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model for AML patients based
on multiomics bioinformatic
analysis
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Acute myeloid leukemia (AML) is a highly heterogeneous hematological

malignancy. The bone marrow (BM) microenvironment in AML plays an

important role in leukemogenesis, drug resistance and leukemia relapse. In

this study, we aimed to identify reliable immune-related biomarkers for AML

prognosis by multiomics analysis. We obtained expression profiles from The

Cancer Genome Atlas (TCGA) database and constructed a LASSO-Cox

regression model to predict the prognosis of AML using multiomics

bioinformatic analysis data. This was followed by independent validation of

the model in the GSE106291 (n=251) data set and mutated genes in clinical

samples for predicting overall survival (OS). Molecular docking was performed

to predict the most optimal ligands to the genes in prognostic model. The

single-cell RNA sequence dataset GSE116256 was used to clarify the

expression of the hub genes in different immune cell types. According to

their significant differences in immune gene signatures and survival trends, we

concluded that the immune infiltration-lacking subtype (IL type) is associated

with better prognosis than the immune infiltration-rich subtype (IR type). Using

the LASSO model, we built a classifier based on 5 hub genes to predict the

prognosis of AML (risk score = -0.086×ADAMTS3 + 0.180×CD52 +

0.472×CLCN5 - 0.356×HAL + 0.368×ICAM3). In summary, we constructed a

prognostic model of AML using integrated multiomics bioinformatic analysis

that could serve as a therapeutic classifier.

KEYWORDS

bioinformatic, AML – acute myeloid leukaemia, prognostic model, LASSO, cox
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Introduction
Acute myeloid leukemia (AML) is a highly heterogeneous

group of hematological malignancies that are characterized by

various cytogenetic and molecular heterogeneities (1, 2).

Although substantial progress has been achieved with

combinatorial therapies including radiation, chemotherapy,

immunotherapy and/or targeted therapy, the cure rate of

patients remains only 35%-40% in younger patients (age< 60

years) and 5%-15% in older patients (age< 60 years) (3). Relapse

and refractory disease continue to be major obstacles in the

treatment of AML, with 29% or fewer patients living beyond

5 years.

Several studies have shown that changes in the bone marrow

(BM) microenvironment in AML largely promote distinct

biological processes in leukemogenesis, drug resistance and

leukemia relapse (4). Thus, insights into BM microenvironment

action may provide better diagnosis and treatment strategies for

AML patients.

The BM microenvironment in AML is comprised of

leukemia cells, stromal cells, endothelial cells and distinct

immune cell subsets. Among them, vascular endothelial cells

(ECs) promote leukemia cell proliferation, drug resistance, and

recurrence through paracrine vascular endothelial growth factor

(VEGF), adhesion, and fusion with leukemia cells, resulting in

poor prognosis (5–8). Stromal cells can promote chemotherapy

resistance in leukemia cells through ligand-receptor interactions

(9) such as SDF-1/CXCR4 (10) and VLA-4/VCAM-1 (11).

Adipocytes promote the prol i ferat ion, growth and

chemotherapeutic resistance of leukemia cells by breaking

down stored triglycerides into free fatty acids (12) and

secreting tumor-related proinflammatory cytokines (13).

The leukemia immune microenvironment presents with

immune dysregulation and suppression, leading to an

imbalance of suppressor T cells and effector T cells, T cell

exhaustion and an increase in myeloid-derived suppressor cells

(MDSCs) and leukemia-supporting macrophages compared to

normal bone marrow tissue (14). Recent studies on the

characterization of the leukemia immune microenvironment

could aid in the search for novel prognostic biomarkers and

potential therapeutic targets (15, 16). In addition, treatments

such as chemotherapy, immunotherapy, and combination

therapy to alter the immune microenvironment of AML have

been widely used (17, 18). However, different immune cells have

different effects in AML. Therefore, understanding the

distribution and function of immune-related genes in different

immune cells is of great significance to further explore the BM

immune microenvironment of AML patients.

