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Prediction of hearing recovery 
with deep learning algorithm 
in sudden sensorineural hearing 
loss
Hee Won Seo 1,5, Young Jae Oh 2,5, Jaehoon Oh 3, Dong Keon Lee 4, Seung Hwan Lee 1, 
Jae Ho Chung 1* & Tae Hyun Kim 2*

This study aimed to establish a deep learning-based predictive model for the prognosis of idiopathic 
sudden sensorineural hearing loss (SSNHL). Data from 1108 patients with SSNHL between January 
2015 and May 2023 were retrospectively analyzed. Patients underwent standardized treatment 
protocols including high-dose steroid therapy and hearing outcomes were assessed after three 
months using Siegel’s criteria and the American Academy of Otolaryngology-Head and Neck Surgery 
(AAO-HNS) classification. For predicting patient recovery, a two-layered classification process 
was implemented. Initially, a set of 22 Multilayer Perceptrons (MLP) networks was employed to 
categorize the patients. The outcomes from this initial categorization were subsequently relayed to 
a second-layer meta-classifier for final prognosis determination. The validity of this methodology 
was ascertained through a K-fold cross-validation procedure executed with 10 distinct splits. The 
prediction model for complete recovery, based on Siegel’s criteria, demonstrated an accuracy of 
0.892 and area under the curve (AUC) of 0.922. For the class A prediction, according to AAO-HNS 
classification, the model showed an accuracy of 0.847 and AUC of 0.918. These results suggest that 
the model may have the potential to contribute to the establishment of tailored patient management 
strategies by predicting hearing recovery in patients with SSNHL.
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Idiopathic sudden sensorineural hearing loss (SSNHL) is an otologic emergency characterized by sudden, unex-
plained hearing loss. If left untreated, this condition can cause permanent hearing impairment, and ultimately 
diminish the patient’s quality of life. Several possible factors have been suggested as causes of SSNHL, including 
viral infections, autoimmune inner ear disease, ototoxic medication, vascular problems, auditory tumors, and 
head trauma1,2. However, the exact underlying cause remains unknown despite extensive research. Due to this 
uncertainty, empirical treatment strategies are often employed for SSNHL, with high-dose steroid therapy com-
monly used due to its potent anti-inflammatory properties3,4. However, individual patient responses to steroid 
treatment vary, emphasizing the need for individualized management strategies.

One of the key challenges in managing SSNHL is predicting treatment outcomes or prognoses, so that a per-
sonalized, more aggressive interventions for patients with anticipated poor outcomes. The diversity of etiologic 
theories and patient-specific factors often results in a broad spectrum of recovery rates, highlighting the necessity 
for a more sophisticated, data-driven approach to prognosis prediction. Conventional approaches have relied 
on identifying clinical and audiological markers associated with hearing recovery. These often utilize extensive 
laboratory data that is not readily available in clinical settings and tend to focus on individual markers. Previ-
ous studies have revealed factors such as initial hearing levels, patient age, time between symptom onset and 
treatment initiation, high frequency hearing loss and the presence of vertigo as significant predictors of hearing 
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recovery5–11. Nevertheless, due to the intricate interplay of these variables and inherent variability in patient 
responses, accurate prognosis prediction remains challenging.

Recent advancements in machine learning, particularly deep learning algorithms, offer promising ways to 
improve prognostic accuracy in medical decision making. These algorithms have the potential to analyze large 
data sets to identify patterns and correlations that may be too complex for traditional analysis techniques. There-
fore, this study aimed to construct a predictive model based on deep learning algorithms for the prognosis of 
SSNHL. By utilizing a substantial dataset, we also aimed to overcome the limitations inherent in previous stud-
ies, identify important prognostic factors, and improve the accuracy of prognostic prediction in this complex 
otologic emergency.

Materials and methods
Study design and data collection
This study retrospectively collated data from idiopathic SSNHL patients who visited our tertiary center between 
January 2015 and May 2023. Medical records containing basic characteristics of patients, comorbidities, associ-
ated symptoms, initial hearing levels on the affected and unaffected sides, and final hearing levels were meticu-
lously reviewed. The diagnosis of SSNHL was defined according to the 2019 Academy of Otolaryngology-Head 
and Neck Surgery (AAO-HNS) guidelines1, indicating a hearing loss of 30 dB or more at three consecutive 
frequencies within 3 days.

