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Abstract: The proteasome is responsible for selective degradation of most cellular proteins. Abun-
dantly present in the cell, proteasomes not only diffuse in the cytoplasm and the nucleus but also asso-
ciate with the chromatin, cytoskeleton, various membranes and membraneless organelles/condensates.
How and why the proteasome gets to these specific subcellular compartments remains poorly un-
derstood, although increasing evidence supports the hypothesis that intracellular localization may
have profound impacts on the activity, substrate accessibility and stability/integrity of the protea-
some. In this short review, I summarize recent advances on the functions, regulations and targeting
mechanisms of proteasomes, especially those localized to the nuclear condensates and membrane
structures of the cell, and I discuss the biological significance thereof in mediating compartmentalized
protein degradation.
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1. Introduction

The 26S proteasome is situated at the core of the ubiquitin–proteasome system (UPS),
responsible for selective degradation of the majority of cellular proteins in eukaryotes.
For over three decades since its discovery, the proteasome has been thoroughly studied
with regard to its composition, structure, activity, regulation and relation to health and
disease. The fully assembled 26S proteasome holoenzyme consists of a 20S core particle (CP,
formed by homologous α and β type subunits) and one or two 19S regulatory particles (RP,
formed by six ATPase subunits called Rpt1-6, and thirteen non-ATPase subunits known as
Rpns) [1–10]. Recent structural studies have significantly furthered our knowledge about
how the proteasome recognizes and processes ubiquitinated substrates [6,11,12]. The suc-
cess of proteasome inhibitors (e.g., Bortezomib/Velcade®) in treating multiple myeloma [13]
has spurred intensive research on developing proteasome-targeting compounds for thera-
peutic uses toward cancer and autoimmune diseases, whereas (re-)activating the protea-
some by small molecules has also emerged as an attractive strategy for alleviating symp-
toms associated with neurodegeneration and aging [14–19]. A better understanding of the
function and regulation of the proteasome is of great biological and clinical importance.

As a soluble and highly abundant macromolecular complex [20–22], the proteasome
resides in both the nucleus and cytoplasm of a cell and has been found associated with
various subcellular structures, including the chromatin, cytoskeleton, nuclear envelope,
plasma membrane, the cytosolic side of membrane-bound organelles and membraneless
organelles/condensates (see below). Despite their pervasive presence, proteasomes are
not evenly distributed in all cells. On a global scale, asymmetric cell division can lead
to unequal inheritance of proteasomes between the daughter cells [23–26]. The specific
subcellular localizations of proteasomes are often cell type- and growth status-dependent
and dynamically regulated under both basal and stimulated/stress conditions [27–29]. A
classic example is that in yeast, proteasomes are predominantly present in the nucleus
of proliferating cells; but upon quiescence or carbon starvation, nuclear proteasomes are
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rapidly exported to the cytosol, where they are concentrated in a membraneless structure
called proteasome storage granule (PSG) [30]. PSGs quickly resolve when yeast cells resume
growth in nutrient-rich media and proteasomes re-gather in the nucleus. This reversible
process is believed to protect the proteasome repertoire from autophagic degradation
under stress conditions, while allowing them to regain function as soon as the stress is
relieved [30,31].

Proteasomes also exist extracellularly. Original studies have shown that secreted
proteasomes from ascidian sperms can digest vitelline coat proteins outside the egg and
are required for egg penetration and fertilization [32–34]. Circulating proteasomes (c-
proteasomes) were also found in humans around the same time [35], which has been
confirmed by a series of subsequent studies (see reviews [36–38] and references therein).
Present in the blood as well as other bodily fluids, these c-proteasomes are mostly in the
form of 20S, probably due to the low-ATP extracellular environment that does not support
RP–CP association [39,40]. Nonetheless, they are enzymatically active, and elevation of
their levels is often correlated with either malignancy or tissue injury/damage, making
them a promising biomarker for disease diagnosis [36–38]. How the proteasomes exit the
cell remains a matter of debate, although a likely mechanism is via exosome-mediated non-
conventional secretion [36,41]. The pathophysiological roles and regulatory mechanisms of
extracellular proteasomes have yet to be fully understood.