Here, we investigated the impact and potential mechanisms

of immune-related genes on the prognosis of AML. We are the

first group to screen for hub genes in this disease using

multiomics analysis. We constructed a LASSO-Cox regression
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model to predict the prognosis of AML according to the

characterization of the leukemia immune microenvironment.

The distribution of hub genes in immune cells was revealed

through single-cell sequencing data and may provide the

potential for precise patient stratification and treatment.
Materials and methods

Datasets

The test cohort of AML was downloaded from The Cancer

Genome Atlas (TCGA) database (https://www.cancer.gov/) and

includes mRNA data from 151 cases (RNASeq V2), miRNA data

from188 cases (Illumina HiSeq miRNAseq) and Illumina

Human Methylation450 Bead Array data from 140 cases.

Samples were selected for the study according to the following

criteria: 1) acute myelocytic leukemia was pathologically

diagnosed, 2) all three kinds of data were available for the

patient, and 3) the clinical information was complete. Finally,

97 patients were selected for our following study.

The other datasets were obtained from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

The independent validation cohort, GSE106291 dataset (251

samples), which was generated using the GPL18460 (Illumina

HiSeq 1500, Homo sapiens) platform.

The single-cell RNA sequence dataset GSE116256, including

16 untreated samples (D0), was used to reveal the distribution of

hub genes in immune cell types. The immune gene set, including

776 genes, was acquired from a previous study (19).
Screening of candidate genes and
hierarchical clustering

Differential mRNA and miRNA expression were analyzed by

the DESeq2 (20) function (P<0.05, |logFC|>1). For each probe in

the methylation data, the value shown is the b value (b =U/

(M+U+1)), where M is the methylated probe signal strength and

U is the unmethylated probe signal value. The methylmix

package (21) was used to analyze the correlation between the

gene methylation level and mRNA expression value (Pearson

correlation coefficient test, R>0.5, P<0.05). Unsupervised

hierarchical clustering was performed (Euclidean distances and

ward.D2 method) based on survival-related immune genes

(SIGs) to establish an immunogenomic classification of

TCGA-AML patients.
Immune infiltration analysis

The enrichment scores of 28 immune signatures in each

AML sample were quantified using single-sample gene set
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enrichment analysis (ssGSEA) (22). Stromal, immune, and

estimate scores were further calculated to evaluate tumor

purity and immune cell infiltration in tumor tissues based on

the mRNA expression data using the ESTIMATE (Estimation of

STromal and Immune cells in MAlignant Tumor tissues using

Expression data) algorithm (23). The ESTIMATE algorithm is

based on the immune signature genes and stromal signature

genes in the mRNA data, and then calculates the immune score

and stromal score by ssGSEA.
Protein–protein interaction network
construction and gene ontology
functional enrichment analysis

mRNA interaction data were obtained from the STRING

database (https://string-db.org/) (24). The threshold of

interaction score is 0.4. The PPI network was established using

Cytoscape software (25). The Database for Annotation,

Visualization and Integrated Discovery (DAVID, https://david.

ncifcrf.gov/) (26, 27) was used for GO enrichment analysis (P <

0.05), and the results were plotted by the GO plot package (28).
Survival analysis and prognostic model
construction

A Cox regression model was constructed to identify

immune-related genes that significantly correlated with the OS

(SIGs) of AML patients in TCGA. The genes that met the

standard of P < 0.05 were used for subsequent study. Least

absolute shrinkage selection operator (LASSO)-penalized Cox

regression analysis (29, 30) was applied to distinguish the most

important SIGs and to construct a prognostic model for AML

based on a linear combination of the regression coefficients.