As per the standardized treatment protocol, SSNHL patients initially received a high dose of oral steroids, 
with prednisone administered at 1 mg/kg daily for 7 days, followed by a 4-day tapering period. Subsequently, 
individuals who did not achieve a serviceable hearing threshold (< 40 dB HL) within one week underwent sal-
vage intratympanic dexamethasone injections (5 mg/mL), administered four times every two weeks. Patients 
with diabetes followed the same treatment protocol for SSNHL, including hospitalization for glycemic control. 
In addition, patients with other underlying conditions received appropriate management alongside their treat-
ment for SSNHL. Patients diagnosed with conductive hearing loss, Meniere’s disease, or those with confirmed 
retro-cochlear lesions were excluded from the analysis. Additionally, patients who were treated exclusively with 
intratympanic injections without systemic steroids were also excluded. Finally, a total of 1108 patients were 
included in the study.

Selection of clinical parameters
For the prediction of treatment outcomes, clinical data comprising 20 parameters were utilized. These parameters 
include age, gender, comorbidities (hypertension and diabetes), lesion side, accompanying symptoms (vertigo, 
tinnitus and ear-fullness), initial hearing thresholds on the affected side (at 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz), 
word recognition score (WRS) on the affected side, hearing thresholds on the unaffected side (at 500 Hz, 1000 Hz, 
2000 Hz, 4000 Hz), and WRS on the unaffected side. Continuous variables like age and hearing thresholds were 
analyzed using measured values, while categorical parameters like comorbidities and accompanying symptoms 
were coded as binary (0/1) to construct the dataset.

Assessment of outcomes
Pure tone audiometry in the frequency range of 250–8000 Hz was conducted for all patients at initial visit and 
3 months post-treatment. The average values of hearing thresholds (dB) at 0.5, 1, 2, and 4 kHz were calculated. 
The degree of hearing recovery was categorized as follows based on Siegel’s criteria12: complete recovery, defined 
as a post-treatment hearing threshold of 25 dB or less; partial recovery, characterized by an improvement of 
15 dB or more and a post-treatment hearing threshold between 25 and 45 dB; slight recovery, indicating an 
improvement of 15 dB or more but with a post-treatment hearing threshold greater than 45 dB; and no improve-
ment, indicating an improvement of less than 15 dB or a post-treatment hearing threshold of 75 dB or greater. 
Additionally, the final hearing levels were classified according to the AAO-HNS classification13: Class A indicated 
hearing thresholds of 30 dB or less with a word recognition score (WRS) greater than 70%; Class B indicated 
hearing thresholds above 30 dB but not exceeding 50 dB, with a WRS of at least 50%; Class C indicated hearing 
thresholds exceeding 50 dB, with a WRS of at least 50%; and Class D indicated any hearing threshold with a 
WRS below 50%. Due to the clinical importance of achieving optimal hearing recovery, our analysis focused 
exclusively on the binary classification of complete recovery according to Siegel’s criteria or class A according 
to the AAO-HNS classification.

Classification networks
To predict hearing outcome, we constructed 2-layered classification architecture. The first layer, comprised of 
22 distinct Multilayer Perceptron (MLP) networks, differentiates patients into two categories: those who have 
achieved complete recovery and those who have not. These networks can be categorized into three distinct types 
based on the quantity of linear layers they incorporate: specifically, 4, 5, and 6 layers, as outlined in Fig. 1. To 
further illustrate, it is noteworthy that each linear layer, excepting the concluding layer, is succeeded by succes-
sive applications of ReLU (Rectified Linear Unit) activation, dropout, and batch normalization. This sequence of 
transformations serves the purpose of ameliorating the issue of overfitting. For the last layer, sigmoid activation 
function is utilized in order to give the prediction. (Fig. 1).

Subsequently, the classification results are further conveyed to the second layer, referred to as the metaclassi-
fier. When exclusively employing the prognosticative capacity of the classifiers within the initial layer for patient 
outcome prediction, the attained accuracy and stability were deemed suboptimal for practical application within 
the field. In order to solve the problem, we adopted an approach wherein the outputs generated by the first layer 
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were channeled into a random forest classifier. In this manner, our work achieves much higher accuracy com-
pared to only using one MLP network14,15.

