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Abstract
The carboxylative cyclization of o-hydroxy- and o-acetamidoacetophenone with carbon dioxide promoted by the organic base 1,8-

diazabicycloundec-7-ene (DBU) is reported. This reaction provides convenient access to the biologically important compounds

4-hydroxy-2H-chromen-2-one and 4-hydroxy-2(1H)-quinolinone in moderate to good yields using carbon dioxide as the carboxyla-

tion reagent. An acyl migration from nitrogen to carbon is observed in the reaction of o-acetamidoacetophenone.
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Introduction
4-Hydroxy-2H-chromen-2-ones and 4-hydroxy-2(1H)-quinoli-

nones are key structural subunits found in many natural prod-

ucts [1], commercial drugs [2,3] and pharmacologically potent

compounds (Figure 1) [4,5]. Warfarin, for example, is an anti-

coagulant widely used to prevent thrombosis [2]; Novobiocin

has long been established as an aminocoumarin antibiotic [3].

Recent studies revealed that the anticoagulant Dicumarol is able

to inhibit the growth of pancreatic cancer [4]. Roquinimex was

reported as an antineoplastic agent [5]. Traditional methods for

accessing these compounds rely heavily on cyclization reac-

tions using diethyl carbonate in the presence of inorganic bases

[6,7] or Friedel–Crafts reactions using strong and corrosive

acids [8]. In terms of availability and toxicity of the starting ma-

terials, environmental benignity and economical concerns, the

development of an alternative method for the synthesis of these

compounds using carbon dioxide as the carboxylation reagent

[9-16] is highly desirable.

It was previously reported that the α C–H bond in aromatic

ketones readily undergoes a carboxylation reaction with

carbon dioxide in the presence of a suitable base, producing

β-ketocarboxylic acids [17-20]. Given that o-hydroxy- or

o-acetamidoacetophenone is used as the starting material to

react with carbon dioxide, the intramolecular carboxylative

cyclization might provide a convenient access to 4-hydroxy-2H-

chromen-2-one and 4-hydroxy-2(1H)-quinolinone. Indeed, Da

Re and Sandri reported in 1960 that o-hydroxyacetophenone

derivatives react with carbon dioxide (4 MPa) in the presence of
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Figure 1: Selected examples for biologically active 4-hydroxy-2H-chromen-2-one and 4-hydroxy-2(1H)-quinolinone compounds.

Table 1: Optimization of the reaction conditions.a

Entry Base Solvent T/°C p(CO2)/MPa Yield/%b

1 K2CO3 DMF 100 3 29
2 DBU DMF 100 3 49
3 MTBD DMF 100 3 65
4 MTBD DMSO 100 3 68
5 DBU DMSO 100 3 75
6 DBU DMAc 100 3 32
7 DBU THF 100 3 10
8 DBU DMSO 80 3 87
9 DBU DMSO 60 3 65

10 DBU DMSO 80 2 53
11 DBU DMSO 80 0.1 <1

aReaction conditions: o-hydroxyacetophenone (1a, 0.5 mmol), base (1 mmol), solvent (2 mL), 24 h; then n-BuI (1.0 mmol), 80 °C, 4 h. bIsolated yield.

3 equivalents of potassium carbonate at 130–170 °C, yielding

4-hydroxy-2H-chromen-2-ones in moderate yields [21]. From

the viewpoints of solubility, efficiency, and ease of recovery

and reuse, the use of an organic base rather than potassium

carbonate in this reaction would be more promising. DBU and

MTBD were previously reported as suitable bases to promote

the carboxylation of α-C–H bonds in aromatic ketones with

carbon dioxide [17-20]. In extension of our continuous efforts

in developing catalytic transformations of carbon dioxide into

value-added fine chemicals [20,22,23], we report herein the

DBU-promoted carboxylative cyclization of o-hydroxy-

and o-acetamidoacetophenones with carbon dioxide to give

4-hydroxy-2H-chromen-2-ones and 4-hydroxy-2(1H)-quinoli-

nones, respectively, in moderate to good yields under mild reac-

tion conditions. An acyl migration from the nitrogen to carbon

is observed in the reaction of o-acetamidoacetophenone.

