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Abstract: This study investigated the purification, preliminary structure and in vivo immunomod-
ulatory activities of polysaccharides from the spores of Cordyceps cicadae (CCSP). The crude CCSP
was purified by diethylaminoethyl (DEAE)-cellulose and Sephadex G-100 chromatography, affording
CCSP-1, CCSP-2 and CCSP-3 with molecular weights of 1.79 × 106, 5.74 × 104 and 7.93 × 103 Da,
respectively. CCSP-2 consisted of mannose and glucose, while CCSP-1 and CCSP-3 are composed of
three and four monosaccharides with different molar ratios, respectively. CCSP-2 exhibited its amelio-
rative effects in cyclophosphamide-induced immunosuppressed mice through significantly increasing
spleen and thymus indices, enhancing macrophage phagocytic activity, stimulating splenocyte prolif-
eration, improving natural killer (NK) cytotoxicity, improving bone marrow suppression, regulating
the secretion of cytokines and immunoglobulins, and modulating antioxidant enzyme system. These
results indicate that CCSP-2 might be exploited as a promising natural immunomodulator.

Keywords: Cordyceps cicadae; spore; polysaccharide; immunomodulatory; cyclophosphamide

1. Introduction

Cordyceps cicadae, an entomogenous fungus used as food and medicine, belongs to the
Clavicipitaceae family of the order Hypocreales, which is formed by cicada nymphs in-
fected with Isaria cicadae (Paecilomyces cicadae), and its morphological structure is composed
of spores, sclerotium and coremium (fruiting bodies). It is one of the earliest recorded
and well-known traditional Chinese medicine for treating convulsions, asthma, measles,
insomnia, chronic kidney diseases and heart palpitations [1]. Modern pharmacological
studies have shown that C. cicadae possesses an extensive range of pharmacological ef-
fects including antioxidant [2], immunomodulatory [3], antitumor [4], renal protective [5],
neuroprotective [6], antibacterial [7], hepatoprotective [8] and anti-diabetic [9] activities.

Polysaccharides are the best-known bioactive components derived from C. cicadae.
Recently, there has been an increasing number of investigations into polysaccharides from
C. cicadae. Olatunji et al. [10] demonstrated that two C. cicadae polysaccharides (namely
CPA-1 and CPB-2) can protect PC12 cells against glutamate-induced oxidative toxicity.
Zhang et al. [7] found that a C. cicadae polysaccharide exerted its antibacterial activity
through damaging cell walls and membranes, increasing the permeability of cell mem-
branes. Xu et al. [11] compared the pharmacological activity of two polysaccharides from
C. cicadae (JCH-1 and JCH-2), and found that the immunomodulatory activity of JCH-1 with
low molecular weight was more potent than that of JCH-2 with high molecular weight.
In a follow-up study, it was demonstrated that JCH-1 could active RAW264.7 cells via
toll-like receptor 4 (TLR4) mediated mitogenactivated protein kinase (MAPK) and nu-
clear factor-kappa B (NF-κB) signaling pathway [12]. A recent paper demonstrated that
polysaccharides from the mycelium and coremium of C. cicadae exhibited hypoglycemic,
hypolipidemic and antioxidant effects in diabetes rats [13]. Yang et al. [14] found that a
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nondigestible polysaccharide from the fruiting bodies of artificially cultivated C. cicadae
remarkably inhibited nitric oxide, interleukin 1β (IL-1β) and tumor necrosis factor-alpha
(TNF-α) levels in lipopolysaccharide (LPS) induced RAW264.7 macrophages. Zhu et al. [2]
found that CP70, a polysaccharide from C. cicadae prepared by the final ethanol concentra-
tion of 40%, could extend the lifespan of Drosophila by up-regulating antioxidant enzyme
gene expression, thus it demonstrates strong antioxidant and anti-aging activities.

Previously published studies have tended to focus on polysaccharides from the
coremium and mycelium rather than spores of C. cicadae. The spores are gradually trans-
formed from the active components of the sclerotium and coremium. They have a repro-
ductive function and contain all the genetic materials and biologically active ingredients
of C. cicadae. It is believed that the pharmaceutical values of the spores could be higher
than those of the mycelium and coremium. Sun et al. [15] demonstrated that C. cicadae
spore powders exerted antiproliferative activities on A549 lung cancer cells by the epithe-
lial mesenchymal transition, Wnt/β-catenin signal pathway and mitochondrial apoptotic
pathway. Recently, numerous bioactive substances from the spores of C. cicadae were iden-
tified and characterized, such as cordycepic acid, nucleosides, cordycepin, beauvericin,
sterols and cyclodesipeptide [15,16]. However, up to now, there have been few reports on
polysaccharides from spores of C. cicadae (CCSP), involving the difficulties associated with
the collection.

Recently, researchers have shown an increased interest in polysaccharides from spores
of Ganoderma lucidum (GLSP) for their versatile pharmacological activities, such as immunos-
timulatory, antioxidant and antitumor activities [17–20]. GLSP injection (GuoYaoZhunZi
H20003510 and H20003123) has been approved by State Drugs Administration of China
for the treatment of neurosis, polymyositis, dermatomyositis and progressive muscular
dystrophy, as well as various diseases caused by a weakened immune system. Further-
more, Lentinan, a β-(1→3)-d-glucan derived from Lentinus edodes, is one of the best-known
bioactive polysaccharides, which exerts antitumor activity by regulating the immune func-
tion [21]. Lentinan injection (GuoYaoZhunZi Z10920012 and H20030131) and Lentinan
capsule (GuoYaoZhunZi Z20080579) have been approved as an immunomodulator for the
adjuvant therapy of cancers in China. Clinical studies have shown that the combination of
Lentinan and conventional chemotherapy drug exerts a synergistic effect in prolonging the
survival time and improving the quality of life during cancer treatment [22]. These facts
prompted us to investigate whether CCSP have immunomodulatory activities.