Combined loss function
Due to the limited and unique nature of medical data, it is essential to learn intricate inter-data relationships in 
addition to learning the overall distribution of the data. To achieve this, our work combines cross entropy loss 
with contrastive loss function16. Figure 2 shows overall mechanism of the contrastive loss. This loss function 
manipulates distances between pairs of data points that share similar distributions, compelling these distances 
to converge towards zero, while simultaneously driving apart the distances between data pairs manifesting 
dissimilar distributions, aiming to push these distances towards a specified margin (Fig. 2). By doing so, our 
model assimilates both the comprehensive data distribution and the nuanced data relationships, culminating in 
heightened accuracy relative to models reliant solely upon the cross-entropy loss (Table S1).

Training mechanism
To establish the validity of our methodology, we performed K-fold cross validation with 10 splits. The initial nine 
partitions were allocated for training the first-layer classifiers, while the remaining partition was reserved for 
validation purposes, serving as an unseen dataset. For each MLP networks, it is trained 3000 epochs with Adam 
optimizer. Meanwhile, the hyperparameters governing the metaclassifier were systematically refined through a 
grid search process. The overall training pipeline can be seen in Fig. 3.

Network interpretability
Even though deep learning models inherently possess an opaque nature, we harnessed the potential of SHAP 
(Shapley Additive exPlanation) values to elucidate the facets of patient attributes exerting influence upon the 
prediction outcomes. SHAP employs a game-theoretic framework to assess the contribution of each feature 
towards the prediction. This method assigns each feature an importance value for a particular prediction, allow-
ing us to understand the contribution of each feature to the model’s output. SHAP also offers several advantages, 
including consistency, local accuracy, and the ability to handle both linear and non-linear relationships within 

Figure 1.   Schematic view of a Multilayer Perceptron (MLP) network used for prediction. ReLU, Rectified 
Linear Unit; BN, Batch normalization.

Figure 2.   Mechanism of contrastive loss function showing distance manipulation between similar and 
dissimilar data point pairs.
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the data17. Furthermore, since our network is comprised of two levels, we also evaluated the impact to the final 
prediction wielded by the output of each distinct MLP network.

Ethical consideration
Written informed consent was obtained from all patients. This investigation was approved by the Institutional 
Review Board (IRB) at the Hanyang University Guri Hospital and performed in accordance with the Declaration 
of Helsinki and Good Clinical Practice guidelines (IRB FILE No : 2023-08-004).

Ethical consideration
This investigation was approved by the Institutional Review Board (IRB) at the Hanyang University Guri Hospital 
and performed in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines (IRB FILE 
No : 2023-08-004).

Results
Clinical characteristics of study population
Of the 1108 SSNHL patients included in the study, 505 (45.6%) were male and 603 (54.4%) were female. The mean 
age of the patients was 54.4 ± 14.6 years. 506 (45.7%) patients had symptoms in the right ear and 602 (54.3%) in 
the left ear. Associated symptoms included dizziness in 307 (27.7%), tinnitus in 640 (57.8%), and ear fullness 
in 517 (46.7%). 307 (27.7%) patients had hypertension, 239 (21.6%) had diabetes, and 37 (3.3%) had a cardio-
vascular disease. The average time from symptom onset to treatment was 6.9 ± 24.5 days. At initial audiometric 
assessment, the mean pure tone threshold in the affected ear was 63.4 ± 27.8 dB, compared with 23.0 ± 18.9 dB 
in the unaffected ear. And, the initial WRS for the affected ear averaged 49.2 ± 38.8%, and for the unaffected 
ear, it was 93.9 ± 17.6%. According to Siegel’s criteria, 352 (31.8%) patients achieved complete recovery, and the 
AAO-HNS classification indicated 438 (39.5%) patients as Class A. (Table 1).