Results and Discussion
We started our investigation with the carboxylative cyclization

of o-hydroxypropiophenone (1a) with carbon dioxide to iden-

tify the optimal organic base and reaction conditions (Table 1).

The use of potassium carbonate as base in DMF at 100 °C gave
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Table 2: Carboxylative cyclization of various o-hydroxyacetophenones with carbon dioxide.a

Enty Substrate Product Yield/%b

1

1a 2a

87

2

1b 2b

79

3

1c 2c

56

4

1d 2d

45

5

1e 2e

49

6

1f 2f

36

29% yield of product 2a (Table 1, entry 1). When DBU and

MTBD were used in this reaction instead of potassium

carbonate, a significantly increased yield of 2a was obtained

(Table 1, entries 2 and 3). When switching the solvent to

DMSO, further increased yields were obtained, whereby DBU

showed a higher efficiency than MTBD (Table 1, entries 4 and

5). Other solvents such as DMAc and THF gave dramatically

decreased yields (Table 1, entries 6 and 7). Unexpectedly, we

found that a decrease of temperature from 100 °C to 80 °C in

DMSO led to a higher yield (87%) of 2a (Table 1, entry 8). The

reaction was found to be sensitive to the carbon dioxide pres-

sure and performing the reaction at a lower pressure gave a

distinctly decreased yield (Table 1, entry 10). When the reac-

tion was conducted under atmospheric carbon dioxide, no

carboxylative cyclization product was obtained (Table 1, entry

11). Therefore, the optimal reaction conditions were estab-

lished as following: 2.0 equiv DBU as base, 3.0 MPa of carbon

dioxide, DMSO as solvent at 80 °C for 24 h.

Under the optimal reaction conditions, the substrate scope was

then investigated (Table 2). Compared with o-hydroxypropio-

phenone, o-hydroxyacetophenone gave a slightly lower yield of
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Table 2: Carboxylative cyclization of various o-hydroxyacetophenones with carbon dioxide.a (continued)

7

1g 2g

65

8

1h 2h

42

aReaction conditions: o-hydroxyacetophenone (1) (0.5 mmol), DBU (1.0 mmol), CO2 (3.0 MPa), DMSO (2 mL), 80 °C, 24 h; then n-BuI (1.0 mmol),
80 °C, 4 h. bIsolated yield.

Table 3: Carboxylative cyclization of various o-acetamidoacetophenones with carbon dioxide.a

Entry Substrate Product Yield/%
4 5 4 + 5

1

3a
4a 5a

42 + 35

2

3b
4b 5b

38 + 37

the 2H-chromen-2-one product (Table 2, entries 2 and 4).

o-Hydroxyacetophenone bearing electron-donating alkyl and

ether groups, or electron-withdrawing fluoro and bromo groups

undergoes the carboxylative cyclization reaction smoothly,

affording the corresponding 4-butoxy-2H-chromen-2-ones

2b–2f in moderate to good yields (Table 2, entries 2–6). The

bromo group in product 2f and the alkyne group in product 2g

offer opportunities for further functionalization of these

2H-chromen-2-ones using well-established methods [24]

(Table 2, entries 6 and 7). 2-Hydroxy-1-acetylnaphthalene (1h)

participates in the carboxylative cyclization reaction to furnish

the tricyclic product 2h in moderate yield (Table 2, entry 8).

With the successful DBU-promoted carboxylative cyclization of

o-hydroxyacetophenone at hand, we then extended this strategy

to o-acetamidoacetophenone to synthesize 4-hydroxy-2(1H)-

quinolinone (Table 3). Using 4 equivalents DBU as base in

DMSO at 80 °C, o-acetamidoacetophenone (3a) underwent the
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Table 3: Carboxylative cyclization of various o-acetamidoacetophenones with carbon dioxide.a (continued)

3

3c
4c 5c

32 + 20

4

3d
4d 5d

<1

5

3e
4e 5e

<1

aReaction conditions: o-acetamidoacetophenone (3, 0.5 mmol), DBU (2.0 mmol), CO2 (3.0 MPa), DMSO (2 mL), 80 °C, 24 h; then MeI (2.0 mmol),
30 °C, 4 h. bIsolated yield of separated products.