Cyclophosphamide (CTX) is a broad-spectrum alkylating agent for cancer treatment,
which has curative effects on leukemia and solid tumors, and is also one of the most
commonly used immunosuppressants [23]. In mammalian liver, CTX is catalyzed by cy-
tochrome P450 enzymes into phosphoramide mustard and acrolein. The former exerts
antitumor effects, while the latter can cause severe adverse effects such as immunosup-
pression, oxidative stress and gut microbiota imbalance [24–26]. Studies have found that
high-dose or long-term low-dose CTX can induce host immune suppression. A consid-
erable number of studies have evidenced that natural polysaccharides could alleviate
CTX-induced immunosuppression and oxidative stress [26–29].

In the current study, we isolated and characterized polysaccharides from the spores of
C. cicadae, investigated in vivo immunostimulatory activity in CTX-induced immunosup-
pressed mice, and endeavored to elucidate the underlying mechanism.

2. Materials and Methods
2.1. Materials and Chemicals

DEAE-cellulose (DE-52), Sephadex G-100, dextran standards (1, 12, 50, 80, 270, 670 and
1100 kDa) and monosaccharide standards were purchased from Sigma (St. Louis, MO,
USA). CTX was acquired from Shanxi Powerdone Pharmaceutics Co., Ltd. (Datong, China).
Lentinan (GuoYaoZhunZi Z20080579) was supplied by Hubei Chuangli Pharmaceutical
Co., Ltd. (Zaoyang, China). RPMI-1640 medium was acquired from Gibco (Grand Is-
land, NE, USA). Giemsa stain was supplied by Shanghai Yeasen Biotechnology Co., Ltd.
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(Shanghai, China). TNF-α, IL-1β, Immunoglobulin A (IgA), immunoglobulin G (IgG) and
immunoglobulin M (IgM) kits were acquired from R&D system (Minneapolis, MN, USA).
Catalase (CAT), glutathioneperoxidase (GSH-Px), superoxidase dismutase (SOD), malon-
dialdehyde (MDA) and protein carbonyl group (PCG) kits were supplied by Jiancheng
Bio-engineering Institute (Nanjing, China).

2.2. Preparation of Polysaccharides

I. cicadae was growth in liquid medium (1% complex amino acids, 1% soy protein
hydrolysate, 1% yeast extract, 3% sucrose and 1% glucose) at 25 ◦C for 7–10 d, then the
seed culture was transferred into solid medium (80% wheat bran, 15% buckwheat flour,
2% corn flour, 2% silkworm chrysalis powder and 1% yeast extract). After incubation
at 18 ◦C for 10 d, the solid medium was transferred to a light incubator at 21 ◦C for
21–28 d, and the spores were collected. 500 g spores of C. cicadae were firstly degreased
with petroleum ether and pretreated with 95% ethanol twice. Then the precipitates were
collected by centrifugation (3500 r/min for 10 min) and dried to constant weight. Enzyme-
assisted extraction of CCSP was carried out as follows: ratio of water to raw material
35 mL/g, cellulase amount 0.64%, citrate buffer solution pH 6.0, hydrolysis time 80 min and
hydrolysis temperature 50 ◦C. After extraction, the enzyme was inactivated at 100 ◦C for
10 min. The extracting solution was filtered, concentrated, precipitated with 70% ethanol at
4 ◦C for 12 h, and centrifuged at 3000 r/min for 10 min. Then the precipitate was collected
and deproteinized with Sevag reagent. The deproteinized solution was dialyzed (molecular
weight cut-off: 4000 Da) for 48 h, concentrated and freeze-dried to obtain crude CCSP. The
polysaccharide content was measured using the phenol-sulfuric acid method [30].

The crude CCSP were purified by DE-52 cellulose and Sephadex G-100 chromatog-
raphy according to the previous method [31]. Briefly, 5 mL of polysaccharides solution
(20 g/L) were sampled to a DE-52 cellulose column (2.6 cm× 30 cm), and stepwisely eluted
with different concentrations of sodium chloride (0, 0.1, 0.3, and 0.5 mol/L), and the elution
flow rate is 1 mL/min. As a result, three fractions were obtained, concentrated, dialyzed,
and further purified by Sephadex G-100 column (2.6 cm × 60 cm) eluted with deionized
water at the flow rate of 0.5 mL/min to afford CCSP-1, CCSP-2 and CCSP-3, respectively.
Then they were freeze-dried for further analysis.

2.3. Characterization of Polysaccharides
2.3.1. Carbohydrate, Protein and Uronic Acid Analysis

Carbohydrate, protein and uronic acid content of crude CCSP, CCSP-1, CCSP-2 and
CCSP-3 were determined using the phenol-sulfuric acid method, Bradford method [32]
and m-hydroxydiphenyl method [33], respectively.

2.3.2. Determination of Molecular Weight

High performance gel permeation chromatography (HPGPC) was employed to de-
termine the molecular weights of CCSP-1, CCSP-2 and CCSP-3. The HPGPC conditions
were as follows: Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, CA, USA),
TSKgel® G5000PWXL gel chromatography column (7.8 mm × 300 mm, Tosoh, Tokyo,
Japan), column temperature of 28 ◦C, 0.002 mol/L sodium dihydrogen phosphate (contain-
ing 0.05% NaN3) employed as mobile phase, flow rate of 0.6 mL/min, G1352A refractive
index detector (Agilent Technologies). Dextran standard solution (2 mg/mL, 20 µL) with
molecular weights of 1000, 5000, 12,000, 50,000, 270,000 and 1,100,000, respectively, was
injected into the column in order of increasing molecular weight. The retention time was
recorded, and the standard curve was plotted. Under the same detection conditions, the re-
tention times of the polysaccharide solutions (1 mg/mL) were recorded, and the molecular
weights of the polysaccharides were calculated according to the standard curve.
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2.3.3. Monosaccharide Composition

