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Abstract 

Breast cancer remains a significant concern worldwide, with a rising incidence in 

Indonesia. This study aims to evaluate the applicability of risk-based screening 

approaches in the Indonesian demographic through a case-control study involving 

305 women. We developed a personalized breast cancer risk assessment workflow 

that integrates multiple risk factors, including clinical (Gail) and polygenic (Mavaddat) 

risk predictions, into a consolidated risk category. By evaluating the area under the 

receiver operating characteristic curve (AUC) of each single-factor risk model, we 

demonstrated that they retained their predictive accuracy in the Indonesian context 

(AUC for clinical risk: 0.67 [0.61,0.74]; AUC for genetic risk: 0.67 [0.61,0.73]). Nota-

bly, our combined risk approach enhanced the AUC to 0.70 [0.64,0.76], highlighting 

the advantages of a multifaceted model. Our findings demonstrate for the first time 

the applicability of the Mavaddat and Gail models to Indonesian populations, and 

show that within this demographic, combined risk models provide a superior predic-

tive framework compared to single-factor approaches.

Introduction

Breast cancer is a pressing global public health concern. It has emerged as the most 
commonly diagnosed type of cancer worldwide, with its prevalence steadily rising 
in recent years. For example, in 2020 alone, an estimated 2.48 million cases were 
reported worldwide, resulting in approximately 685,000 deaths [1]. In Indonesia, 
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breast cancer mirrors the global trajectory, establishing itself as a leading cause of 
mortality among women [2]. Specifically, in 2020, GLOBOCAN documented over 
68,000 new diagnoses and 22,000 resultant deaths, representing incidence and mor-
tality rates of 15.3% and 11%, respectively [3]. Thus, addressing the burden of breast 
cancer is crucial for improving public health outcomes.

As with other cancers, prompt diagnosis and timely therapeutic interventions have 
been unequivocally associated with enhanced patient prognosis and diminished 
mortality rates. Specifically, survival rates for stage 1 breast cancer are estimated at 
99% five years postdiagnosis, but this figure quickly diminishes to 30% for advanced 
stages [4]. As a result, numerous countries have established population screening 
programs to promote the early detection of breast cancer. Mammography remains 
the primary method for breast cancer screening and has been proven to decrease 
mortality rates [5,6]. Nonetheless, mammography is not devoid of challenges. Typ-
ically, it adopts a uniform approach, recommending that all women within a certain 
age bracket undergo the procedure [6]. Moreover, in Asian populations, women pres-
ent higher breast tissue density, which complicates mammogram interpretation and 
can lead to false-positive diagnoses [7]. Compounding the challenges above, Indo-
nesia has yet to incorporate breast cancer screening into its national health agenda, 
and the procedure remains unsupported by the national health insurance framework. 
This financial constraint dissuades women from pursuing mammographic screening 
and compromises diagnostic rates when the disease is the most actionable [8]. For 
instance, a longitudinal analysis conducted over three decades at multiple academic 
hospitals found that a significant proportion of patients, ranging from 68–73%, only 
sought medical consultations during the advanced stages of the disease [2].

Collectively, the observations highlighted above underscore the need for refining 
breast cancer screening strategies, emphasizing both accessibility and diagnos-
tic precision. Recently, risk-based screening, which customizes recommendations 
according to individual risk profiles, has challenged traditional one-size-fits-all screen-
ing paradigms and is emerging as a promising approach for enhanced patient stratifi-
cation [9–12]. A myriad of risk factors, encompassing clinical predispositions, familial 
history, and genetic markers, have been considered in these advanced screening 
methods. For example, the Gail model, a nongenetic risk assessment tool, offers 
insights into the probability of an individual developing breast cancer over a five-year 
span based on clinical risk factors, including age, reproductive history, and familial 
breast cancer incidence [13]. Similarly, pathogenic mutations in high-penetrance 
genes, such as BRCA1 (Breast Cancer Gene 1) and BRCA2 (Breast Cancer Gene 
2), which are involved in DNA (deoxyribonucleic acid) repair, have long been rec-
ognized as pivotal risk determinants for breast cancer and have been incorporated 
into routine clinical practice [14]. More recently, Polygenic Risk Score (PRS) such 
as the Mavaddat model, which aggregates the effects of multiple low-penetrance 
genes, have been demonstrated to harbor predictive power comparable to their 
high-penetrance counterparts [15,16]. However, despite advances in risk-based 
screening, most research and model development has been focused on Western 
populations [17]. This leaves a gap in understanding the applicability of these models 
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to Southeast Asian populations, such as Indonesia. Unique genetic, environmental, and clinical factors may affect breast 
cancer risk in these populations, so validating and adapting these models is essential.

