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Background: Aquaporin-4 (AQP4) is in growing recognition as potential marker for cancer progression, differentiation
and therapeutic intervention. No information is available about AQP4 expression in the normal canine brain. The aim of
this histopathological study is to confirm the presence of AQP4 by immunohistochemistry technique in a group of
non-pathological canine brains and to describe its expression and distribution across the brain.

Results: Twelve non-pathological canine brains of various ages (ranging from 21 days to 17 years) and breeds
were included in the study. Immunohistochemical expression of AQP4 was analyzed using formalin-fixed
paraffin-embedded brain tissue sections. The findings were correlated between AQP4 expressing cells and
astrocytes using glial fibrillary acidic protein (GFAP). AQP4 expression was more marked in the astrocyte foot
processes of subpial, perivascular and periventricular surfaces in all specimens. The majority of the canine
brain sections (9/12) presented with an AQP4 predilection for white matter tracts. Interestingly, the two
youngest dogs (21 days and 3 months old) were characterized by diffuse AQP4 labelling in both grey and
white matter tracts. This result may suggest that brain development and ageing may play a role in the AQP4

Conclusions: This is the first study to describe immunohistochemical distribution of AQP4 in normal canine
brains. The AQP4 expression and distribution in non-pathological canine brains was comparable to other
species. Larger studies are needed to substantiate the influence of breed and ageing on AQP4 expression in
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Background

Aquaporins (AQPs) are a family of transmembrane water-
channel proteins distributed in membranes of various bio-
logical cells of animals and humans mainly facilitating trans-
port of water between cells [1]. One of the most prominent
aquaporins in the central nervous system (CNS) is
Aquaporin-4 protein (AQP4) [1]. AQP4 plays a crucial role
in maintaining water homeostasis, cell migration and neu-
roexcitation in the brain [1]. The AQP4 expression in the
CNS has been associated with neuroinflammatory conditions
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such as neuromyelitis optica spectrum disorders, tumor types
and grades, tumor proliferation, migration, angiogenesis and
tumor-associated edema in people [2—6].

Most information about CNS AQP4 is available in
humans, rats and mice [7, 8]. In normal circumstances,
AQP4 is expressed more abundantly in the astrocyte
foot processes of the perivascular, subpial and subepen-
dymal areas and in the basolateral membrane of epen-
dymal cells. These locations are special sites of major
fluid transport where AQP4 is responsible for water bal-
ance regulation in and out the CNS [1]. Similar locations
have been demonstrated in other species including
Macaca Fascicularis and Psittacus erithacus [9, 10].
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Only scarce information is available about AQP4 dis-
tribution in diseased canine brains. Klemens et al. [11]
described the expression of AQP4 in canine cerebellar
samples of canine distemper virus infected dogs. This
study showed that there was a more severe loss of AQP4
in acute distemper lesions when compared to subacute
or chronic lesions in these dogs. Spitzbarth et al. [12]
analyzed AQP4 expression using tissue microarray tech-
nique searching for AQP4 expression patterns in differ-
ent types of canine CNS neoplasms and highlighted
AQP4 as a novel marker helping to discriminate be-
tween canine astrocytoma and oligodendroglioma. Con-
sidering the growing recognition of AQP4 in the CNS
and its potential diagnostic and therapeutic implications,
knowledge about the distribution of AQP4 in normal
canine brain is urgently needed as basis for future stud-
ies. The purpose of this study is first, to confirm the
presence of AQP4 in the normal canine brain using im-
munohistochemistry technique and secondly, to describe
the AQP4 distribution in non-pathological brains in a
group of dogs of different age and breed (Table 1).

Results
AQP4-expressing cells were confirmed using immuno-
histochemistry in all canine brains included in this study.
The expression of AQP4 in our canine population was
examined by semiquantitative descriptive analysis. The
complete data is contained in Table 2. AQP4 immuno-
histochemistry was co-localized with GFAP immunohis-
tochemistry confirming the common astrocytic origin.
All twelve canine brains showed the greatest AQP4
immunoreaction in the plasma membrane of the peri-
vascular astrocyte foot processes in a branching-fibrillar
pattern. The glia limitans externa, located between the
CNS parenchyma and the pia mater, showed a well-

defined homogenous monolayer labeling. The
Table 1 Canine brains included in this study