Kaplan-Meier survival curves and receiver operating

characteristic (ROC) curves were used to test and validate the

performance of the classifier.
scRNA dataset analysis

We employed the Seurat (31, 32) and SingleR (33) packages

to generate Uniform Manifold Approximation and Projection

(UMAP) plots and reveal the distribution of hub genes in each

immune cell type.
Patients and samples

A total of 55 patients with newly diagnosed AML were

enrolled between Jan 2016 to Dec 2020 at the Xinqiao Hospital

of the Army Medical University in China. Samples were selected
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for the study according to the following criteria: 1) acute

myelocytic leukemia diagnoses were based on morphological

findings, karyotype, and immunophenotypic features of

leukemia cells by consultant hematologist, 2) patients were

newly diagnosed, and remained untreated at the time of

collection, 3) the clinical information was completed.
Molecular docking

The virtual screening of molecular docking was performed

using AutoDock Vina 1.1.2 (34) to predict the most likely

optimal ligands. The three-dimensional structure of hub genes

was retrieved from the Protein Data Bank (https://www.rcsb.

org/). A library of 2115 FDA approved compounds were

extracted from ZINC15 druglike database (http://zinc.docking.

org/). The visualization of active interactions between proteins

and compounds was performed by Discovery Studio Visualizer

v4.5.0 (BIOVIA).
Results

Classification of AML based on immune-
related genes that significantly affect
patient prognosis

For a more extensive study of immune genes in AML, we

retrieved transcriptome, microRNA, and DNA methylation

profile data and integrated clinical information for 97 samples

from TCGA database (Table S1). And the flowchart of analysis is

shown in Figure S1. A Cox proportional hazard regression

model was employed to analyze 776 immune-related genes

(19) in the mRNA expression data of 97 samples (P<0.05),

and 98 survival-related immune genes (SIGs) that significantly

affected the survival of AML patients were identified (Table S2).

Using unsupervised clustering analysis (Euclidean statistics

and complete linkage method) of 98 SIGs, those 97 samples were

clustered into three distinct immune subtypes (Im1: immune

cluster 1, Im2: immune cluster 2, Im3: immune cluster 3) based

on the gene expression signature (Figure 1A). As shown in

immune gene heatmaps, most of the SIGs were highly expressed

in the Im1 and Im3 clusters but expressed at low levels in the Im2

cluster (Figure 1B). Kaplan-Meier survival analysis revealed that

the prognosis of the Im2 cohort was significantly better than that

of the Im1 and Im3 cohorts (Figure 1C, log-rank test, P=0.0008).
The immune infiltration was significantly
different in different cluster

As the immune microenvironment was significantly

correlated with the occurrence and development of AML, a
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single-sample gene set enrichment (ssGSEA) algorithm was

utilized to explore differences in the immune microenvironment

among the three immune clusters. The results showed that the

Im2 cluster had fewer infiltrating immune cells than the Im1 and

Im3 clusters (Figure 2A), and the specific infiltration of immune

cells in different clusters is shown in Figure S2. Consistent findings

demonstrated that the immune scores were significantly lower in
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the Im2 cluster (Figure 2B, unpaired t test, P < 0.001), while tumor

purity was significantly higher in the Im2 cluster but significantly

lower in the Im1 and Im3 clusters (Figure 2C, unpaired t test, P <

0.001). Generally, we can conclude that patients with less immune

infiltration and lower immune scores may have a better prognosis

than those with more immune infiltration and higher

immune scores.
B

C

A

FIGURE 1

Unsupervised clustering analysis of AML patients based on 98 survival-related immune genes. (A) All 97 TCGA-AML patients were divided into 3
clusters (green: Im1 cluster, red: Im2 cluster, blue: Im3 cluster). (B) Heatmap of 98 survival-related immune genes in different AML clusters. (C)
The Kaplan-Meier survival analyses along with the Log-rank test were used to compare the overall survival (OS) of the Im1, Im2 and
Im3 clusters.
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42 DEG-SIGs were screened by mRNA
expression data analyzing