The monosaccharide composition and molar ratio of crude CCSP and its purified
fractions were determined by gas chromatography-mass spectrometry (CG-MS). 5 mg
polysaccharide samples were dissolved in 5 mL 2 mol/L trifluoroacetic acid (TFA), hy-
drolyzed at 99 ◦C for 5 h, then TFA was removed by rotary evaporation. 0.5 mL 4% sodium
borohydride was added, placed at room temperature for 1.5 h. Acetic acid was added to
remove the sodium borohydride, and the unreacted acetic acid was further removed by
rotary evaporation. After vacuum drying, pyridine (1 mL) and n-propylamine (1 mL) were
added to the above reaction system, incubated at 55 ◦C for 30 min, and further dried in
vacuum. In total, 0.5 mL each of pyridine and acetic anhydride was added in a water bath
at 95 ◦C for 1 h. The products were blow-dried by nitrogen, dissolved by chloroform, and
analyzed by GC-MS.

The GC-MS parameters were as follows: Agilent 7890A/5975C (Agilent Technologies,
Santa Clara, CA, USA), DB-5 column (30 m × 0.25 mm × 0.25 µm), mass detector, inlet
temperature of 250 ◦C, detector temperature of 280 ◦C, helium flow rate of 0.6 mL/min,
split ratio of 20:1, injection volume of 5 µL. The column temperature was set at 200 ◦C for
2 min, increased to 245 ◦C at 3 ◦C/min and to 270 ◦C at 10 ◦C/min for 2 min.

2.3.4. Infrared Spectral Analysis

Fourier transform infrared (FT-IR) spectra of crude CCSP and CCSP-1, CCSP-2 and
CCSP-3 were detected by a Nicolet iS5 spectrometer (Thermo Fisher Scientific Inc., Waltham,
MA, USA) with the wavenumber ranged from 4000 to −500 cm−1.

2.3.5. Scanning Electron Microscope (SEM) Analysis

CCSP-1, CCSP-2 and CCSP-3 were glued to the sample table with a conductive glue,
coated with a thin layer of gold, and the morphology was observed with a Sigma 500 field
emission SEM (Carl Zeiss, Oberkochen, BW, Germany).

2.4. Immunomodulatory Activities of CCSP-2 in the CTX-Induced Immunosuppressed Mice
2.4.1. Animal Grouping and Experimental Design

C57BL/6 mice (18–22 g) were supplied by Jinan Pengyue Laboratory Animal Breeding
Co., Ltd. (production license No. SCXY (Lu) 20190003, Jinan, China). All mice were
acclimatized for a week at 22 ± 2 ◦C with 45–60% relative humidity. All experiments were
approved by the Institutional Animal Care and Use Committee.

The mice were randomly divided into six groups (n = 10): normal group, model group,
positive control group and three CCSP-2 treated groups. Each group was half male and
half female. The mice were intraperitoneally injected with 120 mg/kg CTX once a day
for three consecutive days, except for the normal group. Then the low-, medium- and
high-dose CCSP-2 groups were intragastrically administered with 50, 100 and 200 mg/kg
CCSP-2, respectively, once a day for 21 consecutive days. The doses of CCSP-2 selected
were based on pre-experiment and previous studies [34–36]. The positive control group
mice were intragastrically with 150 mg/kg Lentinan, the dose selected was based on an
estimated human-equivalent dose; the normal group and model group mice were given
normal saline.

The mice were weighed and sacrificed by cervical dislocation after 24 h the last gavage,
then the thymus and spleen were removed, and the organ index was measured as the ratio
of organ mass to body weight.

2.4.2. Peripheral Blood Counting Assay

Blood samples were collected from the retro-orbital venous plexus into heparin tubes.
The number of white blood cells, neutrophils, lymphocytes and platelets were counted by
a SYsmex XT-2000iV blood analyzer (Sysmex Partec, Kobe, Japan).
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2.4.3. Macrophage Phagocytosis Assay

The mice were intraperitoneally injected with 2 mL of 1% chicken red blood cells
(CRBCs) suspension after 24 h the last treatment, and the chicken cells were dispersed
by gently rubbing the abdomen. After 30 min, the mice were sacrificed, intraperitoneally
injected with 2 mL phosphate buffer solution, then the peritoneal fluid was collected
by gently rubbing the abdomen. The peritoneal fluid was deposited onto a glass slide
and incubated for 30 min at 37 ◦C. The cells that were not adhered to the slide were
removed with water, then the slide was fixed with acetone-methanol solution, stained with
Giemsa, rinsed with water and dried. The peritoneal macrophages were counted, and the
phagocytosis rate was measured as follows:

Phagocytic rate (%) = (number of macrophage-ingesting CRBCs/total number of macrophages) × 100 (1)

2.4.4. Splenic Lymphocyte Proliferation Assay

The spleens of each group mice were aseptically removed, added to pre-cooled Hank’s
solution, gently ground, filtered through a 200-mesh sieve, washed with Hank’s solution
twice, centrifuged at 1500 r/min for 5 min, and the splenic lymphocytes were collected. The
cell concentration was adjusted to 3.0 × 106 cells/mL and inoculated in a sterile plate with
100 µL per well. Concanavalin A (Con A) solution (final concentration of 7.5 µg/mL) or
LPS solution (final concentration of 10 µg/mL) was added into each well. It was incubated
in 5% CO2 and 37 ◦C incubator for 72 h. Then 20 µL MTT solution (5 mg/mL) was
added and incubated for 4 h. The cell plate was taken out, the supernatant was discarded,
150 µL dimethyl sulfoxide (DMSO) was added into each well, and a microplate shaker
was used to dissolve the crystals. The absorbance at 570 nm was detected by a Biotek
Synergy2 multi-mode plate reader.