Case Number Breed Age

NO1 Cross breed 21 days
NO2 Bichon Maltese 3 months
NO3 White Swiss Shepherd dog 3 months
NO4 Cocker Spaniel 5 months
NO5 Pitbull 3years
NO06 Cocker Spaniel 4 years
NO7 Miniature Schnauzer 5years
NO8 Bull Terrier 5 years
NO09 Cross breed 13 years
N10 Yorkshire Terrier 14 years
N11 Scottish Terrier 15 years
N12 Cross breed 17 years
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periventricular surfaces also displayed a strong positive
immunoreaction in the basolateral membrane of the
ependymal cells and the associated bands of the sube-
pendymal astrocyte foot processes in a characteristic
branching pattern. The intensity of the labeling was
gradually fading towards the neuropil. APQ4 immunore-
action was absent in choroid plexus cells, neurons or
other glial cells aside from astrocytes. The common
areas of greater AQP4 expression in the canine brain are
illustrated in Fig. 1.

Nine out of 12 dogs (N03-N11) showed a clear distinc-
tion between the grey and white matter. A predilection for
AQP4 immunoreaction was concentrated in the white
matter tracts and the subcortical cerebral transition area
between the grey and white matter. A longitudinal pattern
alongside nerve fibers involving mostly the white matter
was identified in the subcortical white matter, corona
radiata, internal capsule and corpus callosum. The basal
nuclei showed variable expression from absent to mild
patchy and punctuated immunoreaction surrounding the
vascularization. Interestingly, the 2 youngest dogs (21 days
old NO1, 3 months old N02, 2/12) showed a slightly differ-
ent presentation. All encephalic structures examined for
NO1 and NO2 (2/12) (Table 2) were characterized by a
generalized homogenous strong immunoreaction involv-
ing both grey and white matter. In the neocortex of these
2 dogs, AQP4 expressing cells were subjectively more con-
centrated in the deeper laminae of the cortical grey matter
and located primarily surrounding blood vessels of any
size in a branching-fibrillar pattern. To a lesser extent, im-
munoreaction was also present in the perineuronal astro-
cyte processes. The canine brain N12 (17 years old)
showed a well-distinguished variation compared to the
majority of the population (N03-N11). A greater and dif-
fuse AQP4 immunoreaction was identified in the grey
matter of the neocortex of the frontal and temporal areas.

The archicortex was largely positive for AQP4 expres-
sion in all canine brains (N01-N12). The labeling was
denser in the inner margin of the dentate gyrus and ex-
ternal margin towards the meninges in the Cornu
Ammonis surrounding the neuronal bodies. Interest-
ingly, only in the canine brain N12 (17 years old) the de-
gree of AQP4 immunostaining around the Cornu
Ammonis was increased.

The paleocortex (piriform lobe) and parahippocampal
gyrus presented a moderate diffuse and homogeneous la-
belling in all cases (NO1-N12).

The brainstem showed a similar pattern in 9 canine
brains (N03-N12) with a clear predilection for white
matter tracts. The mesencephalon, the substantia nigra
and interpeduncular nuclei had partial immunoreaction.
The red nuclei and oculomotor nuclei were clearly less
positive. At the pons and medulla oblongata, immunore-
action appeared to be denser in the white matter tracts



Alvarez et al. BMIC Veterinary Research (2021) 17:29

Page 3 of 8

Table 2 Expression of AQP4 immunohistochemistry in the 12 canine brains following the semiquantitative classification system

NO1 NoO2 NO3 No04 NO5 Noé6 No7 No8 No9 N10 N11 N12
Neocortex® GM ++ ++ +/++ -/+ -/+ n/a -/+ -/+ -/+ -/+ -/+ +/++
WM +++ +++ +++ +++ +++ n/a ++ +++ +++ +++ +++ +++
Basal nuclei® GM ++ ++ -/+ -/+ -/+ n/a +/++ +/++ -/+ + + ++
WM ++ ++ ++ ++ +++ n/a ++ ++ ++ ++ ++ ++
Archicortex® GM ++ ++ + n/a +/++ -/+ -/+ +/++ + n/a + ++
WM +++ 4+ ++ n/a ++ - - -/+ ++ n/a +++ +++
Paleocortex ++ ++ n/a + n/a n/a ++ ++ +/++ +++ ++ +/++
Diencephalon® GM ++ ++ -/+ n/a -/+ n/a - - n/a - + +
WM +++ 4+ ++ n/a ++ n/a ++ ++ n/a + +++ 4+
Midbrain Pons’ GM  ++ ++ n/a A+ + /+ - -/+ - - -
WM +++ +++ n/a +++ ++ ++ ++ ++ ++ +/++ ++ +/++
Medulla oblongata® GM ++ ++ n/a +/++ + -/+ - -/+ -/+ - -/+ -
WM +++ +++ n/a +++ +++ ++ ++ ++ +++ +++ ++ ++
Cerebellum” GM ++ ++ n/a ++ +/++ -/+ - -/+ -/+ - - +/++
WM +++ +++ n/a +++ +++ ++ ++ +++ +++ +++ +++ +++