An end-to-end workflow for personalized breast cancer risk assessment

In the present study, we assess the applicability of three notable breast cancer risk assessment models to the Indonesian 
demographic based on a case-control study involving 305 women. We focus on the predictive accuracy of the Gail model, 
which evaluates clinical risk, the Mavaddat model, which assesses polygenic risk, and pathogenic mutations in BRCA1/2 
genes, which are representative of monogenic risk. Additionally, we utilized a combined risk model to categorize patients 
into either elevated or average risk groups. Our objective is to address the current knowledge gap and offer a risk assess-
ment instrument specifically designed for the Indonesian context.

Methods

Ethics approval and consent to participate

This study received ethical approval from the MRCCC Siloam Hospitals IRB under the approval number 005/EA/KEPK-
KRSMRCCC/X/2020. Amendments to the study protocol, including the inclusion of a larger sample size, have also been 
approved by the IRB, under the approval number 005/EA/KEPKKRSMRCCC/X/2022.

Written informed consent was taken from all the participants. Participant identifying information was recorded. Only 
the researchers involved in the recruitment process had the ability to identify individual participants during or after data 
collection.

Fig 1.  Personalized breast cancer risk assessment workflow.

https://doi.org/10.1371/journal.pone.0321545.g001
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An end-to-end workflow for personalized breast cancer risk assessment

As part of this study, we developed an end-to-end workflow for personalized breast cancer risk assessment. A visual rep-
resentation of the workflow is provided in Fig 1, with details on the methods described below.

The process begins with a pretest counselling session, during which eligible participants, upon providing informed 
consent, submit a buccal sample and complete a risk survey. This sample is then processed in a testing laboratory where 
it is genotyped using microarrays. Bioinformatic analyses are next employed to calculate ancestry-adjusted PRS and to 
translate these into 5-year absolute risk scores, leveraging localized breast cancer incidence and mortality data. Array 
results are also inspected to determine the presence of pathogenic/likely pathogenic mutations in BRCA1/2 genes. Last, 
responses from the clinical risk survey are analyzed to derive 5-year absolute risk scores in accordance with the Gail 
model. In a final step, both the genetic and clinical risk scores are combined into a risk category, with participants receiv-
ing individualized risk reports during a posttest consultation.

Pretest consultation.

Eligible female participants (women aged 25–75 who have never been diagnosed with breast cancer and have no known 
mutations in BRCA1 or BRCA2) initially undergo a pregenetic consultation, either on-site or online, where they receive 
information about the test. After the consultation, they are asked to consent to the collection of buccal samples for genetic 
testing and to complete a questionnaire that gathers nongenetic breast cancer risk factors, as outlined in the Gail model 
(see Additional File 1). Buccal samples were then collected using OraCollect (cat. no. DNA OCR-100, provided by DNA 
Genotek).

gDNA Extraction and genotyping.  Genomic DNA (gDNA) was extracted using the Monarch® Genomic DNA 
Purification Kit (cat. no. T3010 from NEB). The extraction procedure adheres to the manufacturer’s instructions, 
incorporating an additional dry-spin step at maximum speed for 1 minute following the second buffer washing step. The 
quality and concentration of the gDNA extracts were measured using BioDrop-µLITE. The acceptance criteria for DNA 
quality adhere to the manufacturer’s guidelines for the extraction kit, specifically requiring absorbance ratios of A260/230 
and A260/280 to be greater than 1.7 and a DNA yield exceeding 500 ng.

Array genotyping.  Genotyping is conducted using standard processing on the Illumina GSA (Global Screening Array) 
chip (Infinium Global Screening Array-24 Kit) by Genomic Solidaritas Indonesia. Raw data files (IDAT files) are converted 
to VCF format (Variant Call Format) using iiap-cli & GTCtoVCF Illumina software (genome build GRCh37). Missing 
calls are inferred by performing imputation with Eagle2 [18] and minimac4 [19], using the 1000 Genomes project as the 
reference panel.

Calculation of clinical risk.  The calculation of clinical risk is based on the Gail model [13]. Five-year absolute risk 
scores are determined using responses from the pretest consultation questionnaire, which includes information on the 
patient’s age, age at menarche and first full-term pregnancy, number of first-degree relatives with breast cancer, history of 
breast biopsy, presence of breast biopsy with atypical hyperplasia, and ethnicity.

Calculation of polygenic risk.  Genetic risk is assessed using the Mavaddat PRS model [16]. Initially, microarray 
results are subsetted to focus on the 313 markers specified in the model. Direct genotyping and imputation results are 
integrated, prioritizing microarray data, and supplementing with imputation results only when the INFO SCORE exceeds 
0.8.