Various mechanisms have been identified to target protein substrates to different sub-
cellular regions for proteasomal degradation [42–50]. On the flip side, proteasomes should
be available at the site of degradation or can be mobilized to meet the substrates. In addition
to the examples introduced above, the dynamic localizations of the proteasome have been
extensively studied (particularly in yeast) and summarized in a series of reviews [51–55].
Here, I will focus on the latest findings about nuclear-localized and membrane-associated
proteasomes in mammalian cells and discuss the targeting mechanisms, biological func-
tions, as well as regulations of proteasomes at these specific compartments.

2. Proteasomes in the Nucleus

A considerable amount of proteasomes exist in the nucleus, where they play pivotal
roles in regulating mitotic cell cycle [56,57], meiosis [58–60], transcription/chromatin
remodeling/epigenetic control [61–64], RNA splicing [65,66], DNA damage repair [67–69]
and nuclear protein quality control [42,49,70], among others. There are also nuclear-specific
proteasome activators (e.g., PSME3/REGγ and Blm10) and regulators that control these
processes [71–75].

2.1. Nuclear Targeting of the Proteasome

In yeast, nuclear proteasomes are essential for cell survival [76]. Unlike in higher
organisms, the nuclear envelope (NE) of a yeast cell remains intact during closed mitosis,
and active nuclear import of the proteasome across the NE is necessary for continuous
cell proliferation. Early studies identified putative nuclear localization signals (NLS) in
certain α subunits of yeast and archaeal proteasomes, some of which were later found to be
functionally conserved in their mammalian homologs [77–81]. Direct recognition of NLS
by the importin complex is therefore important for trafficking proteasome subunits and
sub-assemblies into the nucleus [51].

NLS has also been identified in the 19S subunits, Rpn2 and Rpt2. Although both of
these NLS sequences are functional in binding importins and guiding non-nuclear proteins
to the nucleus in yeast, only the Rpn2-NLS was shown to be primarily responsible for
nuclear import of the 19S base complex (including Rpt1-6, Rpn1, 2, 10 and 13). The putative
NLS of Rpt2 only provided secondary functions when the Rpn2-NLS was inactivated [82].
In mammals, these NLS sequences are only partly conserved in Rpn2 and Rpt2, and their
relevance to nuclear localization of the proteasome has not been examined. Of note, posi-
tively charged residues at the C-terminal half of the bipartite ScRpt2-NLS (KFGRKKRK)
are also present in human Rpt2 (32RVGKKKKK39), a region sandwiched between Rpt2 and
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its neighboring subunit Rpn1, possibly inaccessible to the importins [12]. On the other
hand, the N-terminal part of ScRpt2-NLS roughly corresponds to 15KKDDKDKKKK24 of
human Rpt2, which was recently suggested to form a charge–charge interaction with phos-
phorylated Ser361 of Rpn1. This interaction is required for proper proteasome assembly in
human cells, and mutation of these lysine residues weakened Rpt2 incorporation into the
proteasome [83]. It should be pointed out that Rpn1-Ser361 phosphorylation does not occur
in yeast, given the lack of phosphosite, therefore the ScRpt2-NLS may be more available
for importin binding. In addition, aa. 1–24 of human Rpt2 is sufficient for bringing GFP to
the cell membrane [84] largely due to N-myristoylation of this sequence (see below), while
the myristoylation site was omitted in the GFP targeting study with yeast Rpt2-NLS [82].
These observations suggest that similar NLS-like motifs of the same proteasome subunit
may have different functions in mammalian cells and yeast, which may be determined by
the subtle sequence differences, assembly status and modifications of the subunit itself and
its adjacent subunits.

