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Abstract: Recent technological advances have been permitted to use high-density electroencephalog-
raphy (hdEEG) for the estimation of functional connectivity and the mapping of resting-state net-
works (RSNs). The reliable estimate of activity and connectivity from hdEEG data relies on the
creation of an accurate head model, defining how neural currents propagate from the cortex to the
sensors placed over the scalp. To the best of our knowledge, no study has been conducted yet to
systematically test to what extent head modeling accuracy impacts on EEG-RSN reconstruction.
To address this question, we used 256-channel hdEEG data collected in a group of young healthy
participants at rest. We first estimated functional connectivity in EEG-RSNs by means of band-limited
power envelope correlations, using neural activity estimated with an optimized analysis workflow.
Then, we defined a series of head models with different levels of complexity, specifically testing
the effect of different electrode positioning techniques and head tissue segmentation methods. We
observed that robust EEG-RSNs can be obtained using a realistic head model, and that inaccuracies
due to head tissue segmentation impact on RSN reconstruction more than those due to electrode
positioning. Additionally, we found that EEG-RSN robustness to head model variations had space
and frequency specificity. Overall, our results may contribute to defining a benchmark for assessing
the reliability of hdEEG functional connectivity measures.

Keywords: electroencephalography; functional connectivity; resting-state networks; head modelling;
electrode localization; head tissue segmentation

1. Introduction

Electroencephalography (EEG) is a non-invasive neurophysiological technique that
measures the variation in electrical potentials by means of electrodes positioned over the
scalp [1]. This variation in potentials is associated with neural activity that is generated
inside the brain, referred to as source space, and propagates to the surface, named sensor
space [1]. The analysis of EEG recordings can be used as a proxy to better understand
neural mechanisms in health and disease. So far, most EEG studies have relied on analyses
conducted in the sensor space, to make inferences on neural responses to specific stimuli
(event-related potential analysis) [2,3] or modulations of neural oscillations during task
performance (event-related synchronization/desynchronization analysis) [4–7].

Over the last years, there has been a growing interest in using electrophysiological
techniques to study functional interactions between distant brain regions, namely func-
tional connectivity, especially in the resting-state condition. Different resting-state networks
(RSNs), among which are the default mode (DMN), the dorsal (DAN) and the ventral (VAN)
attention, the language (LN), the somatomotor (SMN) and the visual (VN) networks, have
been detected first using magnetoencephalography [8,9] and then EEG [10–13]. The use of
high-density EEG (hdEEG) systems capable of recording more than 100 signals at different
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scalp locations have been crucial to reliably measure functional connectivity and map
RSNs [14–17]. Specifically, dedicated analysis workflows for hdEEG data were developed
to improve the reconstruction of neural activity in the brain [10–12,18–21], including tools
for signal pre-processing, head modeling and source localization. The use of an appropriate
head modeling strategy is deemed fundamental to take advantage of the superior scalp
coverage provided by hdEEG [22–25]. The localization of neural generators requires indeed
the modeling of neural activity propagation from the sources, located inside the brain, to
the potentials measured by EEG sensors over the scalp. The linear relationship between
source activity and EEG measures is mathematically modeled by means of the leadfield
matrix [17,26]. Notably, an accurate realistic head model has been found to have a direct
positive impact on the performance of source localization algorithms [14,16,17,27–29]. Two
factors primarily contribute to the accuracy of head modeling: head image segmentation
and EEG electrode positioning.

The segmentation of the head image, which can be obtained using the magnetic
resonance (MR) imaging technique, permits the modeling of the topological and physical
properties of each head tissue compartment. To this end, different MR segmentation
methods were proposed, whose accuracy depends on the space where such segmentation
is performed—individual [22,25,30] or template [31–34]—and on the number of considered
tissues, which typically ranges from 3 to 12 [10,22,25,30,35–38]. In a recent study, we
introduced MR-TIM, a computational method for automated head image segmentation in
12 tissue classes [25]. Importantly, we demonstrated the superior performance of MR-TIM
compared to existing methods, which can identify 12 tissue classes by warping a segmented
template image to individual space [10], or can segment the real MR image into 3 to 5 tissue
classes directly in the individual space [35,38].