Performance evaluation of deep learning models
The average accuracy of the first-layer classifiers based on Siegel’s criteria was approximately 82.3%, while the 
AAO-HNS classification showed an average accuracy of around 76.3%. These values increased to 83.5% for 
Siegel’s criteria and 80.8% for AAO-HNS classification when the meta-classifier was introduced. When trained 
without the constraints of the K-Fold strategy, the accuracy reached its peak; 89.2% for Siegel’s criteria and 84.7% 
for AAO-HNS classification. (Table 2).

When we calculated the area under the curve (AUC) value from the receiver operating characteristic (ROC) 
curve, we found a value of 0.922 for Siegel’s criteria (Fig. 4A) and 0.918 for AAO-HNS classification (Fig. 4B).

Predictive features for hearing recovery
The deep learning model identified several significant features instrumental in predicting hearing recovery. 
These results were evaluated by calculating individual SHAP values from both models and then averaging them 
to derive a combined ranking. Notably, the most significant predictor was the initial pure tone threshold at 

Figure 3.   Overview of the training pipeline. MLP, Multilayer Perceptron.
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4000 Hz on the affected side, followed by age, initial pure tone threshold at 2000 Hz on the unaffected side, and 
initial pure tone threshold at 2000 Hz on the affected side. The subsequent ranking in order of importance is 
as follows: presence of tinnitus, initial pure tone threshold at 4000 Hz on the unaffected side, initial pure tone 
threshold at 500 Hz on the affected side, initial WRS on the affected side, initial pure tone threshold at 1000 Hz 
on the unaffected side, presence of ear fullness, sex, initial pure tone threshold at 1000 Hz on the affected side, 
onset of treatment, affected side, presence of vertigo, hypertension, diabetes mellitus, initial pure tone threshold 
at 500 Hz on the unaffected side, initial WRS on the unaffected side, and finally, cardiovascular disease. (Table 3).

Online access
We have developed a website based on these deep learning models that allows clinicians to input variables and 
predict the probability of a patient’s hearing recovery. Access to this tool is available through the following link: 
https://​colab.​resea​rch.​google.​com/​drive/​16YII​cgKEr-​EE9Je​3Wo3R​poIBi​rmeiI​qR?​usp=​share_​link. Through this 
platform, clinicians can assess the probability of a patient’s prognosis with a rapid online calculation. (Fig. S1).

Discussion
Idiopathic SSNHL remains a complex otologic challenge, and prognosis prediction is crucial to formulate effective 
and personalized treatment strategies. In this study, we used a large dataset of 1108 SSNHL patients to construct a 
deep learning model for predicting hearing recovery. Our results showed promising accuracy across both Siegel’s 
criteria and AAO-HNS classification. In particular, we found that the accuracy of the model was further improved 
when the constraints of the K-fold strategy were removed, highlighting the potential for optimizing the learning 
process in this way. Additionally, by discerning predictive factors that significantly influence hearing recovery, 
we have provided valuable insights into the prediction process. These findings demonstrate the potential of deep 
learning algorithms for prognosis prediction in SSNHL.

Table 1.   Demographic and Clinical Characteristics of the Study Population. SSNHL, sudden sensorineural 
hearing loss; AAO-HNS, American Academy of Otolaryngology-Head and Neck Surgery.

Variables

Overall SSNHL

N = 1108

Sex

 Male/Female 505 (45.6%) / 603 (54.4%)

 Age 54.4 ± 14.6

Underlying disease

 Hypertension 307 (27.7%)

 Diabetes mellitus 239 (21.6%)

 Cardiovascular disease 37 (3.3%)

Affected side

 Right / Left 506 (45.7%) / 602 (54.3%)

Associated symptom

 Vertigo 307 (27.7%)

 Tinnitus 640 (57.8%)

 Ear fullness 517 (46.7%)

 Onset of treatment (days) 6.9 ± 24.5

Initial hearing pure tone threshold (dB)

 Affected ear 63.4 ± 27.8

 Unaffected ear 23.0 ± 18.9

Initial hearing word recognition score (%)

 Affected ear 49.2 ± 38.8

 Unaffected ear 93.9 ± 17.6

 Hearing gain (dB) 19.7 ± 23.0

Hearing recovery (Siegel’s criteria)

 Complete recovery 352 (31.8%)

 Partial recovery 131 (11.8%)