Subsequently, genotype calls are utilized for PRS calculation through PLINK [20]. Briefly, this process involves com-
puting a weighted average of alleles present in each individual’s genetic profile across the 313 variants specified in the 
model. Missing variants are inferred using the --read-freq option and allele frequency data from the GNOMAD database 
[21]. Next, the raw PRS scores from PLINK are standardized as Z scores using the mean and standard deviation from a 
Southeast Asian cohort (MEC study [11]). These standardized scores are then adjusted for population structure accord-
ing to methods outlined by Hao et al., 2022, employing a linear regression model that incorporates the first four principal 
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components derived from the 1000 Genomes dataset [22]. Ultimately, the ancestry-adjusted PRS are translated into 
5-year absolute scores using established methods [9], which are factors in incidence and mortality data pertinent to the 
Indonesian population [23].

Calculation of monogenic risk.  The BRCA1 and BRCA2 genes were selected as the targets for monogenic risk 
calculations. All detected variants in these (based on direct genotyping from the Illumina GSA chip) genes were annotated 
using Nirvana 3.18.1 [24]. Following the annotation process, additional filtering was performed according to the following 
criteria: (i) the variant’s significance is either pathogenic or likely pathogenic; (ii) it possesses a ClinVar review rating of>=2 
stars; (iii) there is no conflicting interpretation; (iv) it is a nonreference variant; and (v) it has a genotype quality score 
of>=3. The determination of the monogenic risk category is based on whether a pathogenic or likely pathogenic variant is 
detected in the sample.

Calculation of combined risk.  Initially, individual risk factors are transformed into categorical outcomes in the 
following manner: 5-year absolute risk scores for clinical and polygenic risk are classified as either elevated or average, 
utilizing a 1.7% threshold, while monogenic risk is considered elevated if a pathogenic variant is identified. Subsequently, 
a unified risk category was derived using two distinct approaches. In the first approach, the highest risk classification 
among the three inputs was selected as the final category. Alternatively, patients were stratified based on the total number 
of elevated risk factors identified (1, 2, or 3). These methodologies were then compared to assess the extent of co-
occurrence among the risk factors.

Post-test consultation.  The risk assessment results are compiled into a personalized report that includes clinical 
and genetic risk scores and categories, combined risk categories, and customized health modification recommendations 
based on the test findings. Examples of these reports for both average and elevated-risk individuals can be found 
in Additional Files 2 and 3. These risk reports are then presented to patients during a posttest consultation with an 
oncologist.

Workflow validation

To validate the accuracy of our risk prediction workflow, we conducted both preclinical and clinical validation studies. On 
the one hand, the preclinical validation study employed well-characterized reference materials from the Genome In a 
Bottle (GIAB) project [25], along with a mock dataset simulating responses to the clinical risk survey, to assess our ability 
to accurately genotype variants of interest and verify the correct implementation of the Gail model. On the other hand, 
clinical validation, executed as a case-control study, aimed to evaluate the predictive accuracy of the selected models 
(including both the clinical risk and PRS, as well as their combined risk assessment) specifically within the Indonesian 
population.

Preclinical validation.  A preclinical validation study was conducted to assess the accuracy of our clinical risk 
prediction algorithm, which was developed based on the Gail model. This validation employed a mock dataset 
created without any ties to actual patients or individuals. The dataset consisted of manually generated clinical 
survey responses, encompassing a wide range of ethnicities, clinical risk factors, and risk outcomes. Using this 
mock dataset as input, we proceeded to calculate a clinical risk score using our algorithm. Simultaneously, the 
mock dataset was also analyzed using the NIH Breast Cancer Risk Assessment Tool (BRCAT) to determine the 
anticipated clinical risk score. Upon completing both analyses, a comparison was undertaken using Pearson 
correlation analysis.

A separate validation study was conducted to assess the performance of our genotyping algorithm. The validation pro-
cess employed GIAB samples (HG001–005), with each being genotyped in duplicate. Each sample underwent processing 
through our data analysis pipeline to derive genotype calls at each of the 313 target sites. The resulting VCF files were 
compared against their respective truth sets. The accuracy of the genotyping was assessed on a per-sample basis by 
calculating various metrics, including:
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•	 Callability: The percentage of loci successfully genotyped out of the 313 loci in the PRS model.

•	 Genotype concordance: The percentage of genotyped sites with a correct call.

•	 Analytical sensitivity: The percentage of variant sites correctly identified.

•	 Analytical specificity: The percentage of nonvariant sites correctly identified.

•	 Precision: The percentage of variants correctly genotyped relative to the number of reported variants.

Additionally, we genotyped 18 additional 1KGP cell lines to facilitate a per-site assessment of variant calling accuracy. 
The truthset for this dataset consisted of 30X WGS (Whole Genome Sequencing) results from the Registry of Open Data 
in AWS (Amazon Web Services) [22]. The combined set of results, including 5 GIAB and 19 1KGP cell lines, covered 306 
out of the 313 PRS loci. Each site was evaluated for concordance against the truthset across all samples and deemed 
concordant if the results were correct in more than 95% of the samples.