The proteasome may be imported into the nucleus as free subunits and assembly
intermediates as noted above, and it can also pass through the nuclear pore complex
(NPC) as assembled 20S or 26S particles [21,85]. This is possible owing to the elasticity of
the NPC structure [86,87] and depends on the importins. In addition to direct importin
binding to the NLS sequences, which may be masked in the proteasome complex [51,77,80],
nuclear translocation of the 20S and 26S proteasomes can be facilitated by NLS-containing
adaptor proteins that simultaneously interact with the proteasome and importins. Sts1
in budding yeast [88–90] and its ortholog, Cut8, in fission yeast [91,92] both possess NLS,
form dimers, bind the proteasome and are required for proper localization of proteasomes
in the nucleus. A homolog of Sts1/Cut8 has been found in fruit fly. Importantly, both Sts1
and Cut8 are substrates of the proteasome with a very short half-life, and their ubiquitin-
dependent (Cut8) and -independent (Sts1) degradation is coupled with their ability to
mediate proteasome transport into the nucleus. Thus, these proteins serve as regulators,
sensors and targets of nuclear proteasomes.

Very recently, a functional counterpart of Sts1/Cut8 was identified in human cells
through a CRISPR screen for regulators of c-myc. Among the top hits was the transcription
co-activator AKIRIN2, whose depletion significantly stabilized the c-myc protein, as well
as many known nuclear targets of the proteasome [93]. AKIRIN2 is highly conserved
through evolution, especially in vertebrates. Showing no obvious sequence identity with
Sts1/Cut8, AKIRIN2 functions similarly to these yeast proteins in controlling proteasome
nuclear localization. First, AKIRIN2 harbors an N-terminal bipartite NLS recognized by
a particular importin, IPO9, which is also important for nuclear import of proteasomes
in Drosophila germ cells [94]. Second, AKIRIN2 can homodimerize via its coiled-coil
domain and preferentially binds assembled 20S and 26S proteasomes through its highly
conserved C-terminal SYVS motif. The cryo-EM structure of the AKIRIN-20S CP complex
has revealed that the SYVS tails insert into specific pockets formed between adjacent α
subunits that are known to be occupied by the C-termini of Rpt subunits upon RP–CP
association. The coiled-coils further lie across the surface of the α ring. This mode of
interaction suggests that AKIRIN2 dimers can bind and promote nuclear import of free 20S
CP and singly capped 26S proteasome (RP–CP) but not the doubly capped 30S proteasome
(RP–CP–RP) [93,95]. Third, same as Sts1 and Cut8, AKIRIN2 is also an unstable protein that
can be rapidly degraded by the proteasome. Finally, AKIRIN2 is fundamentally important
for nuclear proteasomal degradation and required for cell survival. In particular, following
(open) mitosis, AKIRIN2 controls the re-accumulation of nuclear proteasomes after the NE
reforms. This fits well with its transcriptional upregulation prior to mitotic onset [93,96].
Together, AKIRIN2 and Sts1/Cut8 constitute a highly conserved strategy used by the cell
to ensure a proper abundance of proteasomes in the nucleus.
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2.2. Nuclear Condensates of the Proteasome

The proteasome is an integral component of the protein quality control system
(PQC) [97], which often functions in spatially organized compartments within a cell [48].
Proteasome association with distinct subcellular structures becomes more evident under
stress conditions, as typified by the formation of juxtanuclear quality control compart-
ment (JUNQ), insoluble protein deposit (IPOD)/aggresome, intranuclear quality control
compartment (INQ), stress granule (SG) and other cellular bodies/aggregates. Much
of this knowledge was gained from studies in yeast, while recent findings in higher or-
ganisms have highlighted the evolutionary conservation and significance of proteasome
compartmentalization in response to proteostasis stress [44–48,50,98–105].