Abbreviations: GM Grey matter, WM White matter, n/a Not applicable; -, negative; +, mild staining; ++, moderate staining; +++, strong staining; Neocortex®: frontal,
parietal and temporal areas and subcortical white matter and corpus callosum; Basal nuclei®: Striatum body and internal capsule; Archicortex®: hippocampal
formation, fimbria and fornix; Paleocortex®: piriform lobe; Diencephalon®: epithalamus (habenula nuclei), thalamic nuclei and white matter tracts; Midbrain/ponsf:
oculomotor nuclei, red nuclei, substantia nigra, periaqueductal grey matter and white matter tracts (crus cerebri, cerebellar tracts, transverse pontine fibers);
Medulla oblongata®: caudal cranial nerves nuclei, white matter tracts (pyramids, medial longitudinal fasciculus, trapezoid body); Cerebellum": cerebellar cortex and
subcortical white matter; n/a’: Not applicable, corresponds to an incomplete evaluation due to the lack of tissue or low immunoreaction

at the level of the cerebellar peduncles, crus cerebri,
transverse pontine fibers and pyramids.

The cerebellar cortex showed a similar immunoreac-
tion in 9 specimens (N03-N11). AQP4 expressing cells
exhibited a predilection for the cerebellar white matter.
A low AQP4 immunoreaction was sporadically accumu-
lated in the Purkinje layer in a perineuronal pattern and
in the glomeruli of the granular layer. In the canine
brain N12, a linear labeling of the molecular layer of the
cerebellar cortical grey matter was present contrary to
the common findings.

The habenular nuclei was only examined in three
specimens of varied age including a young (NO2, 3
months old), adult (NO8, 3years old) and senior dog
(N11, 15 years old) and showed an equally strong AQP4
expression and diffuse distribution.

A comparison of the AQP4 immunohistochemistry dis-
tributions in the above described representative encephalic
structures of dogs of varied ages is illustrated in Fig. 2.

Discussion

This is the first study to confirm the expression and dis-
tribution of AQP4 using immunohistochemistry in nor-
mal canine brains. Previous veterinary publications have
exclusively investigated the presence of CNS AQP4 im-
munohistochemistry in pathological conditions [11, 12],
but no information was available so far in non-
pathological canine brains. This finding supports the as-
sumption that AQP4 plays also in the normal canine

brains a crucial role in maintaining water homeostasis,
cell migration and neuroexcitation [1].

The distribution of AQP4 showed many similarities to
reports of other species. All examined canine brains
were characterized by the strongest immunoreaction in
the plasma membrane of astrocytes, particularly in the
astrocytic foot processes of the perivascular space, the
subpial and subependymal areas, and in the basolateral
membrane of the ependymal cells, which are specific re-
gions of major fluid transport. This is a characteristic
distribution comparable to other species and supports
the assumption that AQP4 plays also in the canine a
major role as a water-channel protein maintaining the
perivascular volume and cerebral blood perfusion as pre-
viously reported in other species [7, 9, 10, 13, 14].

A specific polarized distribution of AQP4 in astrocytes
towards the astrocytic foot processes was seen in our ca-
nine population. A specific anchoring mechanism is
found in this location which is called the dystrophin-
associated protein complex [15]. The dystroglycan was
found to interact with laminin and dynamin, which is
necessary for the regulation of AQP4 internalization and
therefore explaining the asymmetric enrichment towards
perivascular astrocyte foot processes [16].