The accuracy of electrode positions is also very important for the generation of the
leadfield matrix. Electrode positions can be obtained before or after the EEG measurements
using digitization [39,40], photogrammetry [41,42] and 3D scanning [43–46] techniques.
These are influenced to a variable extent by single-electrode localization errors [47] as
well as by errors related to the co-registration of the whole set of electrodes to the head
shape [48]. To the best of our knowledge, no study has yet assessed the impact of different
electrode positioning, as well as of head tissue segmentation techniques, on functional
connectivity measured on source-reconstructed hdEEG data.

In this study, we used real hdEEG data to examine the RSN reconstruction performance
that can be achieved thanks to an optimized version of our hdEEG analysis workflow [49],
including newly-developed methods for realistic MR segmentation in 12 head tissue
compartments [25] and for leadfield matrix generation by finite difference modeling [50].
The connectivity patterns that we obtained were used as a reference to assess to what
extent EEG-RSNs are sensitive to head model inaccuracies. We first tested the impact
of random and systematic errors in electrode positioning, and—from this analysis—we
derived the potential reduction in RSN reconstruction performance associated with the use
of 3D scanning and digitization techniques for electrode localization. We then extended our
performance analysis to different head tissue segmentations based on MR data (with twelve
or with three tissues, either based on the individual MR image or on a template image).
This allowed us to evaluate whether electrode positioning or head tissue segmentation
most strongly influences RSN reconstructions from hdEEG data. Finally, we assessed if all
RSNs are influenced in a similar manner by the methods used for electrode positioning
and head tissue segmentation, or if—alternatively—some RSNs are less robust than others.

2. Materials and Methods
2.1. EEG Experiment

Eyes-open resting-state data were collected in a cohort of 19 healthy young adults (age
28 ± 6 years, 5 males) and were previously used in other studies from our group [11,12,49].
Ethical approval was granted by the Ethics Committee of ETH Zurich; informed consent
was obtained from all participants and the experiment was performed in accordance with
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the relevant guidelines and regulations. For each participant, we recorded hdEEG signals
for 5 min at 1000 Hz sampling rate using a 256-channel HydroCel Geodesic Sensor Net
by Electrical Geodesics (Eugene, OR, USA). Electromyograms and vertical and horizontal
electrooculograms (EOG) were collected in addition to the hdEEG signals. Positions of
the EEG sensors and of three landmarks (nasion, left and right preauricular points) were
localized using a Geodesic Photogrammetry System (GPS) [42]. In a separate session, we
acquired a T1-weighted whole-head anatomical image using a Philips Ingenia 3T MR
scanner (Best, The Netherlands) with a turbo field echo sequence. Scanning parameters
were: TR = 8.25 ms, TE = 3.8 ms, flip angle = 8◦, voxel size = 1 mm3 isotropic.

2.2. Standard EEG Data Analysis

Functional connectivity was estimated from hdEEG data using an automated analysis
workflow developed in the MATLAB® (MathWorks Inc., Natick, MA, USA) environment.
The workflow consisted of four main steps: pre-processing of EEG signals; creation of
individual head model; reconstruction of cortical activity; and seed-based connectivity
analysis. Each step is briefly described in the following sections; for a more detailed
explanation refer to [10,12,49].

2.2.1. EEG Signal Pre-Processing

In order to clean EEG recordings from noise and biological artefacts, we first identified
channels with poor signal quality and corrected them by spatially interpolating the signals
from their neighbors, as defined using the FieldTrip toolbox (http://www.fieldtriptoolbox.
org/, accessed on 2 July 2019). We band-pass filtered the data in 1–80 Hz and then removed
EOG, muscular, movement and biological artefacts using Independent Component Anal-
ysis (ICA). Independent components that were not classified as artefactual were linearly
mixed to reconstruct artefact-free channel data [51]. Finally, the pre-processed EEG data
were re-referenced using the Reference Electrode Standardization Technique [51–54].