We validated the implementation of the Mavaddat PRS model in our algorithm through a comparative analysis with 
a genetic risk prediction tool from a third-party software company. We utilized a subset of the samples from the current 
study, which included 12 healthy individuals and 20 breast cancer patients. The evaluation was based on two predefined 
criteria: first, we measured the correlation between the PRS; and second, we assessed the overlap in categorical out-
comes with the phenotypes present in our cohort.

To assess genotyping accuracy in the BRCA1 and BRCA2 genes, we utilized two distinct reference materials from Horizon 
(HD793 and HD794), each engineered to contain mutations in these genes, and evaluated a total of 26 genomic loci. Each 
sample was genotyped three times and processed through our data analysis pipeline to derive genotype calls at each target 
site. The resulting VCF files were compared against Horizon’s verified mutations, and genotyping accuracy was assessed 
using the performance metrics introduced above (see “Assessing genotyping accuracy in Mavaddat PRS markers”).

Clinical validation study.  To assess the accuracy of our risk prediction workflow in a real-world setting, we initiated a 
case/control study (TRIP), during which healthy participants and breast cancer patients were recruited over a span of two 
years (from 23 May 2021–1 February 2023).

Power analysis was conducted to determine the sample size of the study using Python’s statsmodel module [26]. We 
estimated the sample size with a power analysis based on a t test for two independent groups. The effect size is calcu-
lated using Cohen’s D formula:

	
d =

xt – xc
Spooled 	

	
Spooled =

√
(nt–1)S2

t +(nc–1)S2
c

nt+nc–2 	 (1)

where d is the effect size, x  is the mean of the PRS, S is the standard deviation, n is the number of samples, and the sub-
scripts t and c refer to the treatment and control groups respectively. The mean and standard deviation are based on the 
literature [27]. This calculation provided us with an effect size of 0.396. The estimated sample size for the two-tailed test is 
calculated using the following formula:

	 n =
2×(Zα/2+Zβ)

2

d2 	 (2)

where n is the sample size for each group, Zα/2 is the critical value of α and Zβ is the critical value of β . Based on this 
analysis, we estimated the minimum sample size would be 101 samples for both the case and control groups, or 202 
samples, assuming a power of 0.8. We recruited additional samples to minimize error and anticipate dropouts.
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Participants were recruited from MRCCC Siloam Hospitals Semanggi Jakarta, Indonesia, and other locations. Breast 
cancer patients were assigned to the case group, while healthy participants were categorized into the control group. All 
inclusion criteria specified in Table 1 must be met for the patients or individuals to be included in the case/control group. 
Individuals not affiliated with Indonesian ethnic groups or of Chinese-Indonesian descent were excluded from the study 
to align with the research’s specific population focus. Additionally, participants who did not provide informed consent for 
participation and subsequent follow-up were also excluded from the study cohort.

Statistical analysis.  An independent samples t test was conducted to compare the clinical score, adjusted PRS, and 
genetic score between cases and controls. This test was utilized to determine whether significant differences existed 
between the two groups. Additionally, logistic regression analysis was performed to examine the relationship between the 
categorical outcome variables and the variables of interest while controlling for the effects of age and ethnicity.

Receiver operating characteristics (ROC) analysis was conducted to assess the predictive performance of the clinical 
score, adjusted PRS, genetic score, and combined risk. The ROC curve, generated using the R package “pROC” [28], 
provided the AUC which was used to quantify the overall discriminative ability of our models. To calculate the AUC for 
combined risk, we first listed a set of possible thresholds using pROC. These thresholds were applied to both the clinical 
and genetic scores to infer a categorical combined risk, while also incorporating the presence of monogenic variant. We 
then calculated the sensitivity and specificity of each threshold. Finally, we plotted the ROC curve and calculated the AUC 
based on the sensitivity and specificity values.

To assess the strength of the association between the dependent variable (cases and controls) and combined risk cat-
egories (elevated and average), a contingency table was created using the “epitools” package [29]. The odds ratio (OR) 
was then calculated based on the contingency table using the “odds ratio” function, providing a measure of the associa-
tion strength between the variables of interest.

Results

Participant demographics

Following the initiation of the recruitment process, we enlisted 191 female participants from MRCCC Siloam Hospitals 
Semanggi, both onsite and through online sessions via Zoom, to partake in the breast cancer risk prediction study. An 
additional 141 participants were incorporated from a baseline study, with consent for the utilization of their remaining DNA 
for further studies concerning breast cancer. Out of 332 participants, there were 158 (47.59%) cases and 174 (52.41%) 
controls. This dataset was later narrowed down to 314 participants after excluding 18 (5.42%) due to loss to follow-up 
(n=1), withdrawal (n=1), and failure to meet the inclusion criteria (n=16). This number was further revised to 305 partici-
pants after identifying samples that did not meet the quality control criteria for analysis (Fig 2).