 Slight recovery 97 (8.8%)

 No recovery 528 (47.7%)

Hearing recovery (AAO-HNS classification)

 Class A 438 (39.5%)

 Class B 268 (24.2%)

 Class C 137 (12.4%)

 Class D 265 (23.9%)

https://colab.research.google.com/drive/16YIIcgKEr-EE9Je3Wo3RpoIBirmeiIqR?usp=share_link
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Previous predictive models primarily use statistical methodologies. Suzuki et al18. employed multiple regres-
sion analysis, revealing that age, days from onset to treatment, initial hearing level, and the presence of vertigo 
were significant prognostic factors for hearing recovery. Utilizing the regression coefficients of these factors, they 
formulated a linear equation to predict the outcome. Similarly, Chao et al19. performed multivariate analysis, 
identifying distortion product otoacoustic emission, auditory brainstem response, vestibular evoked myogenic 
potential, and audiometric types as significant predictors for hearing improvement. They subsequently utilized 

Table 2.   Results of meta classifier. MLP, Multilayer Perceptron; AAO-HNS, American Academy of 
Otolaryngology-Head and Neck Surgery.

Criteria MLP architecture

K-fold10 model K-fold10 meta classifier Meta classifier

Average accuracy Average accuracy Top accuracy

Siegel’s criteria (complete recovery)

Model_32_64_128_32 80

0.835 0.892

Model_64_32_32_16_8 82.72727273

Model_64_64_32_16_8 81.81818182

Model_128_32_16_16_8 80.90909091

Model_128_32_32_16_8 80.90909091

Model_128_64_32 83.63636364

Model_128_64_32_16 80

Model_128_64_32_16_8 84.54545455

Model_128_64_32_32_8 86.36363636

Model_128_64_32_32_16 81.81818182

Model_128_64_64_16_8 80.90909091

Model_128_64_64_32_8 81.81818182

Model_128_64_64_32_16 81.81818182

Model_128_128_32_16_8 82.72727273

Model_128_128_64 82.72727273

Model_128_128_64_16_8 82.72727273

Model_128_128_64_32 82.72727273

Model_128_128_64_32_8 81.81818182

Model_128_128_64_32_16 80

Model_128_256_128 85.45454545

Model_128_256_128_64 84.54545455

Model_128_256_128_64_16 80

Average 82.27272727

AAO-HNS classification (Class A)

Model_32_64_128_32 74.54545455

0.808 0.847

Model_64_32_32_16_8 80

Model_64_64_32_16_8 79.09090909

Model_128_32_16_16_8 77.27272727

Model_128_32_32_16_8 78.18181818

Model_128_64_32 72.72727273

Model_128_64_32_16 77.27272727

Model_128_64_32_16_8 72.72727273

Model_128_64_32_32_8 74.54545455

Model_128_64_32_32_16 74.54545455

Model_128_64_64_16_8 76.36363636

Model_128_64_64_32_8 75.45454545

Model_128_64_64_32_16 78.18181818

Model_128_128_32_16_8 78.18181818

Model_128_128_64 79.09090909

Model_128_128_64_16_8 76.36363636

Model_128_128_64_32 74.54545455

Model_128_128_64_32_8 78.18181818

Model_128_128_64_32_16 74.54545455

Model_128_256_128 74.54545455

Model_128_256_128_64 73.63636364

Model_128_256_128_64_16 79.09090909

Average 76.32231405
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the Bayesian cure rate model to predict both the probability of recovery and the time to improvement. As such, 
while multivariate analyses can easily identify the various factors influencing prediction, it fundamentally oper-
ates on the concept of linear equations, lacking the ability to understand complex interactions between variables.

Artificial intelligence (AI) is gaining popularity in healthcare due to its ability to understand complex interac-
tions between variables and adapt to new information. Recently, AI has been extensively used in various medical 

Figure 4.   Receiver operating characteristic (ROC) curve according to (A) Siegel’s criteria and (B) AAO-HNS 
classification.

Table 3.   Variables and SHAP value. SHAP, Shapley Additive exPlanation, AAO-HNS, American Academy of 
Otolaryngology-Head and Neck Surgery.