2.2.2. Realistic Head Model Creation

An individual head model was reconstructed using the MR image of the participant
and the EEG sensor positions. The individual MR image was segmented in 12 head
compartments (skin; eyes; muscle; fat; spongy bone; compact bone; cortical grey mat-
ter; cerebellar grey matter; cortical white matter; cerebellar white matter; cerebrospinal
fluid; brain stem) using the MR-TIM software [25]. The conductivity value of each tissue
compartment was assigned based on previous literature [55]. Electrode positions were
extracted from the GPS data, and projected over the head surface to minimize localization
errors. Afterwards, a 3D regular 6 mm grid overlapping with the cortical/subcortical
and cerebellar compartments was generated, to define all possible dipolar sources. Fi-
nally, a whole-head conductivity model was created using the optimized finite difference
method described in [50]. Based on this model, the leadfield matrix, expressing the linear
relationship between scalp EEG data and source-space neural activity, was calculated.

2.2.3. Source Activity Reconstruction

The pre-processed EEG signals were then combined with the realistic head model to
compute the cortical three-dimensional distribution of current density using the exact low-
resolution brain electromagnetic tomography (eLORETA) [56]. The eLORETA method is a
weighted minimum norm inverse solution, where the weights are unique and the inverse
solution provides exact localization for any point source in the brain. In this way, cortical
neural activity was estimated with high-temporal resolution in a 6 mm homogeneous grid
constrained to the grey matter.

2.2.4. Functional Connectivity

We reconstructed functional interactions within and between six large-scale RSNs:
DMN, DAN, VAN, LN, SMN and VN. In order to estimate the frequency-specific interac-
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tions, we selected a total of 21 nodes within the main regions of the six RSNs (Figure 1 and
Table S1), based on previous studies [49,57–60].
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Node coordinates, defined in MNI space, were projected onto the participant’s corti-
cal space. We defined 6 mm radius spherical regions of interest (ROIs) centered over the 
seed coordinates. Time courses of these seed ROIs were decomposed in the time–fre-
quency domain using the short-time Fourier transform, with Hamming windows of 2 s 
and a 50% overlap between consecutive windows. Connectivity values were estimated 
between each pair of seeds using band-limited power envelope correlations. Prior to that, 
we performed a frequency-by-frequency orthogonalization [61] to remove spurious inter-
actions at zero-lag due to signal leakage. Logarithmic-transformed signal-orthogonalized 
power time-courses were correlated and resulting correlations were converted to z-values 
using the Fisher’s transform [61,62]. The average connectivity between the seeds of the 
same network was defined as the intra-network connectivity. Similarly, the average con-
nectivity between the seeds associated with two different networks was defined as the 
inter-network connectivity [63,64]. We examined the strength of network interactions cor-
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(30–80 Hz) bands, by averaging the z-values associated with the frequencies within the 
relevant range. In this manner, we derived band-limited RSN correlation matrices. Finally, 

Figure 1. Anatomical positions of the 21 seeds used for analysis, subdivided into the corresponding
networks. Default mode network (DMN): posterior cingulate cortex (PCC), medial prefrontal
cortex (MPFC), left/right angular gyrus (lANG/rANG); Dorsal attention network (DAN): left/right
frontal eye field (lFEF/rFEF), left/right inferior parietal sulcus (lIPS/rIPS); Ventral attention network
(VAN): right temporo-parietal junction (rTPJ), right inferior frontal gyrus (rIFG); Language network
(LN, green): left temporo-parietal junction (lTPJ), left inferior frontal gyrus (lIFG); Somatomotor
network (SMN): supplementary motor area (SMA), left/right primary somatosensory cortex (lS1/rS1),
left/right secondary somatosensory cortex (lS2/rS2); Visual network (VN): left/right human ventral
visual area 4 (lV4v/rV4v), left/right visual area 5 (lV5/rV5).