Several groups have recently reported proteasome-containing condensates forming
in the nucleus of mammalian cells [106–109]. Although detected in different cell types
with different stimuli, these subnuclear structures share several common features: (1) They
quickly appear under stress and then resolve either spontaneously or after the cells are
returned to normal conditions; (2) These proteasome foci are distinct from known nuclear
structures, such as PML bodies, Cajal bodies, DNA damage foci, nuclear speckles and
nucleoli; (3) They are fluid membraneless organelles formed by liquid–liquid phase sep-
aration (LLPS) [110]; (4) All of them contain proteins modified by K48-linked ubiquitin
chains, which serve as a critical nucleating factor to recruit proteasomes. Specifically, the
ubiquitin shuttle protein Rad23B can establish multivalent binding with ubiquitin chains
via its tandem ubiquitin-associated (UBA) domains, providing a driving force for LLPS.
Rad23B also docks onto the proteasome via its ubiquitin-like (UBL) domain, thus attracting
proteasomes to the ubiquitinated proteins [106,109]. Similarly, p62/SQSTM1, a key regula-
tor of macroautophagy, also contains a UBA domain for ubiquitin binding and uses its PB1
domain for proteasome interaction. Nuclear retention of p62 was shown to be sufficient to
induce proteasome phase separation [108]; (5) Proteasomes in these nuclear condensates
are fully assembled, active 26S complexes, and their proteolytic activity can be enhanced
by the high local concentrations of both the proteasome and the substrates. Therefore, in
contrast to the cytosolic PSG observed in yeast, which contains dissociated RPs and CPs,
stress-induced nuclear proteasome foci in mammalian cells are active degradation centers
of ubiquitinated proteins.

There were also unique findings reported about each type of these nuclear protea-
some condensates. By treating cells with sucrose, glucose or NaCl, Yasuda et al. first
described hyperosmotic stress-induced proteasome phase separation in the nucleus [106].
This process not only relied on ubiquitination (as determined by E1 inhibition) and Rad23B
but also on UBE3A, a proteasome-associated E3 ubiquitin ligase that was also present in
the condensates. Song et al. later found that, in addition to K48-linked ubiquitin chains,
proteins in the same kind of liquid droplets were also modified by K11/K48-branched
chains [111]. UCH37, a long-recognized proteasome-associated deubiquitinase (DUB),
was also present at the sucrose-induced proteasome foci. With a unique de-branching
activity toward K11/K48 and K6/K48 ubiquitin chains [111,112], UCH37, together with the
ATPase p97/VCP, played an important role in disentangling the ubiquitinated proteins and
resolving the condensates through proteasomal degradation [106,111]. Hyperosmolarity
led to nucleolar stress and impaired ribosome biogenesis. Unassembled orphan riboso-
mal proteins were targeted to the proteasome condensates where they were degraded,
thereby preventing their aggregation in the nucleus under stress. As such, the nuclear
proteasome droplets serve as an important quality control mechanism to protect the cell
from hyperosmotic stress.

Nuclear puncta of proteasomes under hypertonic treatment were also observed by
Lee et al. [107]. Using a higher NaCl concentration and prolonged treatment, these investi-
gators noted that proteasome foci decorated the nuclear membrane, probably representing a
late-stage response to more severe hyperosmotic stress. The formation of these intranuclear
foci was not regulated by the kinase p38, which has been shown to phosphorylate Rpn2 in
response to hyperosmotic stimulation [113]. However, pharmacologic inhibition of either
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importin or exportin abrogated nuclear proteasome condensation under the same stress
condition, suggesting the requirement for nucleocytoplasmic shuttling of the proteasome
and/or other factors. Moreover, NPC components were detected in cytosolic stress gran-
ules after hyperosmotic shock, indicative of disruption of the nuclear pore. It remains
to be determined how this happens and whether it underlies the unique localization of
proteasome foci at the nuclear envelope.