2.4.5. NK Cytotoxicity

The effect of CCSP-2 on NK cytotoxicity in CTX-induced immunosuppressed mice was
determined, with spleen lymphocytes as effector cells and YAC-1 cells as target cells. The
splenic lymphocytes were collected as described above, and added into the 96-well plate with
5 × 105 cells per well. The target cells were added at a ratio of target to effector cells of 1:50,
and incubated in 5% CO2 at 37 ◦C for 10 h. 5 mg/mL MTT (50 µL) was added into each well
and incubated for 4 h. Then 100 L DMSO was added, mixed with a microplate shaker, and the
absorbance at 570 nm was detected. The NK cytotoxicity was measured as follows:

NK cytotoxicity (%) = [At − (As − Ae)]/At × 100 (2)

where At, As, and Ae are, respectively, the absorbances of target cells control, sample, and
effector cells control.

2.4.6. Serum Cytokine and Immunoglobulin Assay

Blood samples were obtained from the retro-orbital venous plexus, centrifuged at
3000 r/min for 15 min at 4 ◦C, and the serum was obtained. The levels of IL-1β, TNF-α,
IgA, IgG and IgM were determined according to the kit instructions.

2.4.7. Antioxidase and Oxidative Damage Product Assay

The liver tissues were removed, cut into pieces and added to pre-cooled normal saline,
homogenized in ice-cold buffer, centrifuged at 3500 r/min at 4 ◦C for 15 min, then the
supernatant was collected. SOD, CAT, GSH-Px activities and MDA, PCG levels in the liver
tissues were measured in accordance with the kit instructions.

2.5. Statistical Analysis

The results are expressed as mean ± SD. The statistical significance between test
groups and control group was analyzed by one-way analysis of variance (ANOVA) with
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Dunnett-t test. p < 0.01 and p < 0.05 denote highly significant difference and significant
difference, respectively.

3. Results
3.1. Purification of CCSP

Crude CCSP were firstly separated by DEAE-cellulose chromatography resulting
in three peaks (F1, F2 and F3) (Figure 1a), which were collected, concentrated, dialyzed
and loaded into the Sephadex G-100 column affording CCSP-1, CCSP-2 and CCSP-3,
respectively (Figure 1b–d). Moreover, the recovery rates of CCSP-1, CCSP-2 and CCSP-
3 based on the amount of crude CCSP were 29.42%, 35.26% and 5.43%, respectively.
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DE-52 cellulose chromatography (a) and elution curve of F1, F2 and F3 on Sephadex G-100 chromatog-
raphy affording CCSP-1 (b), CCSP-2 (c) and CCSP-3 (d).

3.2. Characterization of CCSP and Its Purified Fractions
3.2.1. Contents of Carbohydrate, Protein and Uronic Acid

The carbohydrate, protein and uronic acid contents of crude CCSP and its purified
fractions are displayed in Table 1. The carbohydrate contents of crude CCSP, CCSP-1,
CCSP-2 and CCSP-3 were 74.15 ± 3.23%, 97.94 ± 4.84%, 96.65 ± 5.32% and 90.43 ± 4.60%,
respectively. The protein content of CCSP-3 was 3.18 ± 0.05%, and no protein was detected
in CCSP-1 and CCSP-2, suggesting that CCSP-3 could be a protein-polysaccharide complex.
In addition, CCSP-1 should be a neutral polysaccharide, while CCSP-2 and CCSP-3 should
be acidic polysaccharides.

Table 1. Chemical compositions and molecular weights of crude polysaccharides from spores of
C. cicadae (CCSP), CCSP-1, CCSP-2 and CCSP-3.

Sample Carbohydrate (%) Protein (%) Uronic Acid (%) Molecular Weight (Da)
Sugar Components (%)

Xylose Mannose Glucose Galactose

Crude CCSP 74.15 ± 3.23 1.23 ± 0.08 1.64 ± 0.13 1.21 4.03 91.96 2.80
CCSP-1 97.94 ± 4.84 - a 0.16 ± 0.02 1.79 × 106 - 12.29 80.46 7.25
CCSP-2 96.65 ± 5.32 - 1.15 ± 0.18 5.74 × 104 - 5.73 94.27 -
CCSP-3 90.43 ± 4.60 3.18 ± 0.05 3.46 ± 0.24 7.93 × 103 22.28 2.05 63.40 12.27

Results are represented as means ± SD (n = 3). a Not detectable.
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3.2.2. Molecular Weight Distribution

HPGPC was employed to determine the molecular weights of the purified polysac-
charide fractions, as shown in Figure 2a–c. CCSP-1, CCSP-2 and CCSP-3 all showed a
single sharp and symmetrical peak, suggesting that they were homogeneous polysac-
charide fractions. The standard curve equation of dextran obtained by HPGPC was
y = −0.4429x + 10.827, R2 = 0.9925, where x was the retention time on the chromatographic
column, and y was the logarithm of the molecular weight. According to the retention
time, the molecular weights of CCSP-1, CCSP-2 and CCSP-3 were calculated as 1.79 × 106,
5.74 × 104 and 7.93 × 103 Da, respectively.
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Figure 2. High performance gel permeation chromatography (HPGPC) profiles of CCSP-1 (a),
CCSP-2 (b) and CCSP-3 (c) and Fourier transform infrared (FT-IR) spectra of crude CCSP and
its purified fractions (d). The HPGPC conditions were as follows: Agilent 1200 HPLC system,
TSKgel® G5000PWXL gel chromatography column, column temperature of 28 ◦C, 0.002 mol/L
sodium dihydrogen phosphate (flow rate of 0.6 mL/min) used as mobile phase, G1352A refractive
index detector. FT-IR spectra were determined by a Nicolet iS5 spectrometer with the wavenumber
ranged from 4000 to cm−1.