Based on the significant differences in immune infiltration

and survival trends between the Im2 cluster and Im1/3 cluster,

we defined Im2 as the immune infiltration-lacking subtype (IL

type) and Im1/3 as the immune infiltration-rich subtype (IR

type). To reveal the potential mechanisms of different prognoses

between IL and IR subtypes, an elaborate analysis of the mRNA

expression profiles of the two types of AML patients was

implemented. We performed differentially expressed gene

analyses and identified 1936 differentially expressed genes

(DEGs) with significant differences between IL and IR

subtypes. There were 42 SIG-DEGs which were common

members of 1936 DEGs and 98 SIGs (P < 0.05, |Fold Change|

>2 or <0.5) (Table 1) (Figures 3A, B).
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To elucidate the mechanism of prognosis difference between

IL and IR subtype we obtained the interaction data of the 42

DEG-SIGs from STRING website (https://string-db.org/)

(interaction score > 0.4), and then constructed protein-protein

interaction (PPI) network by Cytoscape.(Figure 3C). Gene

ontology (GO) functional enrichment analysis distinguished

some enriched terms in three subontologies: biological

processes (BP), cellular component (CC), and molecular

function (MF) (Figure 3D). For BP, 42 DEG-SIGs were

enriched in defense response, inflammatory response, and

immune system process. With regard to CC, 42 DEG-SIGs

were enriched in integrin complex, external side of plasma

membrane, and cell surface. For MF, 42 DEG-SIGs were

enriched in cell part, tertiary granule, and whole membrane.

These results may partially illustrate the potential mechanisms of

42 DEG-SIGs affecting the prognosis of AML patients.
B C

A

FIGURE 2

Immune functional characters of 3 AML patients clusters. (A) Heatmap of the Im1, Im2 and Im3 cohorts of 97 TCGA-AML patients using ssGSEA
scores from 28 immune cell types. Violin plots depict the immune score (B) and tumor purity (C) of the Im1, Im2 and Im3 cohorts (***:
P<0.001).
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19 hub genes were screened by
integrated analysis of mRNA expression
data, miRNA expression data and
methylation data

Considering the complex mechanism of leukemogenesis and

progression, we next conducted integrated multiomics analysis

to identify hub genes that were associated with prognosis.

Comparing the miRNA expression profiles of patients between

IL and IR subtypes, we revealed 93 miRNAs that were

significantly differentially expressed (P<0.05, |FC|≥2)

(Figure 4A). A total of 7294 target miRNA genes (TDEmiRs)

were identified using DIANO TOOLS/microT-CDS

(threshold=0.9). Through integrated bioinformatics analysis,

we selected 15 commonly differentially expressed genes from

42 DEG-SIGs and 7294 TDEmiRs between the IL and IR

subtypes (Figure 4C).

Combined analysis of mRNA and methylation profiles

indicated that there were significantly negative correlations

between mRNA expression level and degree of methylation for

355 genes (R < - 0.5, p< 0.05). When these 355 methylation

correlation genes (MethylCor) were cross-referenced with the 42

DEG-SIGs, we identified 6 common genes associated with

immune infiltration and differential expression, methylation

and prognosis between IL and IR subtypes (Figures 4B, C).
A prognostic model based on 5 hub
genes was constructed

Having observed significant differences in immune

infiltration, gene expression and clinical behavior between IL

and IR types, we next developed a LASSO-Cox proportional

hazards regression model based on 19 immune-correlated DEGs

by combining microRNA and epigenetic regulation data. Using

the LASSOmodel, we built a classifier based on the 5 hub genes to

predict the prognosis of AML (risk score = -0.086×ADAMTS3 +

0.180×CD52 + 0.472×CLCN5 - 0.356×HAL + 0.368×ICAM3)

(Figures 5A, B). Kaplan-Meier plots displayed OS differences

between patients in various subtypes (P=3.931×10-06)

(Figure 5C), and the ROC curve suggested that the model can

effectively predict the 1-, 3- and 5-year prognosis of AML

(AUC=0.82, 0.83, 0.99, respectively) (Figure 5D). Consistent

with earlier analysis, we found similar predictive performance

for 151 mRNA samples of the TCGA-AML profi le

(P=3.369×10-06, AUC=0.63, 0.74, 0.83) (Figures 5E, F).
TABLE 1 Common 42 intersecting genes of differentially expressed
genes (DEGs) and survival-related immune genes (SIGs) between
immune infiltration-lacking subtype (IL type) and immune infiltration-
rich subtype (IR type) (P < 0.05, | Fold Change |>2 or <0.5).