To understand the nuclear function of p62, Fu et al. knocked out p62 from cells
and replaced with a nuclear-trapped version, p62∆NES [108]. Under basal conditions,
p62∆NES spontaneously underwent LLPS, and the resulting nuclear droplets contained
not only ubiquitinated proteins (K48- and K63-linked) but also E1, E2, E3 enzymes, active
26S proteasomes and DUBs, representing all components of the UPS. Indeed, p62∆NES
promoted proteasomal degradation of several nuclear substrates, including NLS-GFP-CL1,
free proteasome subunits and the transcription factors c-myc and c-jun. Interestingly,
these proteasome-containing p62 condensates could fuse with sucrose-induced proteasome
condensates [106]. Compared to p62-null cells, p62∆NES-reconstituted cells showed better
survival after oxidative stress and heat shock, pointing to a cytoprotective role of p62 via
regulating nuclear PQC [108].

Another form of stress is nutrient deprivation. In yeast, carbon (glucose) starvation
leads to PSG formation, while nitrogen starvation promotes proteasome degradation by
autophagy (“proteaphagy”) [30,31,114,115]. On the contrary, Uriarte et al. found that
nitrogen (amino acid) starvation of mammalian cells induced nuclear proteasome con-
densates that they named SIPAN (Starvation-Induced Proteasome Assemblies in the Nu-
cleus) [109]. Again, this structure contained active 26S proteasomes, K48-linked ubiquitin
chains, Rad23B, as well as PSME3/REGγ. Ubiquitination and Rad23B, but not PSME3,
were required for SIPAN formation, whereas detergent and hypotonic treatments quick-
ened its dissipation. Interestingly, non-essential amino acids (NEAA), but not essential
amino acids (EAA), could effectively block SIPAN formation and promote its resolution.
SIPAN resolution also depended on the DUB activity of UCH37/UCHL5 and USP14 but
was independent of E1, p97/VCP or proteasome activity when nutrients were available.
Unlike the observations made by Yasuda et al. with hyperosmotic stress [106], amino
acid deprivation did not cause nucleolar stress. Instead, prolonged amino acid starvation
triggered p53-mediated apoptosis, while depletion of Rad23B (which eliminated SIPAN)
or PSME3 inhibited upregulation of p53 and its target genes, maintaining cell survival
under starvation. Although a clear link between these pro-apoptotic factors and SIPAN
has yet to be established, the investigators noticed an inverse correlation between SIPAN
formation and cell survival upon starvation. Compared to non-cancerous cells, cancer
cells and oncogene-transformed “normal” cells showed a much reduced propensity to
form SIPAN when deprived of amino acids. In this sense, SIPAN differs from all the other
nuclear proteasome condensates discussed above and appears to have a deleterious effect
on cells, which was suggested to be a potential defense mechanism against cancer [109].

In all, various stress conditions have been shown to trigger condensation of nuclear
proteasomes via LLPS. These structures can be viewed as distinct entities based on the
signals that regulate their formation/dissipation, their biochemical compositions and bio-
logical functions, but they may also be related both biochemically and functionally. Table 1
summarizes the commonalities and distinctions between these proteasome condensates.
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Table 1. Characteristics of nuclear proteasome condensates under various stress conditions.

Reference Yasuda et al. [106] Lee et al. [107] Fu et al. [108] Uriarte et al. [109]

Condensate induced by Hyperosmotic stress Hyperosmotic stress
Nuclear retention of
p62, oxidative and

heat stress

Nutrient starvation
(NEAA depletion)

Formation depends on Ubiquitination, Rad23B,
UBE3A

Ubiquitination,
nucleocytoplasmic

trafficking

Ubiquitination, protein
synthesis, p62 Ubiquitination, Rad23B

Clearance depends on
Proteasome activity,

p97/VCP,
UCH37/UCHL5

Proteasome activity Proteasome activity UCH37/UCHL5,
USP14

Driven by LLPS LLPS LLPS LLPS

Form of proteasome Active, 26S
holoenzyme

Active, 26S
holoenzyme

Active, 26S
holoenzyme

Active, 26S
holoenzyme

Substrates of
proteasome

Orphan ribosome
proteins (RPs)