3.2.3. Monosaccharide Composition

According to GC-MS analysis, glucose was found to be the main monosaccharide
in crude CCSP and its purified fractions. The crude CCSP consisted of xylose, man-
nose, glucose and galactose. CCSP-1 was composed of mannose, glucose and galac-
tose, and CCSP-2 consisted of only glucose and mannose with a molar ratio of 94.27:5.73.
CCSP-3 was composed of xylose, mannose, glucose and galactose with a molar ratio of
22.08:2.05:63.40:12.27, suggesting that the monosaccharide composition of CCSP-3 was
more complicated than those of CCSP-1 and CCSP-2.

3.2.4. Infrared Spectral Analysis

The FT-IR spectra of crude CCSP, CCSP-1, CCSP-2 and CCSP-3 are illustrated in
Figure 2d. The strong and wide absorption peak ranged from 3370 to 3410 cm−1 were
related to O-H stretching vibration, and the absorption peaks at 2918–2930 cm−1 were rea-
sonably assigned to C-H stretching vibration. These two groups’ peaks are the characteristic
absorptions of polysaccharides. Absorption peaks at 1646–1656 cm−1 and 1400–1420 cm−1

were ascribed to the asymmetric and symmetric stretching vibrations of C=O, respectively,
indicating that the polysaccharide samples contained carboxyl groups, which was consis-
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tent with the results of the above chemical analysis. Moreover, stretching vibration of S=O
and C-O-C could account for the absorption peaks at 1220–1245 cm−1 and 1049–1077 cm−1,
respectively. The absorption peaks at 810 and 870 cm−1 revealed the existence of a mannose
residue in the polysaccharide samples.

3.2.5. Morphology Analysis

Figure 3 shows the SEM images of CCSP-1, CCSP-2 and CCSP-3. When the magni-
fication was 500×, CCSP-1 (A), CCSP-2 (C) and CCSP-3 (E) showed loose granular and
filamentous accumulations, dense granular and filamentous aggregates, and irregular flake
and granular structures, respectively. When the magnification was 5000×, CCSP-1 (B) pre-
sented relatively smooth granular aggregates with some filaments. The surface of CCSP-2
(D) was relatively rough, and particles of different sizes were tightly gathered together, and
there were a few filaments between the particles. CCSP-3 (F) presented irregular flakes
with messy filaments, and some flakes had a small hole.
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a conductive glue, coated with a gold layer, and the morphology was observed with a Sigma 500 field
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3.3. Immunomodulatory Activities of CCSP-2 in the CTX Treated Mice
3.3.1. Effect of CCSP-2 on Body Weight and Organ Index

CCSP-2 was chosen to further evaluate its in vivo immunomodulatory activity on the
grounds that it had the highest yield and the strongest in vitro antioxidant capacity (data
not shown).

Table 2 displays the effects of CCSP-2 on the increase of body weight, spleen index
and thymus index in the CTX-induced immunosuppressed mice. Compared with the
normal mice, the increase of body weight in the model group mice was strikingly decreased
(p < 0.05), while those of the low-, medium- and high-dose CCSP-2 groups mice were
significantly increased (p < 0.05) as compared with the normal model group. Furthermore,
there was no significant difference in the increase of body weight among the medium- and
high-dose CCSP-2 groups and the normal group (p > 0.05).

Table 2. Effects of CCSP-2 on increase of body weight, spleen index and thymus index in the
CTX-induced immunosuppressed mice.

Group Dose (mg/kg) Increase of Body Weight (g) Spleen Index (mg/g) Thymus Index (mg/g)

Normal - 7.85 ± 0.47 5.26 ± 0.35 2.78 ± 0.26
Model - 4.52 ± 0.43 # 4.32 ± 0.31 # 1.54 ± 0.29 #

Lentinan 150 7.28 ± 0.55 * 5.15 ± 0.22 *,# 2.65 ± 0.13 *
CCSP-2 50 6.13 ± 0.41 *,# 4.87 ± 0.29 *,# 2.24 ± 0.12 *,#

CCSP-2 100 7.42 ± 0.50 * 5.18 ± 0.26 *,# 2.63 ± 0.15 *,#

CCSP-2 200 7.76 ± 0.61 * 4.22 ± 0.25 *,# 2.69 ± 0.21 *

Results are expressed as means ± SD (n = 10). Lentinan was employed as positive control. * p < 0.05, compared
with model group. # p < 0.05, compared with normal group.

Thymus and spleen are two major immune organs in mammals, and organ index is
considered to be a preliminary indicator of the immune function. The spleen index and
thymus index in the model group mice were remarkably lower than those of the normal
group (p < 0.05), indicating that CTX affected the innate immune function of mice. The
spleen index and thymus index in the CCSP-2 treated mice were considerably improved by
contrast with the model group mice (p < 0.05), dose-dependently. No significant difference
in the thymus index existed between the normal group and the high-dose CCSP-2 group
(p > 0.05). In addition, Lentinan also notably increased body weight, spleen index and
thymus index (p < 0.05).

3.3.2. Effect of CCSP-2 on White Blood Cells, Neutrophils, Lymphocytes and Platelets in
Peripheral Blood

Bone marrow suppression is a common side effect during chemotherapy. The main
symptom is a decrease in white blood cell counts, accompanied by a decrease in platelet
counts. The white blood cell and platelet counts are measured to determine whether
bone marrow suppression has occurred during and after chemotherapy. As exhibited in
Table 3, CTX caused a remarkable decrease in the white blood cells, neutrophils, lympho-
cytes and platelets counts in the peripheral blood as compared with the normal group
(p < 0.05), indicating that CTX caused a serious bone marrow suppression. Those of
the CCSP-2 treated groups were markedly improved by contrast with the model group
(p < 0.05). Interestingly, no significant difference was observed between the normal group
and the high-dose CCSP-2 group (p > 0.05), suggesting that CCSP-2 alleviated the CTX-
induced bone marrow suppression. Furthermore, Lentinan also remarkably dwindled the
CTX-induced bone marrow suppression.