AQP4 immunoreaction was further absent in neurons,
other glial cells and choroid plexus in our canine popula-
tion. This was observed similarly in other species too [7—
9, 14], apart from a reported low expression of AQP4 in
the choroid plexus in rat and human brain tissue [4, 13].
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Fig. 1 The immunohistochemistry of the main areas of AQP4 expression are represented with a schematic illustration (modified from Papadopoulos
et al [1]): Brain surface-glia limitans externa, Ventricular lining-glia limitans interna and blood brain barrier

A moderate diffuse homogeneous AQP4 immuno-
staining was seen in the paleocortex throughout our ca-
nine population, whereas a more concentrated labelling
in the neocortex towards the subcortical white matter
and the transition area between the grey and white mat-
ter was seen in the majority of the specimens (9/12). It
can be suspected that this AQP4 distribution is related
to the primitive origin of the paleocortex compared to
the neocortex. The paleocortex has 3 cortical grey mat-
ter layers with its white mater located in an external dis-
position, whereas the neocortex comprises 6 layers of
cortical grey matter with the white matter located in a
subcortical disposition [17].

The hippocampal formation presented with increased
AQP4 immunostaining in the dentate gyrus and Cornu
Ammonis in all the canine brains of this study. This is
not unexpected considering published findings in the
mice brain where AQP4, was shown to be associated
with the facilitation of rapid water fluxes required for
maintaining K + homeostasis during electrical activity in

same regions [18]. Thus, the results of our study sug-
gests a similar significance in canine brains.

The distribution of AQP4 towards the white matter
was evident in the majority of dogs (N03-N11, aged be-
tween 3 months and 15 years). Specifically, the expres-
sion was located in the subcortical white matter of both
neocortex and cerebellum. The immunoreaction pattern
was parallel to the nerve fibers. It is suspected that this
particular distribution might play a role in maintaining
intercellular junctions at the nodes of Ranvier [7]. Fur-
ther, the white matter is characterized by a considerable
concentration of fibrillary astrocytes compared to the
grey matter [8]. Fibrillar astrocytes have highly branched
processes compared to protoplasmic astrocytes [19]. It is
considered that this distinct characteristic may account
for the higher concentration of positive labeling within
the white matter. On the contrary, monkeys and adult
rats have been described to have a greater AQP4 expres-
sion in the grey matter instead [9, 13]. One of their ex-
planations was its higher concentration of blood vessels
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Fig. 2 CNS AQP4 immunoreactivity comparison between dogs of varied ages at a different representative encephalic structure in transverse
sections. Parietal/temporal cortex (1) (0.5 times magnification), Midbrain/pons (2) (0.6-1x), Archicortex with hippocampal formation (3) (2-2.5 times
magnification) and Cerebellar cortex (4) (10-15 times magnification). The youngest dogs (a: NOT and N02) showed a generalized AQP4 labeling
diffusively involving the neuroparenchyma. The adult and senior dogs (b and c: NO5,N06, N10 and N11) presented greater expression of AQP4 in
the subcortical WM and at the interface between major fluid compartments (periventricular and subpial surfaces). The hippocampal distribution
in b and ¢ was concentrated in the GM of the dentate gyrus and Amon’s horn

compared to the white matter [9]. Although we did not
find increased AQP4 expression in the grey matter com-
pared to the white matter in our study, increased AQP4
labelling was additionally concentrated in the grey/white
matter transition in most of the canine brains (9/12).
The latter could be explained by a higher concentration
of capillaries and perivascular astrocyte foot processes
expressing AQP4 in this transition zone [20]. Moreover,
the grey and white matter transition area is where a
clearer distinction between protoplasmic versus fibrillary
astrocytes is present, which may account for the pres-
ence of AQP4 immunostaining yet less strong compared
to the white matter alone.

There was an AQP4 distribution tendency towards the
white matter with increasing age in our study popula-
tion. The 2 youngest canine brains (21 days old NO1, 3
months old N02) showed a generalized and homogenous
AQP4 immunostaining in both, the grey and white mat-
ter, across the brain. The reasoning behind this particu-
lar finding is uncertain. Previous studies in rats have
explored whether increased AQP4 expression in this

area is needed in the formation of the blood brain bar-
rier during the brain development and the control of the
perivascular volume [21, 22]. As seen in the developing
mouse brain, AQP4 immunoreactivity varies between
brain regions according to neuronal differentiation [21].
This suggests that the homogeneous distribution of
AQP4 along the brain grey and white matter structures
in two of the youngest canine dogs (NO1, N02) may be
related with postnatal brain development, neuronal mi-
gration, blood brain barrier formation and the need of
an adequate hydrated milieu to favor the neuronal shifts.
Whereas the distribution of AQP4 towards the white
matter seen in the majority of the canine population,
could be associated with AQP4’s primary role as water
channel protein and therefore might be more limited to
regions of actual fluid exchange, such as perivascular
(blood), subpial and periventricular (CSF) areas.