DEG-SIGs Parametric p-value Fold-change

ADAMTS3 0.022973 0.37

AKT3 0.0002581 2.31

ANXA5 0.00000001 5.6

APOL3 0.00000009 3.11

ASB2 0.00000017 3.41

CCR5 0.00000025 5.73

CD109 0.00000033 18.68

CD4 0.0000012 3.11

CD52 0.00000041 4.64

CLCN5 0.0000017 2.78

CLIC2 0.0003049 2.5

CREB5 0.0000003 4.64

CSF2RA 0.00000049 2.82

CTSD 0.0000022 2.38

CXCR2 0.0000106 3.13

CYP27A1 0.0001964 4.2

DAPK1 0.00000057 3.52

DPYD 0.00000065 2.97

F12 0.0000034 2.91

FAM49A 0.0000331 2.5

HAL 0.0014438 0.44

HCP5 0.0000109 2.31

HNMT 0.045659 2.23

HRH1 0.0082122 2.03

HSPA6 0.0000058 3.28

ICAM3 0.0000006 2.08

ITGAL 0.00000073 3.37

ITGAM 0.00000081 4.61

ITGB2 0.00000089 3.93

LGALS1 0.0000022 3.18

LSP1 0.00000097 4.77

LST1 0.00000105 5.03

NUCB2 0.00000113 0.43

PLA2G4A 0.00000121 3.87

PTGS1 0.0000015 2.24

S100A4 0.00000129 3.65

SELE 0.0140379 0.48

SFXN3 0.00000137 2.66

SIGLEC10 0.0000046 2.53

SLA 0.00000145 3.17

TNFAIP2 0.00000153 5.44

UPP1 0.000643 2.29
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To test this model further, validation cohorts were obtained

from the GEO database. Kaplan-Meier plots and ROC curves at

1, 3 and 5 years confirmed the prognostic value of the 5-hub-

gene-based model: GSE106291 (log-rank test, P=3.311×10-06,

AUC=0.66, 0.66, 0.61) (Figures 5G, H). After stratification by

disease classification, the results showed that the risk score of the

IL type was significantly lower than that of the IR type

(P=4.39×10-07) (Figure S3). These evaluations demonstrated

that the 5-hub-gene-based model could identify a group of

high-risk patients within conventionally assigned risk groups

and may guide clinical practice.
Frontiers in Oncology 07
The better efficacy of the prognostic
model for the prognosis of AML patients
was further verified by clinical samples

For verifying the prognostic value in the 5-hub-gene-based

model, we collected 6575 genes mutation detected in 200 newly

diagnosed AML patients (TCGA.LAML.mutect.somatic.maf,

https://portal.gdc.cancer.gov/files/27f42413-6d8f-401f-9d07-

d019def8939e) and 38 genes mutation detected in 55 newly

diagnosed AML patients (Xinqiao Hostpital). The common

mutated genes were DNMT3A, IDH1, NRAS, RUNX1 and
B

C D

A

FIGURE 3

Difference analysis of the mRNA expression dataset from TCGA-AML patients. (A) Volcano plot of differentially expressed genes between
immune infiltration-lacking subtype (IL type) and immune infiltration-rich subtype (IR type). (B) Venn plot of the intersecting genes between
differentially expressed genes (DEGs) and survival-related immune genes (SIGs). (C) PPI network of 42 overlap genes DEG-SIGs. (D) The bubble
plot represents the GO functional enrichment analysis of 42 DEG-SIGs.
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B