Scheme 1: Possible mechanism for the carboxylative cyclization of o-acetamidoacetophenone.

carboxylative cyclization reaction to provide 3-acetyl-4-

methoxy-2(1H)-quinolinones 4a and 5a (Table 3, entry 1).

Noteworthy, the acyl group was no longer bound to nitrogen in

the product, which implies that a nitrogen to carbon acyl migra-

tion occurred during the reaction. The derivatization reaction

using iodide compounds at higher temperature led to complex

product mixtures. o-Acetamidoacetophenone substrates

containing methoxy (3b) and bromo (3c) groups also reacted

smoothly to afford the corresponding products (Table 3, entries

2 and 3). The reactions using benzamido- (3d) and p-toluenesul-

fonamido- (3e) acetophenone gave complex mixtures and no

carboxylative cyclization product was observed (Table 3,

entries 4 and 5).

A likely mechanism for the carboxylative cyclization of

o-acetamidoacetophenone with carbon dioxide is proposed as

shown in Scheme 1. The reaction can evolve along two path-

ways: in path A, deprotonation of o-acetamidoacetophenone by
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Scheme 2: Cross carboxylative cyclization reaction.

DBU gives enolate I, which undergoes an acyl migration from

nitrogen to carbon [25,26] similar to the Baker–Venkataraman

O to C acyl migration [27]. After a proton shift from the enol to

nitrogen, the resultant intermediate III is carboxylated with

carbon dioxide in the presence of DBU to afford intermediate

IV, which subsequently undergoes a cyclization reaction to give

V. The product is obtained after derivatization with methyl

iodide. Also, path B in which the N to C acyl migration occurs

after the carboxylative cyclization cannot be excluded.

We also conducted a cross experiment as shown in Scheme 2.

When compounds 3b and 3f were reacted concomitantly, the

corresponding carboxylative cyclization products 4b and 4f

were obtained. No cross products 6 and 7 were detected, which

implies that the N to C acyl shift occurred intramolecularly, not

intermolecularly.

Conclusion
In summary, we have developed a DBU-promoted carboxyla-

tive cyclization of o-hydroxy- and o-acetamidoacetophenones

with carbon dioxide. This methodology provides a convenient

access to the biologically important 4-hydroxy-2H-chromen-2-

ones and 4-hydroxy-2(1H)-quinolinones in moderate to good

yields under mild reaction conditions. While there are prece-

dents for the carboxylation of enolates, a practical protocol was

developed that relies on in situ cyclization to form thermody-

namically stable coumarins. Importantly, the use of an intramol-

ecular in situ trap avoids the problem of decarboxylation during

workup. In case of o-acetamidoacetophenones, an acyl migra-

tion from nitrogen to carbon was observed. The cross experi-

ment showed that the N to C acyl shift occurred intramolecu-

larly.

Experimental
Similarly as described in our previous paper [22], a 20 mL

oven-dried autoclave containing a stirring bar was charged with

o-hydroxyacetophenone (1) or o-acetamidoacetophenone (3)

(0.5 mmol), DBU (1.0 mmol for 1, 2.0 mmol for 3), and 2 mL

dry DMSO. After purging the autoclave with CO2 three times,

the sealed autoclave was pressurized to the appropriate pres-

sure with CO2. The reaction mixture was stirred at 80 °C for

24 h, then the autoclave was cooled to room temperature and

the remaining CO2 was vented slowly. Then n-BuI (1.0 mmol

for 1) or MeI (2.0 mmol for 3) was added into the autoclave and

the reaction mixture was stirred at 80 °C (for 1) or at 30 °C (for

3) for 4 h. The reaction mixture was then diluted with water

(30 mL) and extracted with ethyl acetate (3 × 30 mL). The

combined organic layers were washed with water and brine,

dried over Na2SO4 and filtered. The solvent was removed under

vacuum. The product was isolated by column chromatography

on silica gel (hexane/ethyl acetate 2:1).

Supporting Information
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