The clinical validation study employed a retrospective case/control cohort consisting of female breast cancer patients 
(cases) and healthy females (controls), primarily recruited from MRCCC Siloam Hospitals Semanggi and other locations. 
Initially, 158 cases and 174 controls were enlisted. Following triage and biological sample quality control, 149 cases and 
156 controls remained, totalling 305 eligible participants. The study maintained a balanced distribution with 48.85% of the 

Table 1.  Inclusion and exclusion criteria for the clinical validation study.

Control Group Case Group

Gender Female

Age 35–75 years old

Breast can-
cer status

•  Had never ever been diagnosed with breast cancer
•  Did not experience any symptoms related to breast cancer
•  Without first-degree relationship with breast cancer case.

•  Had ever been diagnosed with breast cancer
•  With or without first-degree relationship with breast cancer case.

Ovarian can-
cer status

Without family history of ovarian cancer With or without family history of ovarian cancer

https://doi.org/10.1371/journal.pone.0321545.t001

https://doi.org/10.1371/journal.pone.0321545.t001
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participants in the case group and 51.15% in the control group. Demographic analysis revealed a diverse participant pool, 
encompassing 114 individuals of Indonesian Chinese descent and 191 from other Indonesian backgrounds. The mean 
ages were 47.86 years (± 8.20) for cases and 44.26 years (± 7.88) for controls.

The final cohort comprised a total of 305 female participants, including 149 individuals (48.85%) diagnosed with breast 
cancer (cases) and 156 individuals (51.15%) without the condition (controls). Notably, the demographic distribution ulti-
mately included 114 participants of Chinese lineage, consisting of 73 cases and 41 controls, as well as 191 participants of 
Indonesian heritage, encompassing 76 cases and 115 controls (Table 2).

Accuracy of the Gail clinical risk model in the Indonesian population

First, we evaluated whether the Gail model can be applied successfully to the local population. We first sought to validate 
our tool by comparing answers from our data analysis pipeline to those from the NIH BRCAT (NIH Breast Cancer Risk 
Assessment Tool) tool [30]. We relied on a simulated dataset with mock answers, which were manually generated to cover 
a range of ethnicities and risk outcomes, and utilized Pearson correlation analysis to compare the clinical risk scores 
from both methods (see Methods). We observed a very strong correlation (Pearson correlation 0.94, p-value 3.38×10-15) 
between the results of the NIH BRCA tool and the bioinformatics pipeline used in our clinical workflow, supporting the 
validity of our software to calculate clinical risk.

Next, we evaluated the predictive accuracy of the Gail model by applying it to our patient cohort. We calculated 5-year 
absolute risk scores for all study participants and compared them between the case and control groups. As expected, the 
case group exhibited higher scores (Fig 3A), with a mean of 0.76 (±0.44), compared to 0.54 (±0.31) for controls (p-value 
of 5.16×10-04). Notably, the difference in scores among groups persisted when controlling for age and ethnicity as potential 
confounding factors in the study (p-value: 4.82×10-02). In addition, we observed an AUC of 0.67 with 95% CI [0.61,0.74] 
(Fig 3B), which aligns with previously reported outcomes for Western and Asian ancestry populations [15,31–35]. Alto-
gether, these findings support the applicability of the Gail model to Indonesian populations.

Fig 2.  Participant recruitment and demographic breakdown in the clinical validation study.

https://doi.org/10.1371/journal.pone.0321545.g002

https://doi.org/10.1371/journal.pone.0321545.g002
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Assessment of polygenic risk using the Mavaddat model

We next aimed to assess the genotyping accuracy of our array workflow by evaluating our ability to obtain correct geno-
type calls at PRS loci. For this assessment, we relied on a set of cell lines with well-established variant truthsets (GIAB) 
[25,36], which we genotyped in-house. Assessing the accuracy of genotype calls in Mavaddat loci indicated high analytical 
sensitivity and specificity across all samples tested (99.25±0.46 and 96.89±0.50, respectively; Table 3). To further assess 
calling accuracy in each of the individual 313 loci of the PRS model, we expanded our evaluation dataset with 19 cell lines 
from the 1000 Genomes Project [22], which combined with the previous GIAB dataset, covered 306 out of the 313 loci. 
This analysis showed that 98.69% of sites (302/306) had >95% concordance with the expected calls across all samples, 
thus demonstrating high per-site accuracy in our workflow (Fig 4).

Subsequently, we calculated PRS using PLINK, accounting for ancestry using established methods (see Methods). 
We compared ancestry-adjusted PRS distributions across cases and controls and detected a significant difference across 
groups, with higher scores observed in the cases (0.41±0.96 vs. 0.02±0.89; p-value: 1.56×10-03) and an overall AUC of 
0.63 (Fig 5). Since our final report includes absolute risk scores instead of the relative risk reported by PRS, we also 
analyzed the distribution of 5-year absolute risk scores between groups. Notably, the trend previously observed for PRS 
persisted, with cases exhibiting higher risk scores than controls (0.85±0.41 vs. 0.62±0.33; p-value: 1.86×10-07, Fig 6A). 