3.3.3. Effect of CCSP-2 on Peritoneal Macrophage Phagocytosis

The effect of CCSP-2 on the phagocytic capacity of peritoneal macrophages in the CTX
treated mice is exhibited in Figure 4a. There was a remarkable difference in macrophage
phagocytic rate between model control mice and normal control mice (p < 0.01). The
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macrophage phagocytic rates in the CCSP-2 treated groups were notably higher than that of
the model group (p < 0.01). In addition, the phagocytic rate in the high-dose CCSP-2 group
was restored to normal (p > 0.05). Lentinan also significantly increased the macrophage
phagocytosis by contrast with the model group (p < 0.01).

Table 3. The effect of CCSP-2 on white blood cells, neutrophils, lymphocytes and platelets counts in
peripheral blood.

Group Dose (mg/kg) White Blood Cells (×109/L) Neutrophils (×109/L) Lymphocytes (×109/L) Platelets (×1011/L)

Normal - 9.49 ± 1.24 1.25 ± 0.13 7.48 ± 0.92 6.64 ± 1.15
Model - 4.86 ± 0.57 # 0.67 ± 0.09 # 3.55 ± 0.79 # 3.36 ± 0.83 #

Lentinan 150 7.35 ± 0.93 *,# 1.16 ± 0.11 * 7.02 ± 0.64 * 6.62 ± 0.95 *
CCSP-2 50 6.55 ± 0.84 *,# 0.77 ± 0.08 *,# 4.67 ± 0.86 *,# 4.47 ± 0.73 *,#

CCSP-2 100 7.98 ± 1.02 *,# 0.96 ± 0.09 *,# 6.53 ± 1.24 *,# 5.61 ± 1.04 *
CCSP-2 200 8.96 ± 1.15 * 1.14 ± 0.17 * 7.28 ± 1.23 * 6.63 ± 1.25 *

Results are expressed as means ± SD (n = 10). Lentinan was employed as positive control. * p < 0.05, compared
with model group. # p < 0.05, compared with normal group.
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Figure 4. Effects of CCSP-2 on the macrophages phagocytosis (a), splenic lymphocyte proliferation (b),
and NK cell cytotoxicity (c) in the CTX-induced immunosuppressed mice. Lentinan was employed
as positive control. Results are expressed as means ± SD (n = 10). ** p < 0.01, in contrast to model
group. # p < 0.05 and ## p < 0.01, in contrast to normal group.
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3.3.4. Effect of CCSP-2 on Splenic Lymphocyte Proliferation

It is well known that Con A and LPS could induce T and B lymphocyte proliferation,
respectively. The effect of CCSP-2 on splenic lymphocyte proliferation in CTX-treated
mice was determined by the MTT method, as presented in Figure 4b. Compared with the
normal group, CTX significantly inhibited Con A-induced T lymphocyte proliferation, as
well as LPS-induced B lymphocyte proliferation (p < 0.01). CCSP-2 treatment strikingly
increased the Con A-induced T lymphocyte proliferation and LPS-induced B lymphocyte
proliferation (p < 0.05 or p < 0.01), dose-dependently. The results suggest that CCSP-2 can
exert its immunoregulatory effect by promoting the T and B lymphocytes proliferation
in the CTX-induced immunosuppressed mice. Lentinan also significantly promoted the
splenic lymphocyte proliferation as compared with the model group (p < 0.01).

3.3.5. Effect of CCSP-2 on NK Cell Cytotoxicity

The effect of CCSP-2 on NK cell cytotoxicity in CTX-induced immunosuppressive
mice was measured by the MTT method, with splenic lymphocytes as effector cells and
YAC-1 cells as target cells, as displayed in Figure 4c. After intraperitoneal injection of
CTX, the NK cell cytotoxicity was notably lower than that of the normal group (p < 0.01).
It is apparent that the NK cytotoxicity in the CCSP-2 groups was noticeably boosted
(p < 0.01), dose-dependently. Moreover, no statistical significance was observed between the
normal control and the high-dose CCSP-2 group (p > 0.05), hinting that CCSP-2 improved
the cellular immune function in the CTX-induced immunosuppressive mice. The NK
cytotoxicity was also remarkably increased in the Lentinan treated group (p < 0.01).

3.3.6. Effect of CCSP-2 on Serum Cytokine and Immunoglobulin

The effects of CCSP-2 on serum cytokines and immunoglobulins in the CTX-induced
immunosuppressed mice were determined by enzyme-linked immunosorbent assay (ELISA),
as displayed in Figure 5a,b. CTX significantly inhibited the serum IL-1β, TNF-α, IgA, IgG
and IgM levels in mice by contrast with the normal group (p < 0.01). The expression
levels of serum cytokines and immunoglobulins in the CCSP-2 groups mice were con-
siderably up-regulated (p < 0.01), in a dose-dependent manner. No statistical difference
was evident between the normal group and the high-dose CCSP-2 group (p > 0.05). In
addition, Lentinan also remarkably up-regulated the expression levels of serum cytokines
and immunoglobulins (p < 0.01).
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3.3.7. Antioxidant Activity of CCSP-2 in CTX-Induced Immunosuppressed Mice