Node coordinates, defined in MNI space, were projected onto the participant’s cortical
space. We defined 6 mm radius spherical regions of interest (ROIs) centered over the seed
coordinates. Time courses of these seed ROIs were decomposed in the time–frequency
domain using the short-time Fourier transform, with Hamming windows of 2 s and a 50%
overlap between consecutive windows. Connectivity values were estimated between each
pair of seeds using band-limited power envelope correlations. Prior to that, we performed a
frequency-by-frequency orthogonalization [61] to remove spurious interactions at zero-lag
due to signal leakage. Logarithmic-transformed signal-orthogonalized power time-courses
were correlated and resulting correlations were converted to z-values using the Fisher’s
transform [61,62]. The average connectivity between the seeds of the same network was
defined as the intra-network connectivity. Similarly, the average connectivity between the
seeds associated with two different networks was defined as the inter-network connec-
tivity [63,64]. We examined the strength of network interactions corresponding to delta
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–80 Hz) bands,
by averaging the z-values associated with the frequencies within the relevant range. In
this manner, we derived band-limited RSN correlation matrices. Finally, for each network
and frequency band separately, we used a one-tailed Wilcoxon signed rank test to contrast
intra- and inter-network connectivity values.

2.3. Impact of Head Modeling Strategies

Several test models were created, by varying the reference analysis workflow described
above with respect to a single parameter at the time. These tests were focused on assessing
electrode localization errors and head tissue segmentation accuracy, respectively. For
each test model, the corresponding analysis workflow was re-run on the hdEEG data, to
produce new connectivity results for: (1) band-limited RSN correlation matrices and (2) the
contrast between intra- and inter-network connectivity for each RSN and frequency band.
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To test the reliability of each model, we calculated Spearman’s correlation values between
the connectivity matrices reconstructed from the reference analysis workflow and those
obtained from the specific test model. The correlation values were transformed to z-values
using the Fisher transformation to improve data normality.

Generation of Test Models

In order to evaluate the impact of electrode localization errors on the connectivity
results, we created eight sets of synthetic electrode positions by adding displacements to
the reference electrode positions (Figure 2). These displacements differed in magnitude
and type. In particular, we defined six possible rotations around the anteroposterior,
the mediolateral and the longitudinal axes of the head. The amplitude of the rotation
determined the displacement of each electrode, which was defined according to previous
studies [45,48,65], and was set to approximately: 0.25, 0.5, 0.75 and 1 cm. Within each
dataset, the same direction of rotation was applied to all the electrodes to simulate the co-
registration error (“Systematic”), whereas a random rotation was applied to each electrode
for the localization error (“Random”). Rotations were randomized across datasets.
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Figure 2. Example of EEG electrode positions and their simulated misplacement. From top to bottom:
original electrode positions for a representative participant; positions with a systematic error of 1 cm;
positions with a random error of 1 cm.

As a second analysis step, we simulated the impact of electrode position errors that
are typical of 3D scanning [43–45] and digitization techniques [39,40]. The synthetic set
of electrode positions for 3D scanning (3D Scan) was created by considering a systematic
error equal to 0.25 cm and no random error; for the digitization one (Digitizer) we included
a systematic error of 0.5 cm and a random error of 0.25 cm [44,45,65] (Table S2). The
amplitude of the rotation was constant for all the datasets, while the direction of the
rotation was randomized across participants.

We also examined the impact of the head tissue segmentation on the connectiv-
ity results, by using three different segmentation approaches with decreasing levels of
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complexity (Figure 3). First, we applied the warping of template segmentation (WTS)
technique [10,25] on the individual MR image to obtain a “12-layer WTS” segmentation,
with the same compartments defined by MR-TIM [25]. Then, the “3-layer template” seg-
mentation was generated by clustering different compartments of the 12-layer template
(brain: cortical and cerebellar white and grey matter, brainstem, cerebrospinal fluid; skull:
compacta and spongiosa; scalp: muscle, fat, eyes, skin) [66]. Finally, we used the WTS
technique to generate a “3-layer WTS” segmentation in individual space, based on the
3-layer template segmentation (Figure S1). For the 12-layer and 3-layer WTS we used the
reference electrode positions in individual space; conversely, we used template electrode
positions of the 256-channel HydroCel Geodesic Sensor Net for the segmented image in
template space.
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12-layer segmentation using the MR-TIM toolbox; 12-layer segmentation using WTS; 3-layer segmentation using WTS.