CA

FIGURE 4

Multiomics analysis of 97 TCGA-AML patients. (A) Volcano plot of differentially expressed miRNAs between IL and IR types. (B) Correlation
between mRNA expression and DNA methylation level of 6 DEG & MethylCor genes. (C) Venn plot of the intersection of DEGs, SIGs, targets of
DEmiRs and MethylCor gene set.
B

C

D

E

F

G

H

A

FIGURE 5

Construction of the COX regression model. (A) LASSO coefficient profiles of 19 candidate SIGs. (B) Tuning parameter (l) selection cross‐
validation error curve. The vertical lines were drawn at the optimal values determined by the minimum criteria and the 1‐SE criteria. (C, E, G) OS
in patients with high vs. low risk scores depicted by Kaplan-Meier plots in the TCGA-AML-97, TCGA-AML-151 and GSE106291 cohorts. (D, F, H)
ROC curves depicting the accuracy of the Cox regression model in identifying AML subtypes with poor prognosis in the TCGA-AML-97, TCGA-
AML-151 and GSE106291 cohorts.
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TET2. In this model classification, the high risk was significantly

associated with the mutation of RUNX1 (p=0.015) and TET2

(p=0.054) considered by chi-square test (Table 2). Kaplan-Meier

analyses of 55 patients with prognostic information indicated

that patients with mutation of RUNX1 (Figure 6A, p=0.0001)

and TET2 (Figure 6B, p=0.2257) were correlated with a poor

prognosis and had a shorter median survival duration.
The diverse distribution of hub genes in
immune cells of AML patients

To explore the value of these five hub genes in AML

pathogenesis, we further identified the single-cell sequencing

dataset GSE116256 to describe the distribution of the 5 hub

genes in immune cells using the Seurat package for clustering

and the SingleR package for annotation (Figure 7A). As shown

in the scatter plot (Figure 7B) and violin plot (Figure 7C), CD52,

ICAM3 and CLCN5 were widely expressed in granulocytes,

monocytes, T lymphocytes, B lymphocytes, dendritic cells and

NK cells, whereas ADAMTS3 was rarely expressed in those cells.
Frontiers in Oncology 09
HAL is highly expressed in granulocytes and monocytes but

rarely expressed in other immune cells. Accordingly, we

hypothesized that these hub genes play various roles through

the regulation of gene expression in specific cells. The hub gene

expression of blood cells in the Protein Atlas database (https://

www.proteinatlas.org/) further confirmed this result (Figure S4).
Investigation of best-fitting compounds
on hub genes

To investigate best-fitting compounds, we performed virtual

screening of molecular docking using the three-dimensional

structure of CD52 (PDB ID: 6OBD), CLCN5(PDB ID: 2J9L),

ICAM3(PDB ID: 1T0P) and 2115 FDA approved compounds in

ZINC15 database. The predicted binding affinities of the top 2 hit

compounds against respective targets are ranked from highest to

lowest. Binding energy (Kcal/mol) for interaction of proteins and

compounds are as follows: CD52 with ZINC164528615

(Glecaprevir) (−6.4 Kcal/mol), CD52 with ZINC3938684

(Toposar) (−6.3 Kcal/mol); ICAM3 with ZINC52955754
TABLE 2 Results of Chi-square test to 5 common mutated genes based on regrouping LASSO model in TCGA-AML database.

Regroup Mutated sample size Normal sample size P-value

DNMT3A high 12 40 0.326

low 8 46

IDH1 high 4 48 0.201

low 1 53

NRAS high 3 49 0.358

low 1 53

RUNX1 high 8 44 0.015

low 1 53

TET2 high 4 48 0.054

low 0 54
front
BA

FIGURE 6

Analysis of hub genes and mutated genes in AML. (A) Kaplan-Meier estimates of the OS according to RUNX1 mutation status. (B) Kaplan-Meier
estimates of the OS according to TET2 mutation status. (wt, wild type; mut, mutation).
iersin.org
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(Ergotamine) (−8.3 Kcal/mol), ICAM3 with ZINC1612996