Variables 20 parameters

SHAP value

RankingSiegel’s criteria AAO-HNS classification average

Sex 0.008138 0.00753 0.007834 11

Age 0.015814 0.019799 0.017806 2

Hypertension 0.005469 0.005819 0.005644 16

Diabetes mellitus 0.004549 0.005548 0.005048 17

Cardiovascular disease 0.001008 0.001833 0.001421 20

Affected side 0.005283 0.007728 0.006505 14

Vertigo 0.005367 0.006515 0.005941 15

Tinnitus 0.008462 0.01227 0.010366 5

Ear fullness 0.007327 0.009304 0.008315 10

Onset of treatment (days) 0.007321 0.007051 0.007186 13

Initial hearing level (Affected side)

Pure tone threshold, 500 Hz (dB) 0.007493 0.010173 0.008833 7

 Pure tone threshold, 1000 Hz (dB) 0.006686 0.008798 0.007742 12

 Pure tone threshold, 2000 Hz (dB) 0.01103 0.014276 0.012653 4

 Pure tone threshold, 4000 Hz (dB) 0.035233 0.050677 0.042955 1

 Word recognition score (%) 0.010224 0.00701 0.008617 8

Initial hearing level (Unaffected side)

 Pure tone threshold, 500 Hz (dB) 0.00431 0.00453 0.00442 18

 Pure tone threshold, 1000 Hz (dB) 0.009615 0.007333 0.008474 9

 Pure tone threshold, 2000 Hz (dB) 0.016547 0.015824 0.016185 3

 Pure tone threshold, 4000 Hz (dB) 0.009862 0.009819 0.009841 6

 Word recognition score (%) 0.002769 0.003864 0.003317 19
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fields, mainly in image diagnosis and prognosis prediction. To date, several models using AI to predict the 
prognosis of SSNHL have been introduced. Bing et al20. developed a deep belief network model using 149 vari-
ables in a cohort of 1220 patients, achieving an accuracy of 77.58%. These 149 variables included demographics 
as well as medical records, medications, pure tone audiometry, and laboratory test results. However, due to the 
large number of variables, it can be difficult to obtain such comprehensive data from every patient in a clinical 
setting. In a study of 453 patients, Lee et al21. developed a machine learning model that incorporated 38 vari-
ables, including vestibular function test results and laboratory findings, and reported an accuracy of 75.36%. 
Similarly, the inclusion of vestibular function tests and laboratory findings, which are not routinely performed 
on all patients with SSNHL, may not be readily applicable in a clinical setting. In this context, the strength of our 
study is that we developed a model that can easily assess prognosis based on information available only from the 
initial consultation and audiological assessment.

In other models, Park et al22. devised a prognosis prediction model for 227 patients, achieving an accuracy of 
75.4%. Uhm et al10. model, involving 298 patients, showed an accuracy of 88.8%, while Lin et al23. demonstrated 
92.1% accuracy with a cohort of just 64 patients. However, considering that AI models tend to better generalize 
and capture inherent patterns with increased data, the aforementioned studies are limited by their smaller sample 
sizes. The top accuracy achieved in this study was 89.2% based on Siegel’s criteria and 84.7% based on AAO-HNS 
classification, which is comparable to other studies. Considering that our study was based on a relatively large 
patient cohort of 1108 patients, it provides high reliability for the model accuracy.

One of the notable findings of this study was the identification of significant predictors of hearing recovery 
through individual SHAP values. The results showed that the initial pure tone threshold at 4000 Hz on the affected 
side was the most significant predictor, which is consistent with previous research showing that hearing loss of 
descending configuration, manifested as high frequency hearing loss, is an unfavorable prognostic factor5,7, 24. 
In addition, age, another significant predictor, has consistently been recognized in the literature as influencing 
hearing recovery7,24, 25.