In addition, we created matrices contrasting intra- and inter-network connectivity. To
this end, we used a one-tailed Wilcoxon signed rank test for the Spearman’s correlation
values derived from 12-layer WTS, 3-layer WTS, 3-layer template, 3D Scan and Digitizer test
models. These correlation values were obtained using the corresponding connectivity
matrix derived from the standard analysis workflow as reference. With such comparisons,
we aimed at understanding how robust the connectivity pattern of each network in each
frequency band was when varying either the electrode positioning or the head tissue
segmentation technique.

2.4. Statistical Analysis

For the analysis of electrode localization errors, we used a four-way analysis of vari-
ance (ANOVA) on the z-values to estimate to what extent the following factors influenced
the connectivity values: network (DMN; DAN; VAN; LN; SMN; VN), frequency band (delta;
theta; alpha; beta; gamma), error magnitude (0.25; 0.5; 0.75; 1 cm) and error type (system-
atic; random). A multiple comparison test was also performed to investigate the differences
among estimated marginal group means, for each significant factor [67]. Furthermore, we
compared correlation values corresponding to systematic and random localization errors
to investigate in more detail under which conditions the two errors yield significantly
different connectivity results. To this purpose, we used a two-tailed Wilcoxon signed rank
paired test with significance level set to p < 0.05, corrected for multiple comparisons using
the Bonferroni method. In order to test the impact of the head tissue segmentation method
on connectivity, we performed a three-way ANOVA with factors: network (DMN; DAN;
VAN; LN; SMN; VN), frequency band (delta; theta; alpha; beta; gamma) and segmentation
method (12-layer WTS; 3-layer WTS; 3-layer template). Finally, we used a two-tailed Wilcoxon
signed-rank paired test to check for differences in connectivity values between the head
tissue segmentation and electrode positioning techniques. The significance level was set to
p < 0.05, corrected for multiple comparisons using the Bonferroni method.
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3. Results

In this study, we aimed at investigating the impact of the head model accuracy on
EEG-RSN connectivity estimation, particularly focusing on the role of different electrode
localization techniques and head tissue segmentation methods.

First, we reconstructed the functional connectivity values using our reference data.
In particular, we quantified the connectivity between pairs of RSNs for each frequency
band (Figure 4), and the differences between intra- and inter-network connectivity for each
network and frequency band (Figure 5 and Figure S2). We observed remarkable similarities
with connectivity results obtained in our recent study [49]. This was a valuable starting
point for a detailed analysis of the impact of different head models on RSN connectivity.
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The ANOVA performed on the z-values extracted for electrode positioning errors
revealed significant modulations of all four factors under investigation (p < 0.001 for RSN,
frequency band, error magnitude and type) (Table 1). Post-hoc tests showed that DMN,
DAN and SMN were the most robust networks, whereas VAN and LN were the most
sensitive to electrode positioning accuracy (Figure S3A). Similarly, alpha and delta bands
were the most and least robust frequency bands, respectively (Figure S3B). As expected,
our analyses confirmed that the difference between reference and test connectivity data
increased as the magnitude of the positioning error was larger (Figure S3C). The Wilcoxon
signed rank test yielded significantly lower correlations with random errors compared to
systematic ones, for a magnitude level larger than 0.25 mm (Figure S3D and Figure 6 and
Table S3).

Table 1. ANOVA testing for electrode localization errors. Four factors were assessed: resting-state
network (DMN, DAN, VAN, LN, SMN and VN), frequency band (delta; theta; alpha; beta; gamma),
error magnitude (0.25; 0.5; 0.75; 1 cm) and error type (systematic; random).