(Irinotecan) (−8.2 Kcal/mol); CLCN5 with ZINC3978005

(Dihydroergotamine) (−11.8 Kcal/mol), CLCN5 with

ZINC52955754 (Ergotamine) (−11.5 Kcal/mol). 2D visualization

of the most probable interactions of these proteins and candidate

compounds are represented in Figure 8.
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Discussion

AML is a highly heterogeneous malignant tumor with poor

prognosis. A large number of studies have demonstrated that the

immune microenvironment of AML patients is altered

significantly to promote leukemogenesis in AML (35, 36). In
B

C

A

FIGURE 7

scRNA analysis of hub genes. (A) Clustering analysis of the UMAP plot, color coded based on cell types. (B) Overlaying gene expression on
UMAP clusters to illustrate the distribution of hub genes in each cell type. (C) Violin plots of hub genes in each cell type.
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this study, we classified AML patients according to the difference

in the SIG expression signature. The results showed that the

prognosis of AML patients with immune infiltration deficiency

(IL subtype) was significantly better than that of patients with

immune infiltration enrichment (IR subtype), which was

contrary to the effect of the immune infiltration degree in solid

tumors (37). Recent studies have shown that the heterogeneity of

immune infiltration may be affected by the components of
Frontiers in Oncology 11
cytokines in the microenvironment (38, 39) and the expression

of tumor driver genes (40). These heterogeneities were

significantly associated with immunotherapeutic effects.

We further compared the gene expression profiles of IL and

IR patients and found that the functions of genes with

differential expression between the two subtypes were mainly

enriched in defense response, inflammatory response and

immune system process (BP); integrin complex, plasma
B

C D

A

E F

FIGURE 8

Shows 2D interaction representations of the best pose of (A) CD52 with ZINC164528615 (Glecaprevir), (B) CD52 with ZINC3938684 (Toposar);
(C) ICAM3 with ZINC52955754 (Ergotamine), (D) ICAM3 with ZINC1612996 (Irinotecan); (E) CLCN5 with ZINC3978005 (Dihydroergotamine), (F)
CLCN5 with ZINC52955754 (Ergotamine).
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membrane and cell surface (CC); and cellular partial, tertiary

granules, and whole membrane (MF). Consistent with our

results, several studies have confirmed that the biological

functional diversity of the immune system is significantly

altered in the BM immune microenvironment.

Previous studies have constructed many prognostic models

on the basis of diverse omics data. Hu et al. constructed a DNA

methylation-based prognostic model for AML patients (41), but

the accuracy of the model (AUC=0.67-0.75) was lower than that

of our model (AUC=0.82-0.99). A three-miRNA signature was

built for non-M3 AML patients by Xue et al., but due to the lack

of validation by any independent data, its clinical application

value may need further verification (42). A four-gene-based

prognostic model from Huang et al. (43) was also less accurate

(AUC=0.66-0.71) than our model.

These conventional prognostic analyses generally consider

only mRNA, miRNA, or methylation data. To the best of our

knowledge, this is the only study to date to construct a

prognostic model through the integrated analysis of multiple

omics datasets (mRNA, miRNA and methylation data). The

TCGA-AML test dataset and an independent GEO-AML

validation dataset confirm that the model is very effective in

predicting the prognosis of AML patients. Further, the

prognostic model was verified by mutation data of AML

patients in Xinqiao Hospital. Although the data were

limited, it also indirectly proved that the model could

effectively predict the prognosis of AML patients. The model

consists of five hub genes: ADAMTS3, CD52, CLCN5, ICAM3

and HAL.