NLS-GFP-CL1,
unassembled

proteasome subunits,
c-myc, c-jun

Other UPS-related
components

Ub chains (K48-linked
but not K63-linked,

K11/K48),
UCH37 [111]

Ub chains (K48-linked)

Ub chains (K48-linked
and K63-linked)

E1/E2/E3s, DUBs,
chaperones

Ub chains (K48-linked)

Accompanied
phenotypes Nucleolar stress

Condensates near NE,
Nups found in stress

granule

p62 condensates can
fuse with those

induced by
sucrose [106]

No nucleolar stress.
Cells protected by

NEAA but not EAA

Biological function
Prevent RP aggregation,

protect cells from
hyperosmotic stress

Protect cells from
hyperosmotic stress

Nuclear PQC. Protect
cells from heat stress

A possible defense
mechanism against

oncogenic
transformation

3. Proteasomes at the Membranes

Membrane localization of the proteasome has been documented since the early
1990′s [116,117]. Numerous subsequent studies have documented proteasomes in close contact
with nuclear envelope-ER [92,118–124], the Golgi apparatus [125,126], endosomes [127,128],
plasma membrane [129,130], mitochondria [123,131–136] and so on. Proteasomes at the
membranes are particularly important for organelle quality control processes, such as ER-
associated degradation (ERAD), endosome and Golgi-associated degradation (EGAD) and
mitophagy [120,125,126,137–141]. In addition, proteasomes located at neuronal synapses
are also critical for neurotransmission and synaptic plasticity [142–146]. In these cases, the
proteasome associates peripherally with the membrane by binding to membrane-resident
proteins. This can occur directly between proteasome subunits and membrane proteins.
Alternatively, proteasomes can be indirectly recruited to the membrane through binding
to the ubiquitin moiety of modified membrane proteins, proteasome-interacting proteins
(sometimes in concert with motor proteins and cytoskeleton) [147,148] or even RNAs that
function as protein scaffolds [149]. Together, these represent the most common mode of
proteasome–membrane interaction, while the proteasome can also locate to the membrane
in two other ways, as elaborated below (Figure 1).

3.1. Neuronal Membrane Proteasomes

Ramachandran et al. reported a surprising type of membrane-associated proteasomes
designated as the neuronal membrane proteasomes (NMPs) [150,151]. As the name sug-
gests, these proteasomes are found at pre- and post-synaptic plasma membranes in neurons,
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which were confirmed by immunogold electron microscopy (IEM), surface biotinylation,
immunofluorescence imaging with antibody feeding and proteinase protection assays.
NMPs are thought to be comprised of the 20S CP only, since no 19S components (such as
Rpt5 or Rpn1) were found by IEM in these particular membrane proteasomes. NMPs are
capable of degrading newly synthesized polypeptides, which are still unfolded, to short
peptides. More fascinatingly, the authors showed that these peptide products could exit the
cells through NMPs and be released into the synaptic cleft to function as neurotransmitters.
Therefore, NMPs function not only as a protein degrader but also a new form of membrane
channel to mediate cell–cell communications [152]. Although these findings were very
unique and intriguing, the molecular and biochemical details of the NMPs remain unclear.
First, it is curious that the 20S CP, which is soluble and hydrophilic, could be fully embed-
ded within the hydrophobic membrane. How is the CP targeted to the plasma membrane
and how does it overcome the energy barrier to traverse the lipid bilayer? It was proposed
that glycoproteins, such as GPM6, could facilitate this process [151], but a clear mechanistic
explanation is still needed. Second, does the NMP exhibit any substrate selectivity? The
proposed role of NMPs in cleaving nascent proteins suggests that substrate availability
depends on localized protein synthesis by ribosomes in the vicinity [150]. However, if the
NMP complex also contained auxiliary factors yet to be identified, it might recognize and
process folded protein substrates as well. On the other hand, the recent discovery that
the 20S CP can by itself degrade ubiquitinated proteins [153] also implies that NMPs may
have a broader range of substrates. A following question is the molecular composition and
regulatory mechanisms of the NMPs. Finally, what is the function of NMP in vivo? Addi-
tionally, how can we specifically maneuver it for research and therapeutic purposes without
affecting the bulk of proteasomes inside the cell? Answering these questions will depend
on new technical advances in imaging, chemical biology, proteomics, structural biology
and genetic models, which makes it challenging but also rewarding at the same time.
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Figure 1. A simplified view of different modes of proteasome–membrane interaction. (A) In most
cases, proteasomes attach to the membrane by directly or indirectly binding to resident membrane
proteins, which may be modified by ubiquitination. (B) Neuronal membrane proteasomes (NMP)
can degrade nascent, unfolded polypeptides. (C) Proteasomes tethered to the membrane via N-
myristoylated Rpt2, which is evolutionarily conserved from yeast to human.
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3.2. Membrane Targeting of Proteasomes by N-Myristoylation