Electrode Localization Errors df Sum Squares Mean Square F p-Value

Network 5 6.58 1.32 79.39 <0.001
Band 4 18.10 4.53 273.19 <0.001

Error magnitude 3 7.28 2.43 146.54 <0.001
Error type 1 0.46 0.46 27.72 <0.001
Residuals 226 3.74 0.02

Total 239 36.16
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Figure 6. Correlation between the reference connectivity matrices and those obtained when intro-
ducing electrode localization errors. For each error, magnitude is tested in the range 0.25 to 1 cm,
and distinction is made between systematic (dark grey) and random (light grey) errors. Black dots
represent the outliers. The asterisks define the significance level of the two-tailed Wilcoxon signed-
rank paired test between error types, for each error magnitude: * for p < 0.05, ** for p < 0.01, **** for
p < 0.0001.

The ANOVA run on the z-values obtained with different head tissue segmentation
methods showed significant modulations (p < 0.001) of all three factors under investigation:
RSN, frequency band and segmentation method (Table 2). Once again, post-hoc tests
revealed that DMN, DAN and SMN were more robust in regard to head tissue segmentation
variations than VAN and LN (Figure S4A), and that alpha and delta bands were the least
and most sensitive frequency bands, respectively (Figure S4B). The 3-layer template method
was found to be the least accurate. Notably, no significant differences were observed
between the 12- and 3-layer WTS methods (Figure S4C).
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Table 2. ANOVA testing for head tissue segmentation methods. Three factors were assessed: resting-
state network (DMN; DAN; VAN; LN; SMN; VN), frequency band (delta; theta; alpha; beta; gamma)
and segmentation method (12-layer WTS; 3-layer WTS; 3-layer template).

Head Tissue Segmentation
Methods df Sum Squares Mean Square F p-Value

Network 5 1.18 0.24 19.52 <0.001
Band 4 5.83 1.46 120.42 <0.001

Segmentation method 2 0.29 0.15 12.17 <0.001
Residuals 78 0.94 0.01

Total 89 8.24

When comparing the two factors contributing to head model inaccuracy, i.e., the
electrode positioning technique and the head tissue segmentation method, we observed
that the former one had significantly less impact on the estimation of the connectivity
matrices (Figure 7). Indeed, the z-values for 3D scanning and digitizer techniques were
always significantly higher (p < 0.001) than those obtained for the different head tissue
segmentation methods (Table S4).
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Lastly, we contrasted intra- and inter-network connectivity values for each resting-
state network and frequency band, and examined the impact of head model inaccuracy
(Figure S5). A correlation analysis conducted using the standard analysis workflow as a
reference confirmed that the head tissue segmentation had a stronger impact on connec-
tivity estimation than electrode positioning (Figure 8 and Figure S6). In line with other
analyses conducted in this study (Figures S3 and S4), VAN and LN were found to be the
most sensitive networks to variations in the head modeling strategy, whereas DAN was
the most robust one.
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Figure 8. Impact of head modeling on the intra- and inter-network connectivity differences, for
each RSN. This was assessed by calculating the correlation with values obtained using the reference
analysis workflow. Two electrode localization techniques (3D Scan and Digitizer—on the left) and
three head tissue segmentation methods (12-layer WTS, 3-layer WTS and 3-layer template—on the
right) were tested.

4. Discussion

In recent years, an increasing number of studies have performed source-level func-
tional connectivity analyses using hdEEG [1,10,18,19,49,68,69]. The reliability of the source
activity reconstruction from hdEEG data, which is needed for estimating functional inter-
actions between brain regions, does not depend solely on the density and coverage of the
montage, but also on the workflow used for data analysis [14,16,17,27,70]. The primary
goal of this study was to specifically examine the robustness of EEG-RSN reconstruction
using different electrode localization and head tissue segmentation approaches.