ADAMTS3 is a member of the ADAMTS family and plays

an important role in the genesis and development of a variety of

tumors (44, 45). Previous studies demonstrated that ADAMTS3

is expressed in mast cells (19), and mast cells have both tumor-

promoting and tumor-inhibiting effects (46), thus leading to

different prognoses in different tumors (47–49). Our study

confirmed that ADAMTS3 expression was significantly

negatively correlated with the prognosis of AML and is rarely

expressed in other immune cells. Therefore, we will pursue

further in-depth analysis of how ADAMTS3 exerts its

antitumor effect through mast cells to explore its potential

therapeutic value.

CLCN5 (chloride voltage gated channel 5) is a member of

the chloride channel family. It is widely expressed in a variety of

tumor cells (50) and can enhance the chemotherapy resistance of

chronic lymphocytic leukemia and multiple myeloma (51, 52).

Hsa-let-7c-5p and hsa-mir-495-3p, two miRNAs that target

CLCN5, were found to be involved in the occurrence and

development of a variety of tumors (53, 54). Our study

confirmed that CLCN5 plays a role in promoting

tumorigenesis in AML, but its specific mechanism needs

deeper investigation.

HAL (histidine ammonia lyase) is the rate-limiting enzyme

of histidine catabolism (55). Kanarek et al. found that tumor cells
Frontiers in Oncology 12
with higher HAL expression levels possess higher sensitivity to

methotrexate. Acute lymphocyte leukemia (ALL) patients with

higher HAL expression were more likely to benefit from

methotrexate treatment (56). In our study, we found that the

expression level of HAL was significantly correlated with the

degree of gene methylation. However, as a demethylation agent,

hypomethylating agent (HMA) alone has difficulty achieving the

intended effect in the clinical treatment of AML (57). We

speculated that the combination of methotrexate and HMA

may achieve better efficacy when changes in HAL expression

are detected. Surprisingly, we found that HAL was only

expressed in granulocytes and monocytes. Consistent with

AML cells, granulocytes and monocytes originate from

myeloid precursor cells (14). Therefore, insight into the

methylation mechanism of HAL and its effect on the innate

immune response and AML cells will be conducive to improving

the therapeutic effect of demethylation agents. We also assessed

the interaction between HAL and hsa-miR-582-3p, which has

been previously indicated as a tumor suppressor miRNA in

AML (58). Thus, deeper investigation of the relationship

between HAL and miR-582-3p will be helpful to further

understand the potential mechanism of malignant progression

of AML.

Our study found that CD52 was widely expressed in

leukemia cells and all types of immune cells. Evidence has

revealed the high expression of CD52 in CD34+ stem cells of

AML (5q-) patients and a significantly negative correlation

between the CD52 expression value and the prognosis of AML

(59), which is consistent with our results. ICAM-3 (intercellular

adhesion molecule 3, CD50) belongs to the ICAM (intercellular

adhesion molecule) immunoglobulin superfamily and plays

important roles in immune response and tumor development

(60, 61). Consistent with our scRNA sequencing results, ICAM-3

is expressed in granulocytes, monocytes and lymphocytes (62).

In vivo and in vitro experiments confirmed that ICAM-3

participates in the proliferation, stemness and radiotherapy

resistance of various tumors through the FAK pathway, PI3K/

Akt pathway or other mechanisms (63–65). Interestingly, we

found that the expression levels of CD52 and ICAM-3 were both

significantly correlated with the degree of methylation but had

opposite impacts on the prognosis of AML patients. Therefore,

the roles of CD52 and ICAM-3 should be considered in HMA

reagent treatment.

In conclusion, using a multiomics analysis and validation

approach, we constructed and validated a novel, 5-hub-gene-

based model that allows robust risk stratification and facilitates

the identification of prognosis in AML. The distribution of the 5

hub genes in immune cells was revealed through scRNA

sequencing analysis. Furthermore, we conducted virtual

screening of three genes (CD52, CLCN5 and ICAM3) with

known protein structure, and found the compounds with the

lowest binding energy with them, which provided ideas for

further searching for targeted inhibitors. Of course, this study
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is limited to bioinformatics analysis, and the proposed

approaches need to be further tested in the clinic.
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