, and C; sends effect 7; to C;. Then, the scope of 7;
will exactly be C; N G;.

A digraph induced by effects is a directed tree where all effects flow to
the single cluster of a final result, which is referred to as the root of the
digraph. Here, the root of the tree is assumed to be at the “top,” so all
effects sent to the “root” are upward. If C; is located on the path from C; to
the root, then C; is at the upstream of or C; is at the downstream of C;.

If the clustering tree produced by sum-product reasoning satisfies the
running intersection property, then it is a clique tree. For the running
intersection property, assume T is a clustering tree on @, V7 is the vertex
of T, and ey is its edge. Whenever there is a variable X that makes X € C;
and X € G, X will also be in every cluster of the only path from C; to G;,
and T will have the running intersection property.

It is easy to verify that the running intersection property is applicable
to the clustering tree shown in Figure 3. For example, B appears in Cg and
Ci2, so it also appears in the clique on the path between them—that is, Cy,
Cs, Co, C10, and Cy1. The clustering tree that satisfies the running inter-
section property is called a clique tree, where a cluster is also referred to
as a clique.

3.2. Consumer behavior reasoning in product information diffusion based
on a Bayesian network

Behavior reasoning used the clique tree data structure to pass ef-
fects between adjacent cliques, send all effects to the cliques that
function as the root, and obtain the posterior probability of P(B). The
factor set y was calculated in the clique tree, and the effects were sent
along the edge. Each clique received the incoming effect factors and
multiplied them, summed one or more variables, and then sent the
effects to another clique.

The variable elimination algorithm in the clique tree was briefly
explained. This algorithm was executed by passing the effects in the
clique tree. Let T be a clique tree composed of Cy, ...... Cy to generate the
initial potential energy starting from the multiplication of the factors
assigned to each clique. Then, the clique tree data structure was used to

Table 2. One-time execution of the sum-product reasoning task.

Step Variables eliminated Factors used Variables involved New factors

1 T F,T,R,E @1 (T),05(F,T),pr (R,E, T) 71 (F,R,E)

2 F L,F.RE ¢, (L,F), 71 (F,R,E) 75(L,R,E)

3 E LR,E ¢z (E), 72(L,R,E) 73(L,R)

4 N CN on(N).9c(C.N) 24(C)

5 c s,C ¢s(8,C),74(C) 75(S)

6 L B,L,R,0,U.IA,S ¢5(B,L,R,0,U,I,A,S),73(L,R) 76(B,R,0,U,L,A,S)
7 R B.R,0,U,IA,S 76(B,R,0,U,I,A,S) 77(B,0,U,LA,S)
8 o) B,0,U,I,A,S 90(0),77(B,0,U,IA,S) 78(B,U,1,A,S)

9 U B,U,IA,S oy(U),78(B,U,LA,S) 79(B,L,A,S)

10 I B,IA,S ¢1(I),79(B,1,A,S) 710(B,A,S)

11 A B,A,S 94(A),710(B,A,S) 711(B,S)

12 S B,S 711(B;S),75(S) 712(B)
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Figure 3. Clustering tree of the sum-product reasoning in Table 2.
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pass effects between adjacent cliques and send the effects to the cliques
that function as the root.

Each ¢ € @ was assigned to some cliques a(¢), and the initial po-
tential energy of C; was defined as

)= ] » (13)

ga(p)=

As each factor was assigned to one clique, the formula obtained is
[o=11v; a4
4 J

Let C, be the selected root clique. Variable elimination was imple-
mented in this clique starting from the leaf node of the tree and moving
inward. More precisely, for each clique C;, Nb; was defined as the index
set of the adjacent cliques. Let p, (i) be the upstream neighbor of i on the
path to root clique r. Except for the root clique, each clique C; performed
an effect transfer calculation and sent the effects to its upstream neighbor
CPr(i)-

The effect from C; to C; can be calculated by the following formula:

éi—y’:Zy/i H Einiv (15)

Ci=Sij  ke(Nbi—{j})

It seems that C; multiplied all the effects coming from its other
neighbors with the initial potential energy, which made its scope
behind y, one factor in this clique. Except for the variables in the cut set
between C; and C;, it summed all the variables and sent the result as an
effect to Gj.

This effect was transferred upward along the tree to the root clique.
After the root clique received all the effects, it multiplied these effects
with its initial potential energy to gain the result—a factor called belief
that was denoted by B,(C;). It was represented as follows:

Po(C)=>"T]e- 16)

X-Cr ¢

The first step was to generate an initial potential set correlated with
different cliques. Initial potential energy ;(C;) was produced by multi-
plying the initial potential set with the initial factor designated by clique
C;. For instance,

W4(C,N)=gn(N)pc(C,N).

Cliques containing B (e.g., C12) were selected as the root cliques.
Then, the following steps were carried out:

(1) In C;: T was eliminated by running > v (F, T, R, E); the scope of
T

the factor as the result was F,R,E, which was sent to C3 as &,_,5(F,R,
E).