4.1. Impact of Electrode Localization Error

The precision of electrode localization can be generally ascribed to two main factors:
the single-electrode localization and the overall co-registration of the sensor positions over
the head shape [48]. The results of our analyses show that random errors in electrode
positioning (i.e., single-electrode localization errors) had generally a larger impact than
the systematic errors (i.e., sensor co-registration errors) on the EEG connectivity results
(Figure 6). The effect of random and systematic errors was significantly different for aver-
age displacements equal to 0.5 cm, with the former one clearly hindering the reconstruction
of EEG connectivity patterns. For greater error magnitudes, instead, the effects of the two
error types were more comparable, although systematic errors always had a more limited
impact on EEG connectivity measures than random errors. Notably, for displacements as
low as 0.25 cm there was no significant difference between the random and systematic
errors, and relatively high correlations with our benchmark results. This finding is in line
with previous literature, suggesting that electrode positioning errors smaller than 0.5 cm
are negligible for an adequate brain source reconstruction [71,72].

When collecting electrode locations to be included in the individual head model,
commonly-used electrode positioning techniques can be affected by both random and sys-
tematic errors, but their respective magnitude can vary consistently [41,42,45,46,48,65,73].
In this study, we modeled electrode positioning errors of the 3D scanning, assuming that
the related measurements were affected by small systematic errors (0.25 mm) and that
random errors were negligible. We also modeled electrode positioning errors of the digi-
tizing technique as prone to both error types. The results of our study clearly show that
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the different measurement accuracy of these two techniques [44,45,48] resulted in evident
differences in the EEG-RSN connectivity results (Figure 7 and Table S4).

4.2. Impact of Head Tissue Segmentation

The accuracy of the tissue segmentation can be related to the space in which the
segmentation is performed (individual, as in MR-TIM, or template, as in WTS) and to the
number of considered tissues. Our results evidence that warping a template segmentation
on the individual MR image (12- or 3-layer WTS) [10] was a substantially less accurate
approach than performing head tissue segmentation directly on the individual MR image
itself [25] (Figure 7 and Table S4). We expected an improvement in performance when
discriminating twelve tissue compartments (12-layer WTS) instead of only three (3-layer
WTS). However, our tests did not reveal any significant difference when fewer tissues were
included in the head model. This result may simply suggest that the WTS technique may
not be sufficiently accurate under several conditions, and that it would be preferable to use
MR-TIM for head tissue segmentation [25].

4.3. Differential Impact of Electrode Localization and Head Tissue Segmentation

As already mentioned, the head model used for reconstructing cortical activity com-
bines information about electrode locations and head tissue distribution. In our study, we
aimed to test which of these two factors has a stronger impact on EEG connectivity results.
Our simulations yielded significantly higher correlations with the reference connectivity
values when using different electrode positioning techniques (3D Scan and Digitizer), rather
than when considering different head tissue segmentation methods (12- or 3-layer WTS)
(Figure 7 and Table S4). In particular, suboptimal performance was achieved when using
the template head model (3-layer template), created from the electrode positions and the
template MR image defined in MNI space. This finding highlights the importance of
including subject-specific information in the head model, namely real electrode positions
and individual tissue segmentation [27–29].

4.4. Analysis of Robustness for Different Frequency Bands and Networks

The use of hdEEG has recently enabled the investigation of frequency-dependent
functional interactions of several cortical regions and networks [10,18,49]. The results of our
study clearly reveal that variations in EEG connectivity due to head model errors depend on
the network and the frequency band considered (Figure 5 and Figures S2–S5). Specifically,
the alpha band was the most robust in regard to head model variations, whereas the delta
band was the most sensitive one (Figures S3 and S4). It should be noted that we analyzed
the electrophysiological activity of participants in the resting state, a condition in which
the alpha rhythm dominates the interactions among all brain regions [11,74]. Therefore,
the robustness of the functional connectivity patterns in each band could vary according
to the specific experimental conditions. In particular, the strongest brain oscillations are
expected to be the least influenced by changes in the head model. We also found that
DMN, DAN and SMN were relatively robust, whereas VAN and LN had large connectivity
variations in the different test conditions (Figure 8 and Figures S3, S4 and S6). It should be
considered that the number and the spatial distribution of network nodes over the cortex
may influence the robustness of RSN reconstruction: VAN and LN are strongly lateralized
networks with main nodes in the same hemisphere, whereas the other networks have core
regions on both hemispheres. The robustness of the EEG-RSN reconstruction may also
be influenced by other factors related to the RSN spatial distribution: DMN and DAN
encompass deeper brain regions surrounded by uniformly distributed tissue interfaces,
whereas key regions of VAN and LN are located closer to air–tissue interfaces, which are
more likely to cause distortions in the electrical fields and therefore to affect the accuracy
of the source reconstruction.
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4.5. Study Limitations