Figure 6a shows the effect of CCSP-2 on antioxidase activity of liver tissue in the
CTX-induced immunosuppressed mice. The activities of SOD, CAT and GSH-Px in the CTX
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group mice were remarkably lower than those of the normal group (p < 0.01), indicating that
CTX caused damage to the antioxidant enzyme system of liver tissue. CCSP-2 treatment
significantly increased the SOD, CAT and GSH-Px activities in contrast to the model control
(p < 0.01), dose-dependently. In the high-dose CCSP-2 group, the antioxidase activities
could restore to normal (p > 0.05), suggesting that CCSP-2 can modulate the antioxidant
enzyme system of liver tissue in the CTX-induced immunosuppressed mice. Lentinan also
notably increased the SOD, CAT and GSH-Px activities (p < 0.01).
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The effect of CCSP-2 on MDA and PCG levels of liver tissue is exhibited in Figure 6b.
Compared with the normal group, the MDA and PCG levels in the model group were
remarkably increased (p < 0.01), indicating that CTX led to oxidative damage of lipids
and proteins. The MDA and PCG levels in the CCSP-2-treated groups were considerably
reduced (p < 0.01), in a dose-dependent manner, and those of the high-dose CCSP-2 group
restored to normal, suggesting that CCSP-2 could alleviate the CTX-induced oxidative
damage of liver tissue. The MDA and PCG levels in the Lentinan group was also notably
dwindled (p < 0.01).

4. Discussion

The purification of polysaccharides is the basis for investigating their physicochem-
ical properties, structural characterization and pharmacological function. In the present
study, crude CCSP was purified by DE-52 cellulose and Sephadex G-100 chromatography
affording three purified fractions, indicating that DEAE-cellulose combined with Sephadex
G-100 chromatography could be applied to the purification of the crude CCSP. Although
this technology is widely used in the purification of active polysaccharides, it also has some
disadvantages, for instance a low flow rate, being very time-consuming and the height of
the column bed occasionally changing with the ionic strength and pH value [37]. In recent
years, some novel resins and gels have been developed, such as DEAE-Sepharose FF and
Sephacryl. The former has the characteristics of high chemical stability and fast flow rate,
and the latter has high hardness and can withstand high hydrostatic pressure. In future
studies, we could attempt to employ DEAE-Sepharose FF and sephacryl chromatography
for purification of the crude CCSP.

It is commonly known that pure polysaccharides are considered to be homogeneous
fractions with a certain range of molecular weight distribution. The common methods to
identify the homogeneity of polysaccharides are gel chromatography, ultracentrifugation
and electrophoresis, among which the most widely used methods is HPGPC. In this study,
the HPGPC profiles show that CCSP-1, CCSP-2 and CCSP-3 are single sharp and sym-
metrical peaks, indicating that they are homogeneous polysaccharide fractions. There are
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few reports on the molecular weight of C. cicadae polysaccharides. The molecular weights
of two heteropolysaccharides purified by DEAE-52 and Sephadex G-100 column were
determined as 3.09 × 104 Da and 5.55 × 105 Da, respectively [11]. Meanwhile, numerous
polysaccharides have been isolated from C. militaris, with the molecular weight ranged
from 1.2 × 103 Da to 4.6 × 105 Da [38]. The molecular weights of CCSP-2 and CCSP-3 were
similar to those of the aforementioned polysaccharides, but that of CCSP-1 was unusually
high. It is believed that the molecular weight of polysaccharides is closely bound up with
their pharmacological function. An array of researchers asserts that a high molecular mass
of polysaccharide is indispensable for its immunomodulatory and antitumor activities [39].
In contrast, other studies have revealed that some low molecular weight polysaccharides
also have good biological activities [40–42]. Moreover, Ganoderma lucidum polysaccharide
fraction with high molecular weight has better immunoenhancement effect, while fraction
with low molecular weight possesses better anti-inflammatory activity [43]. In the current
study, the molecular weights of CCSP-1, CCSP-2 and CCSP-3 are considerably different,
and the difference in the biological activity requires further investigation.

In the present study, GC-MS was used to determine monosaccharide composition.
Compared with GC method, the results of GC-MS method is more vivid by matching the
acquired spectra against the mass spectral library. A large number of studies apply the
same method to determine the monosaccharide composition, such as Annona squamosa
polysaccharide [44], Cyclocarya paliurus polysaccharide [45], Coriolus versicolor polysac-
charide [46] and Lepidium meyenii polysaccharide [47]. Many studies have shown that
monosaccharide composition is closely related to biological activity [48–50]. It has been
demonstrated that the main monosaccharide component of most active polysaccharides
is glucose, followed by galactose, mannose and xylose. In the present study, glucose was
found to be the predominant monosaccharide in CCSP-1, CCSP-2 and CCSP-3.

Polysaccharides are widely acknowledged as the most famous and most effective
mushroom-derived biologically active substances with antitumor and immunomodulatory
activities [51]. The main underlying mechanisms by which natural polysaccharides exert
their antitumor activity in vivo are generally considered to be improving host immune re-
sponses [39,52]. These findings have drawn considerable attention to investigate whether
CCSP-2 could be impoldered as a promising natural immunomodulator. In the current study, a
CTX-induced immunosuppressive mice model was employed to observe the protective effect of
CCSP-2 from the aspects of immune organ, immune cell, and immune molecule. Normal im-
munocompetent mice were intraperitoneally administered with 120 mg/kg CTX every day for
three consecutive days, which caused immunosuppression and oxidative stress. CTX treatment
significantly reduced the immune organ indices, caused bone marrow suppression, decreased
macrophage phagocytic activity, splenic lymphocyte proliferation ability and NK cytotoxicity,
down-regulated serum cytokine and immunoglobulin levels, and led to a decrease in antioxi-
dase activities and an increase in oxidative damage product levels. These results seem to be in
line with previous reports [53–55].