A different distribution pattern was seen in the canine
brain N12 when compared to the majority of the studied
canine brains (9/12). The AQP4 immunoreaction was
increased in the grey matter (cerebral frontal, parietal
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and cerebellar cortices and Cornu Ammonis) compared
to the white matter. One possible explanation may be
contemplated based on findings about dementia in
people [23]. Owasil et al. [23] concluded that the expres-
sion of AQP4 was associated with astrocytes in the
brain, and that the distribution of these astrocytes in the
grey and white matter was correlated with the patient’s
age and the severity of cerebral amyloid angiopathy.
Here, demented patients seemed to have a higher con-
centration of AQP4 labeling in the cortical grey matter
compared to non-demented patients [23]. Interestingly,
the case N12 was the oldest dog with 17 years of age. In
dogs, the diagnosis of canine cognitive dysfunction syn-
drome is based on behavioral signs and exclusion of
other medical conditions [24]. Further, it is known clin-
ically that the prevalence and severity of canine cognitive
dysfunction increases with the age [25]. Different publi-
cations have studied that dogs affected by progressive
cognitive impairment share certain histopathological
changes including alterations related to the structure of
certain proteins as in Alzheimer disease: neuronal loss,
astrocytosis, amyloid-§ deposition and rarely neurofibril-
lary tangles [26, 27]. As AQP4 is more abundantly
expressed in astrocytes, AQP4 concentration is likely in-
creased in diseases resulting in astrocytosis, which is a
hallmark of neuroinflammation. Thus, the AQP4 overex-
pression seen in this dog (N12) raises the suspicion that
preclinical cognitive dysfunction might have been
present. Further studies would be needed to investigate
the influence of canine cognitive dysfunction syndrome
on the AQP4 distribution in the brain compared to se-
nile brains and further, to possibly investigate AQP4 as a
potential immunomarker for early detection of canine
cognitive dysfunction syndrome. We cannot exclude the
possibility that the increased grey matter AQP4 labelling
noted in this particular brain (N12) could have also been
an individual variant. Publications report a greater
AQP4 expression in the grey matter of rats and mon-
keys, yet this is not described for the dog [9, 13].

The habenula was examined in 3 cases in which AQP4
immunostaining was found to be homogeneous despite
the varied age (3 months to 15 years). The habenula is
located in the dorsomedial border of the thalamus close
to the pineal gland, which is forming part of a group of
specialized structures defined as circumventricular or-
gans [28, 29]. The circumventricular organs are located
mainly at the midsagittal line around the third and
fourth ventricles, often protruding into the lumen [30].
The singular characteristic of the circumventricular or-
gans is the lack of blood brain barrier due to the pres-
ence of fenestrated capillaries [30]. They are recognized
to play important integrative roles in the regulation of
fluid and mineral balance [31]. This is not completely
new. AQP4 expression was already demonstrated in
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astrocytes of other canine circumventricular organs such
as the area postrema, and thus supporting the important
contribution of this water-channel in the maintenance of
the homeostasis [30].

Limitations of this study are the limited number of ca-
nine brains of various ages and breeds. The aim of the
current study was to confirm the presence of AQP4 in
non-pathological brains and to identify tendencies of
AQP4 distribution in the canine brain, which was
achieved. However, the limited number of cases can only
give an idea about the wider dog population. Larger
scale studies would be ideal to focus on particular as-
pects of AQP4 expression in normal canine brains such
as particular ages (young or senile group) or possible
breed specific findings. Another limitation of this study
is the lack of clinical data. Inclusion criteria were brains
defined as ‘non-pathological’ based on histopathological
examination only. More clinical information would have
been ideal to investigate our hypothesis that the unusual
AQP4 distribution in the oldest dog (N12, 17 years old)
was caused by early or preclinical canine cognitive dys-
function syndrome.

Conclusions

This is the first study to confirm the presence AQP4 in
non-pathological canine brains and to describe its distri-
bution in normal canine brains using immunohisto-
chemistry. APQ4 expression and distribution in the
canine brain was comparable to other species including
humans. AQP4 was widely expressed in the astrocyte
cell plasma membrane, particularly in the foot processes
of the blood brain barrier and at the border between the
CNS and the cerebrospinal fluid. A particular redistribu-
tion tendency was observed for AQP4 expression with
ageing from grey matter to white mater in most dogs.
Brain development as well as ageing may affect AQP4
distribution throughout the canine brain.