A number of limitations in this study must be considered. First, we acknowledge
the fact that we did not have the possibility to locate the EEG electrodes directly from
the MR image, which would have assured error-free localization [73,75]. To minimize the
effect of any electrode positioning error associated with the GPS technique, we projected
the obtained electrode coordinates over the head shape [42,73] and manually corrected
any apparent imprecision in electrode positioning. Additionally, we did not collect real
electrode positions with several devices to compare our reference with; we therefore simu-
lated positioning errors for 3D scanning and digitizing techniques, respectively, using error
type and magnitude reported in previous studies. Similarly, a manually segmented MR
image was not available to be used in our study. The analysis workflow that we used as
a benchmark included MR-TIM, which was proven to outperform other commonly-used
head tissue segmentation techniques [25]. We would also like to mention that resting-state
EEG recordings used in this study were collected for 5 min in each participant [10,16],
and it would be important to test if EEG-RSN reconstruction is stable for different EEG
recording lengths. Furthermore, EEG connectivity results were based on time–frequency
analyses conducted using short-time Fourier transform with uniform window length for
all frequency bands, as in our previous studies [10,12,49]. The Wavelet transform could
be alternatively used, such that the window length is adaptively defined based on the
frequency; this may increase the sensitivity of the connectivity analyses for lower-frequency
bands. Lastly, we assessed the impact of different head models on EEG connectivity by
calculating the similarity of EEG connectivity results with respect to a standard configu-
ration. This solution permitted us to conduct only relative comparisons among our test
datasets; to the best of our knowledge, an absolute threshold level against which assessing
the correspondence of two connectivity profiles can hardly be defined.

5. Conclusions

Network connectivity estimation from hdEEG data can be performed using an electro-
physiological source imaging workflow that includes signal pre-processing, head model
creation and brain activity reconstruction at the cortical level. In this study, we character-
ized to what extent head model variations associated with electrode positioning and head
tissue segmentation influence EEG connectivity patterns. Our results suggest that inaccu-
racies in tissue segmentation have a stronger impact than those related to the electrode
localization. Additionally, we observed that strongly lateralized networks, such as VAN
and LN, were substantially less robust than bilateral networks. We hope that the present
study may provide important information for researchers planning new EEG studies,
supporting their choice of a suitable electrode positioning and head tissue segmentation
approach, respectively. We suggest that future studies could perform test–retest analyses,
which offer an alternative way to estimate the reliability of EEG connectivity results with
respect to different head modeling approaches. Finally, it may be interesting to extend our
findings by testing the impact of head modeling on EEG connectivity using other datasets,
collected, for instance, in healthy older adults or in neurological patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/brainsci11060741/s1, Table S1: Definition of the 21 seeds used for analysis; Table S2: Defini-
tion of the simulated electrode localization errors due to different positioning techniques; Table S3:
Correspondence between the reference connectivity matrices and those obtained when introducing
electrode localization errors; Table S4: Comparative analysis of the z-values expressing the corre-
spondence between the reference connectivity matrices and the matrices obtained when introducing
errors in the head model; Figure S1: Representation of the head tissues in template space; Figure S2:
Comparison of intra- and inter-network connectivity values for each frequency band and network;
Figure S3: Estimated marginal means plots for each of the four factors included in the ANOVA test
for electrode localization errors; Figure S4: Estimated marginal means plots for each of the three
factors included in the ANOVA test for the data processed with different head tissue segmentation
methods; Figure S5: Contrasts between intra- and inter-network connectivity, for different head
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models; Figure S6: Scatterplots of intra- and inter-network connectivity differences for different head
models, compared to the corresponding values obtained using the reference analysis workflow.
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