A third means of targeting the proteasome to the membrane is through lipid mod-
ification. N-myristoylation of the Rpt2 subunit has been observed by mass spectrome-
try in multiple species, ranging from yeast to plants to mammals [154–161]. Typically,
N-myristoylation occurs co-translationally on nascent polypeptides still bound to the ribo-
some, where the 14-carbon saturated fatty acyl group is covalently linked to the second
amino acid (almost always a Gly) after the initiator methionine is removed by methionyl
aminopeptidase [162–164]. Notably, among all proteasome subunits of mammalian cells,
Rpt2 is the only one that begins with Met-Gly, serving as the only site of the entire pro-
teasome complex for N-myristoylation. This MG sequence of Rpt2 is strictly conserved
from yeast to human, suggesting that Rpt2 is likely to be myristoylated in all species. In
yeast, myristoylated Rpt2 has been shown to target proteasomes to the nuclear envelope,
which is required for nuclear protein quality control [156,157]. Blocking this modification
with the Rpt2-∆G or Rpt2-G2A mutations causes mislocalization of nuclear proteasomes to
the cytosol.

The role of Rpt2 myristoylation in higher organisms has not been rigorously investi-
gated, despite Rpt2 being one of the most abundantly myristoylated proteins in human
cells [161]. Our recent work demonstrated that wild-type human Rpt2 proficient for myris-
toylation was found at the plasma membrane, with some distribution at membrane-bound
organelles as well. Membrane localization was abolished by the same ∆G/G2A mutations
of human Rpt2. However, in stark contrast with results from yeast, loss of Rpt2 myristoyla-
tion in mammalian cells led to Rpt2 enrichment in the nucleus [84]. A serendipitous finding
was that myristoylation-mediated membrane association is a prerequisite for Rpt2 phos-
phorylation at Tyr439 (Y439) by the tyrosine kinase Src, which itself is a well-established
myristoylated protein tethered to the membrane [84,165]. Moreover, Rpt2-Y439 phospho-
rylation could be reversed by the phosphotyrosine phosphatase PTPN2 (also known as
T cell PTP or TC-PTP). PTPN2 has multiple splicing isoforms. Rpt2-pY439 could only be
dephosphorylated by the membrane-bound isoform of PTPN2 known as TC48, but not by
the nuclear isoform TC45 [84]. Hence, the kinase, phosphatase and substrate are all placed
in the same neighborhood confined by the membrane.