(2) In Cy: Define f5(L,F,R,E) = &,_5(F,R,E) -y,(L,F,R,E); the factor
on L, R E was obtained by eliminating F and then sent to C3 as
5243(L7R7E)'

(3) In Cs: Define f3(L,R,E) = &,_3(L,R,E) -y3(L,R,E); &;_¢(L,R), the
factor on L, R was obtained by eliminating E.

(4) In C4: N was eliminated by running » w,(C, N); the result was

N

taken as the factor £,_,5(C) and sent to Cs.

(5) In Cs: Define 5(S,C) =¢&4.5(C) -y5(S,C); €5_12(S), the factor on S
was obtained by eliminating C.

(6) In Ce: Define f¢(B,L,R,0,UIA,S) =é;_¢(L,R) -wy(B,L.R,0,U,LA,
S); &6-7(B,R,0,U,I,A,S), the factor on B,R,0,U,I,A,S was ob-
tained by eliminating L.

(7) In C7: R was eliminated by running >y, (B,R, 0, U,I,A,S); the

R

result was taken as the factor &,_g(B,0,U,I,A,S) and sent to Cg.
(8) In Cg: O was eliminated by running > w¢(B,0,U,I,A,S); the result
0

was taken as the factor &g_ (B, U,I,A,S) and sent to Co.
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Figure 4. Ci3, the behavior reasoning of the root clique in the information
diffusion clique tree.
(9) In Cy: U was eliminated by running ) wo(B,U,I,A,S); the result
U

was taken as the factor &;_,,0(B,I,A,S) and sent to Cyo.
(10) In Cyo: I was eliminated by running > y4(B,I,A,S); the result was
T

taken as the factor &;y_1(B, A, S) and sent to Ci;.
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Figure 5. Marginal posterior probability of P(B).

(11) In Ci1: A was eliminated by running > w4, (B,A,S); the result was
A

taken as the factor £;,_,1,(B,S) and sent to Cy».
(12) In Ci2: Define f15(B,S) = 711-12(B, S)75-12(S).

P12 was a factor defined on B, S to code the joint distribution P(B,S).
With all the CPDs multiplied and all the other variables eliminated, the
calculation of P(B) now only requires the sum total of S.

It is worth noting that the clique should collect all incoming effects
from its downstream neighbors before sending any effect to its up-
stream neighbors. If a clique has completed the collection of all the
incoming effects, then the clique is ready. Thus, when the algorithm
just started, C;, C4 was ready, and any calculation related to it could be
conducted at any time during the running process. However, C, was
not ready until it received the incoming effect from C;. So, for the
clique tree whose root is in C;2, C;C2C3CsC7CgCyC19C11C4Cs5C12 is the
legal execution order. Figure 4 shows the set of effects transferred by
the algorithm throughout the executing process.

At this point, the behavior reasoning process has been completed in
the Gyiussion information diffusion process with the influences of many
factors; that is, the marginal posterior probability of consumer
behavior choice has been calculated—namely, the posterior probabil-
ity that users will choose purchasing, forwarding, or staying silent.

4. Experiment and discussion

Assume the probability of all influencing factor nodes is randomly
generated. Then, the marginal posteriori probability of consumer
behavior choice was calculated according to the behavior reasoning
algorithm (Figure 5). With the algorithm run 500 times, the mean and
variance of user behavior probability of forwarding, purchasing, and
becoming information nodes were as follows: mean(b’) = 0.3312,
mean(b') = 0.3366, mean(b?) = 0.3322; std(b°) = 0.0271, std(b') =
0.0281, std(b?) = 0.0275.

Since the prior probabilities of the influencing factors are random, the
result indicating that the posterior probability of consumer behavior
choice fluctuates near the mean is reasonable.

5. Conclusion

Based on product information diffusion on social media self-
organized by consumers, this study explored consumers' behavior
choices in the product information diffusion process. The main con-
tributions include the following.



X. Sun et al.

1. Multiattribute Analysis of Product Information Diffusion. Among the
factors affecting the product information diffusion process, those with
important value were extracted, and the causal relationship between
them was analyzed. Reasonable ranges were assigned to the binary,
three-valued, and Boolean variables of those factors to more accu-
rately analyze the complexity of the product information diffusion
process.

2. Bayesian Model of Product Information Diffusion. A Bayesian
network was used to represent the information diffusion process
under the effects of multiple factors. It showed how those factors
influenced each other as well as user behavior choice. It also
explained the process and structure produced by the product infor-
mation diffusion network, thus expressing the product information
diffusion network in a more accurate form.

3. Consumer Behavior Reasoning in Product Information Diffusion. To
obtain the quantitative relationship between factors and user
behavior, a quantitative method was used to estimate the posterior
probability of user behavior choice in the information diffusion pro-
cess affected by multiple factors.
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