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Consistency of
Cardiogenic Shock
Subphenotypes and Their
Association With Mortality
Cardiogenic shock (CS) manifests heterogeneous
syndrome etiologies, severity, hemodynamics, and
organ dysfunction.1,2 Characterizing heterogeneity in
CS and other critical illnesses may improve clinical
care by facilitating individualized prognosis and
treatment.1,2 We and others have used the unsuper-
vised machine learning partitioning method k-means
clustering to identify 3 clinical subphenotypes of CS
using the clinical and laboratory data.2-4 These sub-
phenotypes—which were labeled noncongested, car-
diorenal, and hemometabolic by Zweck et al—stratify
mortality risk, and facilitate prognostication.2-4

Some have questioned the robustness of sub-
phenotype derivation, and it remains uncertain how
consistent these subphenotypes would be if derived
using different statistical approaches.2 We hypothe-
sized that evaluating heterogeneity in CS using the
alternative unsupervised machine learning ap-
proaches could support complementary derivation of
clinically-relevant supbphenotyes in CS. Accord-
ingly, we applied model-based latent class analysis
(LCA) in a cohort of patients with CS to agnostically
identify CS subphenotypes, determine consistency
with prior groupings, and compare mortality be-
tween groups.

This study was approved by the Mayo Clinic Insti-
tutional Review Board as minimal risk to patients. We
included consecutive unique patients admitted to the
Mayo Clinic cardiac intensive care unit from 2007 to
2018 with an admission diagnosis of CS.4 Congruous
with prior clustering analyses in CS populations, we
used 6 admission laboratory values (lactate, bicar-
bonate, white blood cell count, platelet count, alanine
aminotransferase, and estimated glomerular filtration
rate) as features after multiple imputation for missing
values.3,4 Prior to LCA, we categorized each feature
variable into quartiles. The optimal number of clus-
ters for LCA was empiric based on the lowest value of
the Bayesian Information Criterion.2 Groups were
compared using analysis of variance for continuous
variables and chi-square for categorical variables. The
primary outcome was all in-hospital mortality, eval-
uated using logistic regression adjusted for age,
comorbidities, cardiac arrest (CA), Acute Physiology
and Chronic Health Evaluation-4 score, hemody-
namic support and critical care therapies. Agreement
between clustering algorithms was quantified using
Cohen’s unweighted kappa. Statistical analysis was
performed using JMP Pro 14.1 (SAS Institute).

We included 1,498 patients with CS with a mean
age of 68 � 14 years (37% females); acute coronary
syndrome (ACS) was present in 57% and CA was pre-
sent in 34%. K-means assigned patients to the
following clusters: noncongested (n ¼ 603, 40%),
cardiorenal (n ¼ 452, 30%), hemometabolic (n ¼ 443,
30%) using the nomenclature of Zweck et al.3

LCA determined that a 3-cluster model had the
lowest Bayesian Information Criterion and assigned
patients to the following clusters, which we labeled
based on biomarker characteristics as the non-
congested (n ¼ 487, 32%), cardiorenal (n ¼ 520, 35%),
hemometabolic (n ¼ 491, 33%) groups. Using LCA
cluster assignment, patients in the noncongested and
hemometabolic clusters predominantly had ACS (68%
and 60%) and frequently had CA (37% and 44%),
while patients in the cardiorenal cluster less
frequently had ACS (44%) or CA (22%). Most (83%)
patients were assigned to the same cluster by both
LCA and k-means methods (Figure 1, top) (kappa 0.74
[95% CI: 0.71-0.77] for agreement between cluster
assignment methods).

In-hospital mortality was significantly higher in
the hemometabolic (50.5%), vs noncongested (25.5%)
and cardiorenal (24.4%) clusters (both P < 0.001).
When patients were stratified by both LCA and k-
means cluster, a gradient of mortality was observed,
with the k-means clustering groups demonstrating a
stronger association with in-hospital mortality than
the LCA group (Figure 1, bottom). Patients assigned to
the hemometabolic cluster by either k-means
(adjusted odds ratio [OR]: 2.60; 95% CI: 1.92-3.53;
P < 0.001) or LCA (adjusted OR: 2.10; 95% CI: 1.55-
2.85; P < 0.001) had higher in-hospital mortality.
Patients assigned to the hemometabolic cluster by
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FIGURE 1 Subphenotype Assignment According to K-Means Clustering and LCA and In-Hospital Mortality

Sankey diagram demonstrating agreement among clusters (top) and the in-hospital mortality observed as a function of cluster assignment by

each method (bottom). Note that non-agreement groups generally had small numbers of patients, and mortality estimates should be

interpreted with caution. LCA ¼ latent class analysis.
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both algorithms had the highest mortality (55.6%,
adjusted OR: 2.72; 95% CI: 1.94-3.80; P < 0.001).

This analysis extends prior findings in several
important ways. First, we validated 3 as the optimal
number of subgroups in this population via a
different clustering approach.2-4 Second, both
methods agreed on the cluster assignment in more
than 80% of patients, suggesting that these clusters
may represent conserved biological phenotypes. Pa-
tients labeled as hemometabolic by either method
had more than 2-fold higher risk of adjusted in-
hospital mortality. Finally, these findings highlight
the wide gradient in patient outcomes with CS across
subphenotypes.1

Relevant limitations of our study include retro-
spective cohort design, substantial missingness of
certain laboratory values prior to imputation (eg,
lactate and alanine aminotransferase) such that only
47.8% of patients had complete data, and inclusion of
a mixed CS cohort spanning more than a decade.
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Among several LCA variants, we used one that re-
quires categorical variables as features so we used
quartiles to categorize the continuous variables;
another LCA variant or use of a different approach to
categorization could have yielded different findings.
We were unable to evaluate changes in CS sub-
phenotype during hospitalization.

In conclusion, we confirmed the presence of 3
distinct subphenotypes of CS that differ in clinical
characteristics and outcomes, offering insights into
the heterogeneity within the CS population. Differing
statistical methods produced consistent cluster as-
signments, supporting the potential robustness of
these groups. Future research should seek to explain
the underlying mechanistic differences between
these subphenotypes (ie, potential biological targets),
whether subphenotypes can converge or evolve from
one another over time, and how the subphenotype
may influence treatment responses to permit predic-
tive enrichment in future clinical trials.
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