Macrophages, the first line of defense in the innate immune system, not only play the
roles of vanguard against pathogen invasion and communication soldier for activation of
innate immunity, but also participate in adaptive immunity. An increase in phagocytic ca-
pacity is regarded as a hallmark of macrophage activation [56]. Lymphocytes are regarded
as an important key in cellular immunity and humoral immunity. Lymphocyte proliferation
is a critical feature of lymphocyte activation, which is also considered to be a landmark
event in the activation of adaptive immunity [57]. NK cells are considered to be one of
the fastest cell types to arrive at inflammation sites, which can lyse tumor and pathogen-
infected cells [58,59]. In this study, CCSP-2 significantly enhanced the phagocytic activity
of macrophages, stimulated Con A-induced T lymphocyte proliferation and LPS-induced B
lymphocyte proliferation, and improved NK cytotoxicity in CTX-induced immunosuppres-
sive mice, in a dose-dependent manner. This observation hinted that CCSP-2 exerted its
protective effect on CTX-induced immunosuppressive mice by enhancing not only innate
immunity, but also adaptive immunity.
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IL-1β is mainly produced by macrophages, monocytes and dendritic cells, which exerts
a crucial role in the body’s immune response against infection [60]. When innate immune
cells are exposed to pathogen-associated molecular patterns (PAMPs) or other alarmins that
bind to toll-like receptors (TLRs) or RIG-like receptors (RLRs), the transcription factor NF-
κB is activated, and the IL-1β precursor is synthesized [61]. The IL-1β precursor is required
to be cleaved by caspase-1, and the latter has to be activated by inflammasomes mediated
by pattern recognition receptors (PRRs) in the cytoplasm [62]. TNF-α is mainly produced by
activated macrophages and is involved in various physiological processes such as immune
regulation and inflammatory response [63]. It is considered to be one of the most promising
anti-tumor cytokines, which exerts antitumor activity via induction of immune responses,
apoptosis of tumor cells and destruction of tumor vascular-network [64]. Immunoglobulins
are the main components of humoral immunity, which can activate complement, specifically
bind to antigen, and play a direct role in neutralizing exotoxins, resisting viral infection and
inhibiting bacterial adhesion to host cells [65]. IgA, IgG and IgM are the most abundant
immunoglobulins in the body. In the present study, CCSP-2 can restore serum IL-1β,
TNF-α, IgA, IgG and IgM levels, suggesting that CCSP-2 can exert its protective effect in
CTX-induced immunosuppressive mice by regulating the cytokines secretion levels and
enhancing the body’s humoral immunity response.

The liver is considered to be the main metabolic site of CTX in mammals. A large
amount of ROS will be produced during the biotransformation of CTX, which damages
the antioxidant system and leads to the decrease of antioxidant enzyme activities such as
SOD, CAT and GSH-Px [66]. The antioxidant enzyme activity can reflect the degree of
oxidative damage. The excessive ROS could also attack biomolecules within cells, resulting
in cell death and tissue damage [67]. MDA and PCG are the sensitive biomarkers of
oxidative damage to lipids and proteins [68,69]. Our results showed that CCSP-2 could
increase the SOD, CAT and GSH-PX activities, and reduce the MDA and PCG levels in liver
tissues, indicating that CCSP-2 could improve the antioxidant capacity of CTX-induced
immunosuppressed mice.

In this study, Lentinan was employed as a positive control. The findings showed that
Lentinan can activate macrophages, lymphocytes and NK cells, regulate the expression
of cytokines and immunoglobulins, and improve the host’s antioxidant capacity, which
are consistent with previous reports [70–72]. In the above immunomodulatory activity
experiments, the ameliorative effect of high-dose CCSP-2 in CTX-induced immunosup-
pressive mice is almost equivalent to that of Lentinan, indicating that CCSP-2 could be
developed as a potential immunomodulator. Studies have shown that GLSP exerts potent
immunomodulatory and antioxidant effects. Guo et al. reported that GLSP can inhibit
the secretion of TNF-α and IL-6 in peritoneal macrophages, potentiate the Con A-induced
splenocytes proliferation [73]. Another study showed that GLSP could increase the liver
and spleen levels of total antioxidant capability, glutathione reductase and CAT, and pro-
mote the serum levels of IL-2, Ig A and IgG in broilers [74]. Wang et al. found that GLSP
can promote the Con A or LPS induced splenocytes proliferation, enhance NK cytotoxicity,
augment phagocytic capacity of macrophages in S180-bearing mice [20]. Our results are
consistent with these studies.

5. Conclusions

Three polysaccharide fractions CCSP-1, CCSP-2 and CCSP-3 were isolated from spores
of C. cicadae with molecular weights of 1.79× 106, 5.74× 104 and 7.93× 103 Da, respectively.
CCSP-2 consisted of mannose and glucose. CCSP-2 had the capability to improve the
immune organ index, activate macrophages, stimulate T and B lymphocytes proliferation,
enhance NK cytotoxicity, improve bone marrow suppression, up-regulate TNF-α and IL-1β
levels, boost IgA, IgG and IgM levels, increase SOD, CAT and GSH-Px activity, and reduce
MDA and PCG levels. These results reveal that CCSP-2 exerts ameliorative effects against
CTX-induced toxicity in mice through its immunomodulatory and antioxidant activities.
Taken together, these findings provide that CCSP-2 might be exploited as a promising
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natural immunomodulator for chemotherapy-induced immunosuppression and oxidative
stress. However, there are still some unresolved questions in this study. What are the
signaling pathways involved in macrophages and lymphocytes activation? What is the
structure–activity relationship? These issues require to be addressed. In addition, there is
still a lot of work to be done on the structural characterization of CCSP-2. In future studies,
a combined structural characterization method of partial degradation–methylation–NMR
will be attempted to finely characterize the structure of CCSP-2.
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