The biochemical consequence of Rpt2-Y439 phosphorylation is readily conceivable,
as it is the very tyrosine residue within the highly conserved HbYX tail (hydrophobic
residue—Tyr—any amino acid) of Rpt2 required for RP–CP association. Rpt2-Y439 is the
most frequently detected pTyr site of all 19S subunits. The phosphorylation was seen in the
developing rat brain but more evidently detected in cancer cells with hyperactive Src [84].
Src-mediated Rpt2-Y439 phosphorylation selectively inhibited the activity of membrane-
associated proteasomes as demonstrated by a membrane-targeted reporter protein, MyrRpt2-
GFPodc. On the contrary, the Src-specific inhibitor saracatinib/AZD0530 blocked Y439
phosphorylation and enhanced proteasomal degradation of membrane-bound substrates.
Importantly, this seemed to be an integral part of the anti-cancer effects of saracatinib,
since cancer cells expressing the nonphosphorylatable Y439F mutant were more resistant
to this drug, both in vitro and in vivo [84]. Thus, reversible phosphorylation of Rpt2-Y439
provides a unique example of localized regulation of membrane-associated proteasomes.

4. Conclusions and Future Perspectives

Proteasome localization is highly dynamic within the cell and may be remarkably
heterogeneous between cell types. This is an important basis of compartmentalized protein
degradation that is widely conserved through evolution. Nonetheless, we have seen differ-
ences between yeast and mammalian cells where the behavior and fate of the proteasome
are differentially controlled by specific factors. We are just beginning to get in-depth under-
standing of intracellular proteasome targeting and trafficking in higher organisms, and it
remains a daunting mission to obtain a complete picture of localized function and regula-
tion of the proteasome across different cell types, species and growth/stress conditions. A
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yet more challenging task would be to confirm these findings in vivo and to develop new
tools for “site-specific” manipulation of proteasomes at any particular location in a cell.

A prerequisite for achieving these goals is a deeper and better characterization of
proteasome composition, modification, interactome and its microenvironment within a
cell. Researchers have been empowered by state-of-the-art techniques, including proximity
labeling (e.g., BioID/TurboID, APEX, PUP-IT) [166–168], quantitative proteomics, super-
resolution imaging and cryo-electron tomography (cryo-ET) [21,22,106,120,122] to probe
and catalog the contents of proteasome-containing subcellular structures. Chemical biology
approaches involving metabolic labeling, click chemistry, genetic code expansion and
cross-linking mass spectrometry (XL-MS) have provided critical insights into proteasome
modification and assembly [83,161,169–171]. Commonly used reporter proteins (e.g., GFPu,
GFPodc, UbG76V-GFP, UBL-CP8-35) can be engineered to reflect local proteasome activity at
defined compartments [84,108,172,173], while knock-in mice bearing fluorescence protein-
tagged proteasome subunits would be valuable to monitor proteasome distribution and
dynamics in vivo [174]. With classic yeast genetics and CRISPR screens, many more
regulators of the proteasome are expected to be uncovered [93,114].

Finally, some further possibilities may be speculated. 1. In addition to the above
discussed, what other mechanisms may be used for proteasome targeting? Can we alter
proteasome localization (and function) pharmacologically, optically, mechanically, mag-
netically or acoustically [175]? Does lipid modification (i.e., N-myristoylation) promote
exosomal secretion of the proteasome, as has been shown with palmitoylated ACE2 [176]?
Can we design “Proteasome-TACs” that recruit proteasomes directly to the substrates (or
vice versa) for therapeutic use? A recently discovered small circular RNA seemed to do
precisely that [149]. Along this line, since proteasome subunits have been identified as
RNA-binding proteins [177,178], can RNAs act as molecular tethers between the protea-
some and chromatin or other proteins [179]? 2. As mentioned earlier, cancer cells show
reduced SIPAN formation [109], and tyrosine phosphorylation of membrane-bound Rpt2
is relevant to the anti-cancer effect of saracatinib [84]. This makes one wonder whether
proteasome (mis)localization can be considered as a biomarker for disease diagnosis and
treatment. Moreover, it is unclear whether subcellular localization of the proteasome is
altered in multiple myeloma patients after proteasome inhibitor treatment, or in patients
with proteasome-associated autoinflammatory syndrome (PRAAS) who carry congenital
mutations in proteasome genes [180,181]. Relocation of the proteasome may cause changes
to the local proteome and rewire intracellular signaling, which may lead to a different kind
of proteasome-oriented therapy.
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