Table 2.  Detailed ancestry breakdown for participants in the clinical validation study.

Ethnicity Case (n, %) Control (n, %)

Chinese 73 41

Indonesian 75 116

  Jawa 35 35

  Sunda 6 14

  Batak 6 14

  Bugis 0 6

  Flores 0 6

  Bali 0 4

  Minangkabau 3 1

  Manado 3 2

  Betawi 3 1

  Ambon 0 3

  Maluku 1 0

  Padang 1 2

  Tolaki 1 0

  Melayu 1 0

  Timor 1 0

  Nias 1 0

  Aceh 0 2

  Kalimantan Tengah 0 1

  Other Sumateraa 2 4

  Madura 0 1

  Multi ethnicityb 9 16

  Othersc 3 3
aOther Sumatera includes Palembang (1), Lampung (1), Komering Ulu (1), and others
bMulti ethnicity refers to participants with more than one ethnicity, which includes Jawa-Sunda (6), Betawi-Sunda (2), Jawa-Betawi (2), etc.
cOthers refers to participants who did not specify the specific Indonesian ethnicity they derived from

https://doi.org/10.1371/journal.pone.0321545.t002

https://doi.org/10.1371/journal.pone.0321545.t002
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Similar to previous observations for clinical risk, the difference among groups remained significant even after adjusting for 
age and ethnicity as potential confounding factors (p-value: 6.56×10-04). In addition, we observed an AUC of 0.68 with 95% 
CI [0.61,0.73] (Fig 6B), which is aligned with ranges previously reported in Western and Asian populations [16,23], indicat-
ing that the Mavaddat model can be applied with equivalent predictive accuracy in the Indonesian population.

Last, we sought to compare the genetic risk predictions from our software with those from an established third-party 
tool by analyzing array results from a subset of samples in our patient cohort (N=32) using both platforms (Table 4). 
As expected, we noted a significant correlation in PRS results across both tools (Pearson correlation coefficient: 0.95; 
p-value: 6.11×10–12). However, we identified differences in the approaches each tool uses to interpret PRS into categori-
cal risk outcomes. Our workflow translates PRS into a 5-year absolute risk, incorporating localized disease incidence and 
mortality rates, and utilizes a 1.7% threshold to distinguish between elevated and average risk. In contrast, the third-party 
tool categorizes PRS above the 91st percentile as high risk, equating to a ≥20% lifetime disease risk, and relies on a 
broader population reference to determine a patient’s percentile score. Notably, when comparing the predictive accuracies 

Fig 3.  Distribution curve and predictive accuracy of the 5-year clinical risk score. (A) Distribution curve of the clinical risk score in cases vs. con-
trols. Higher scores (0.76±0.44) were observed in cases compared than in controls (0.54±0.31), with the difference being statistically significant (p-value: 
5.16e-04). (B) ROC curve for the clinical risk score. The observed AUC is 0.674.

https://doi.org/10.1371/journal.pone.0321545.g003

Fig 4.  Per-site calling assessment of Mavaddat PRS loci. Heatmap depicting the genotyping concordance for 313 variants of interest associated with 
breast cancer risk prediction out of 23 samples. Concordance was assessed by comparison to reference calls based on whole-genome sequencing of 
1KGP or Genome-In-A-Bottle samples. TP (blue): True positive homozygous alternate call, TP (light blue): True positive heterozygous call, TN (white): 
true negative, FP (red): false positive, FN (pink): false negative, NC (dark gray): No call in the query sample, NA (light gray): No call in the truth set.

https://doi.org/10.1371/journal.pone.0321545.g004

https://doi.org/10.1371/journal.pone.0321545.g003
https://doi.org/10.1371/journal.pone.0321545.g004
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of the risk categories defined by each platform, we observed higher concordance with phenotypic outcomes in our soft-
ware compared to the third-party tool (59.38% vs. 37.50%). This finding underscores the importance of considering local-
ized factors when determining categorical risk outcomes from PRS.

Identifying pathogenic mutations in BRCA1/2.  The Illumina GSA chip, which we utilized to genotype samples in 
our study, encompasses a total of 5168 markers in the BRCA1 and BRCA2 genes, with 2900 of them being annotated 
as pathogenic/likely pathogenic mutations according to ClinVar [37]. Our analytical pipeline has been developed to 

Fig 5.  Distribution curve and predictive accuracy of ancestry-adjusted PRS. (A) Distribution curve of adjusted PRS in cases vs. controls. Higher 
PRS was observed in the case group compared to the controls (0.41±0.96 vs. 0.02±0.89; p-value: 1.56e-03). (B) ROC curve for adjusted PRS. The 
observed AUC is 0.6262.

https://doi.org/10.1371/journal.pone.0321545.g005

Fig 6.  Distribution curve and predictive accuracy of the 5-year PRS. (A) Distribution curve of the genetic risk score in cases vs. controls. We 
observed higher scores in cases than in controls (0.85±0.42 vs. 0.62±0.33; p-value: 6.56e-04). (B) ROC curve for the genetic risk score. The observed 
AUC is 0.6761.

https://doi.org/10.1371/journal.pone.0321545.g006

https://doi.org/10.1371/journal.pone.0321545.g005
https://doi.org/10.1371/journal.pone.0321545.g006
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report pathogenic mutations in these loci, prioritizing results from direct genotyping and preceding any imputation steps. 
Specifically, we focus on known pathogenic variants in ClinVar, with a confidence score of 2 or higher (see Methods).