Interestingly, hearing threshold on the unaffected side was identified as a significant predictor in this study. 
While Uhm et al10. previously highlighted the crucial role of initial hearing threshold at 250 Hz in the non-
affected ear for predicting hearing recovery, other studies have not recognized the hearing threshold of the unaf-
fected ear as a prognostic predictor. In our study, an initial pure tone threshold at 2000 Hz on the unaffected side 
had the third highest impact on hearing recovery, and an initial pure tone threshold at 4000 Hz on the unaffected 
side had the sixth highest impact. This study suggests that, similar to Uhm’s findings, hearing on the unaffected 
side is also important in predicting hearing recovery, and has significant prognostic value, especially at higher 
frequencies. It is not known why only certain frequencies in the unaffected ear had a prognostic impact, but it 
is thought that other unmeasured variables such as audiograms may have played a role. A more comprehensive 
analysis of audiogram profiles across all frequencies may be needed to fully understand these differences.

Two interpretations can be drawn as to why contralateral hearing affects prognosis. First, SSNHL patients 
who also had previously poor hearing in the unaffected side may have experienced difficulties in their hearing 
recovery because their overall auditory system was poorer due to the complex interaction between the audi-
tory mechanisms in both ears. For the second interpretation, it is important to recognize that an individual’s 
baseline hearing may be different, so Siegel’s criteria of "complete recovery" may not be universally applicable. 
Because most individuals have symmetrical hearing before the onset of SSNHL, initial pure tone threshold on 
the unaffected side could act as a reference to predict the baseline hearing of the affected side. In individuals 
with higher baseline hearing thresholds, even if their hearing improves to match the contralateral side, it might 
still not fall within the 25 dB threshold for "complete recovery" in Siegel’s criteria, and under strict criteria this 
could be classified as non-recovery. Such interpretations suggest that the widely used Siegel’s criteria might not be 
appropriate for individuals with pre-existing hearing loss, and highlights the limitations of conventional criteria.

According to the AAO-HNS’s 2019 clinical practice guideline for sudden hearing loss1, a new guideline was 
proposed to assess hearing recovery based on hearing in the contralateral ear due to the limitation of unknown 
pre-onset hearing level in the affected ear. However, this outcome assessment method was designed for patients 
without pre-existing hearing asymmetry. In the present study, we were unable to use this guideline because we 
couldn’t assess all patients for pre-existing hearing asymmetry due to the limitations of retrospective chart review. 
It is possible that some patients had pre-existing hearing asymmetry before the onset of SSNHL, highlighting 
the need for a universally applicable outcome assessment guideline in the future.

Our deep learning model also emphasized lesser-known predictors, such as tinnitus or ear fullness, over well-
known predictors such as time to treatment onset or the presence of vertigo6,7. This suggests that even previously 
underestimated patient-reported symptoms can provide valuable insights into hearing recovery prognosis when 
analyzed using deep learning methodologies. We expect that collecting more data and retraining and updating 
the model in the future will allow us to further understand the impact of these variables.

While this study presents a promising deep learning model for predicting hearing recovery in patients with 
SSNHL, there are some limitations. Firstly, the retrospective design limited the number of variables available. 
Secondly, although the sample size was relatively large compared to other studies, it was still not sufficient for 
optimal AI training. Additionally, due to the unique characteristics of medical research data, a two-layer clas-
sification system utilizing MLP networks and meta-classifier was employed instead of a larger single neural net-
work. This choice was informed by our dataset’s complexity and the need to manage intricate data relationships 
effectively. Medical datasets often face challenges in acquiring large amounts of real patient data, particularly 
negative samples, which are important but often less available for balanced model training. In addition, it is 
frequently unclear in medical data which features are most predictive of outcomes, so we needed an architecture 
that can maximize data utility despite these limitations. In future research, we aim to apply this model to larger 
datasets, which will allow for an even more comprehensive analysis and potentially enable the integration of a 
simplified, more efficient neural network architecture. Finally, we did not predict the final hearing threshold for 
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individual patients, as we simply categorized hearing recovery into “complete recovery” and “Class A”. In future 
research, if a deep learning model is developed by integrating a larger patient cohort, it is anticipated that these 
prediction models can contribute effectively to providing better patient counseling for patients with SSNHL.

Conclusion
Using data from 1108 SSNHL patients, we developed a deep learning model to predict hearing recovery with 
high accuracy, suggesting its usefulness for personalized patient counseling. Future model refinements and larger 
data sets are expected to increase its clinical relevance.

Data availability
Anonymized data analyzed during this study are available from the corresponding author on reasonable request.
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