Knowledge about AQP4 expression and distribution in
normal canine brains will aid the understanding of the
importance of abnormal AQP4 expression in canine
brains with different pathological conditions.

Methods

Animals and specimen collection

A total of 12 canine brains were retrospectively evaluated.
The dogs died or were euthanized due to causes unrelated to
the CNS and donated to the Unit of Murine and Compara-
tive Pathology, Autonomous University of Barcelona, Spain.
Owner agreement was obtained at the time of the donation
of the canine body. Post-mortem examination and harvesting
of the brains for histopathological analysis were performed
within 24 hours after death. Throughout this time, the ani-
mal bodies were refrigerated. A complete post-mortem
examination including gross and histopathological analysis of
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the bodies was performed. Thorough examination of
formalin-fixed paraffin-embedded transverse sections of the
brains, using a rotatory microtome, followed by
hematoxylin-eosin staining confirmed the lack of significant
abnormalities. The age ranged between 21 days to 17 years
(mean 6.4 years). Different canine breeds were included. De-
tailed information about the dogs is listed in Table 1.

Representative sections of the brain were evaluated at
the level of the frontal cortex/corpus striatum, parieto-
temporal cortex/diencephalon, mesencephalon, cerebel-
lum/pons and medulla oblongata.

Histology procedure
Samples of all tissues were fixed in 10% buffered forma-
lin and paraffin-embedded.

Sections 3-um thick of paraffin-embedded brain tissue
of different selected areas were stained using standard
hematoxylin-eosin dye. Primary antibodies specific for
AQP4 and GFAP were used to characterize the distribu-
tion of the AQP4 and the astrocytes within the brain.
Sections 3-pm thick were mounted on capillary glass
slides, dewaxed, and rinsed with water and treated with
3% peroxide hydrogen for 35 minutes to inhibit en-
dogenous peroxidase activity. When antigen retrieval
was necessary (GFAP), sections were heated for 20 mi-
nutes in a bain-marie at 98°C with 10 mM citrate buffer
pH 6.0, cooled for 30 minutes at room temperature
(RT), and rinsed in phosphate-buffered saline (PBS).
Nonspecific binding was blocked with 30% normal goat
serum diluted in PBS for 1 hour at RT. The samples
were incubated overnight at 4°C with primary anti-
bodies: rabbit anti-AQP4 antibody (1:800, Chemicon,
Temecula, CA), and rabbit anti-GFAP antibody (1:1000,
Dako, Denmark). The sections were then rinsed with
PBS and incubated for 40 minutes at RT with a labeled
polymer according to the manufacturer’s instructions
(Labeled Polymer—Dako REAL Envision-HRP KO11,
Dako, Denmark). Staining was completed by 10-minute
incubation with 3, 3’-diaminobenzidine and counter-
staining in hematoxylin for 3 seconds. For the negative
control, an isotype-specific immunoglobulin was used as
a substitute for the primary antibody in all experiments;
no immunostaining was detected in these sections.

Analysis

Microscopic description and semiquantitative evaluation
of the expression and intensity of AQP4 immunoreac-
tion was performed. The observer (PA) was not blinded
to the signalment and clinical history of the canine study
population. The AQP expression was distributed accord-
ing to the following scale: (-) absence of detectable stain-
ing, (+) mild staining, (++) moderate staining in focal or
diffuse patterns and (+++) strong staining (Table 2).
This scale was achieved by assigning the strongest
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staining intensity (+++) to the subpial and subependymal
areas. The staining intensity became progressively fainter
(++,+, -) the further away from the periventricular and
perivascular regions. Thereafter, the above-named other
representative encephalic structures were compared to
the staining intensity seen in the subpial and subependy-
mal areas and the staining intensity was attributed ac-
cordingly. This pattern was found to be repeatable in all
examined canine brains. The analysis was performed
within the same day and was repeated up to three times
to ensure consistency of the results.

Abbreviations

AQP4: Aquaporin-4; AQPs: Aquaporins; CNS: Central nervous system;

GFAP: Glial fibrillary acidic protein; GM: Grey matter; PBS: Phosphate-buffered
saline; RT: Room temperature; WM: White matter
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