To assess the performance of our workflow, we genotyped two Horizon reference material cell lines, HD793 and 
HD794, each engineered to contain mutations in BRCA1/2 [38,39]. Each cell line was genotyped in triplicate, and we eval-
uated our results by comparing the obtained genotype calls to the verified mutations from Horizon, demonstrating 100% 
analytical sensitivity and specificity across 26 assessed markers (Table 5). After establishing the analytical validity of our 
workflow, we proceeded to interrogate the presence of pathogenic variants in our study cohort. We detected pathogenic 
mutations in 14 individuals, all of whom reassuringly belonged to the case group (Table 6).

Performance evaluation of the combined risk model.  In the final stage of our data analysis workflow, we integrate 
various risk predictions - clinical, polygenic, and monogenic - to determine an overall risk category. Individual risk factors 
are initially converted into a categorical outcome as follows: 5-year absolute risk scores for clinical and polygenic risk are 
categorized as either elevated or average using a 1.7% cutoff, while monogenic risk is deemed elevated if a pathogenic 
variant is detected. Subsequently, a consolidated risk category is established by either selecting the highest risk 
classification from the three inputs or stratifying patients based on the total number of elevated risk factors identified (e.g., 
1, 2, or 3 elevated factors; see Methods).

To assess the accuracy of our combined risk predictions, we first evaluated the impact on accuracy when combining 
clinical and polygenic risk, as opposed to relying on single-risk factors alone. The analysis yielded an AUC of 0.71 [95% 
CI: 0.64,0.76] for the two-factor combined risk model, which was higher than that of the single-factor risk models (Fig 7A). 
Next, we examined the proportion of study participants classified as either average or elevated risk within the case and 
control groups, taking into account the three-factor consolidated risk categories. Our analysis revealed a higher proportion 
of elevated risk predictions in the case group compared to the controls (13% vs. 3%, respectively; Fig 7B), a trend that 
was statistically significant with an OR of 4.56 and a p-value of 1.11×10-03. We further examined the contribution of each 
risk factor by analyzing the distribution of patients classified as elevated risk due to a single risk factor, a combination 
of two, or all three. Notably, the majority of elevated-risk samples (22/25) were classified based on a single risk factor. 
Among the remaining three samples, elevated risk was attributed to two factors, with no samples exhibiting all three fac-
tors as elevated (Fig 7C). Finally, we estimated the positive predictive value (PPV) and negative predictive value (NPV) of 
our assay, with values of 80.00% and 53.92%, respectively.

Discussion

Early detection of breast cancer significantly enhances patient prognosis and reduces mortality rates, yet current screen-
ing strategies predominantly adhere to a one-size-fits-all approach. Notably, not all countries have established population 
screening programs to promote mammography screening, and even in countries that have, the uptake rate remains low. 
For instance, in Indonesia, breast cancer screening has not yet been integrated into the national health agenda. Mean-
while, in Singapore, where it has been established, only a mere 28% of primary educated women undergo screening, 

Table 3.  Genotyping accuracy of Mavaddat PRS loci in GIAB samples (N=10).

Metric MEAN SD MIN MAX

Callability 95.37 2.29 93.29 99.68

Genotype concordance 97.81 0.33 97.38 98.18

Analytical sensitivity 99.25 0.46 98.66 100

Analytical specificity 96.89 0.5 96.3 97.6

Precision 99.58 0.57 99.64 100

No-call rate 3.86 1.91 0.32 6.07

https://doi.org/10.1371/journal.pone.0321545.t003

https://doi.org/10.1371/journal.pone.0321545.t003
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Table 4.  Comparative analysis of genetic risk predictions with a third-party tool.

Sample ID Phenotype PRS in-house Genetic risk category in-house PRS third-party tool Genetic risk category third-party tool

41001901220129_BC CANCER 1.233911504 AVERAGE 1.328450579 AVERAGE

41001901220150_BC CANCER 2.643061947 ELEVATED 2.315536285 ELEVATED

41001901220153_BC CANCER 1.880442478 ELEVATED 1.261834573 AVERAGE

41001901222079_BC CANCER 2.305097345 ELEVATED 2.205859718 ELEVATED

41001901222094_BC CANCER 2.306477876 ELEVATED 0.986018963 AVERAGE

41001901222177_BC CANCER -1.438454867 AVERAGE -1.733377778 AVERAGE

41001901222179_BC CANCER 2.14980531 ELEVATED -0.465485248 AVERAGE

41001901222199_BC CANCER 1.029750442 AVERAGE 0.308784296 AVERAGE

41001901222200_BC CANCER 2.31539823 ELEVATED -0.469953448 AVERAGE

41001901222272_bc CANCER 1.513437168 AVERAGE 1.308739488 AVERAGE

41001901222278_BC CANCER 0.637667257 AVERAGE 0.693980954 AVERAGE

41001901222285_BC CANCER 0.423437168 AVERAGE 0.251828443 AVERAGE

41001901222296_BC CANCER 1.803911504 AVERAGE 1.885205009 ELEVATED

41001901222389_BC CANCER 2.103327434 ELEVATED -0.305676435 AVERAGE

41210853008755_BC NORMAL 1.431745133 AVERAGE 0.917035367 AVERAGE

41210853008783_BC NORMAL 2.140548673 ELEVATED 1.881677965 ELEVATED

41210853015045_BC CANCER 1.654389381 AVERAGE 0.9732685 AVERAGE

41210853015093_BC NORMAL 0.177699115 AVERAGE -0.478522053 AVERAGE

41210853015147_BC NORMAL 0.492143363 AVERAGE 0.581812225 AVERAGE

41210853016184_BC NORMAL 2.28780531 ELEVATED 1.906911005 ELEVATED

41210853016186_BC CANCER 1.83920354 ELEVATED 1.424638125 AVERAGE

41210853016189_BC CANCER -0.361402655 AVERAGE -0.726921715 AVERAGE

41210853016254_BC CANCER 2.133504425 ELEVATED 1.579791975 ELEVATED

41210853016290_bc NORMAL -0.731976991 AVERAGE -0.628195591 AVERAGE

41210853016297_BC NORMAL 2.261840708 AVERAGE 1.888042727 ELEVATED

41210853016318_BC NORMAL -0.211773982 AVERAGE -1.888782596 AVERAGE

41210853016330_BC NORMAL 1.495254867 AVERAGE 1.25358441 AVERAGE

41210853016336_bc NORMAL -0.290918053 AVERAGE -1.279861282 AVERAGE

41210853016343_BC NORMAL 2.309681416 ELEVATED 2.371723913 ELEVATED

41210853018000_BC CANCER 2.188743363 ELEVATED 1.054420291 AVERAGE

41210853018727_BC CANCER 1.464444248 AVERAGE 0.873173875 AVERAGE

41210853018768_BC NORMAL 0.148824779 AVERAGE -0.486573454 AVERAGE

https://doi.org/10.1371/journal.pone.0321545.t004

Table 5.  Genotyping accuracy of verified BRCA1/2 mutations in Horizon reference materials (N=6).

Metric MEAN SD MIN MAX

Callability 93.48 5.05 90.00 100.00

Genotype concordance 100.00 0.00 100.00 100.00

Analytical sensitivity 100.00 0.00 100.00 100.00

Analytical specificity 100.00 0.00 100.00 100.00

Precision 100.00 0.00 100.00 100.00

No-call rate 6.51 5.058 0 10.00

https://doi.org/10.1371/journal.pone.0321545.t005

https://doi.org/10.1371/journal.pone.0321545.t004
https://doi.org/10.1371/journal.pone.0321545.t005
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and 30% of diagnoses occur in women below the suggested screening age [27,40]. Emerging risk-based screening 
approaches promise better patient stratification and increased screening rates. However, the prevalent ancestry bias in 
the development of underlying risk models poses a significant challenge for their widespread adoption, particularly for 
PRS models, which rely on common genetic variants that can be markedly influenced by population-specific allele fre-
quencies. While creating new models based on diverse ancestries is technically feasible, the scarcity of data presents a 
substantial barrier, making the evaluation of the applicability of existing models to various ancestries a critical task. In this 
context, our study aims to assess the clinical validity of two established risk prediction models, the Mavaddat and Gail 
models, for the Indonesian population, which we combine with monogenic risk factors, particularly pathogenic mutations in 
BRCA1/2 genes. In addition, we propose a personalized breast cancer risk assessment workflow based on array genotyp-
ing as a first step toward the implementation of risk-based screening in the region.

To validate the predictive accuracy of the Gail and Mavaddat models in the Indonesian context, we conducted a 
case-control study involving 305 participants of local descent. Our analysis revealed that the observed AUC of 0.67 for the 
Gail model aligns with the range documented in published studies [15,31–35]. For genetic risk, we observed an AUC of 
0.63 for ancestry-adjusted PRS, indicating a slight regression in performance compared to the original study (AUC=0.64), 
which utilized samples from the UK Biobank [16]. The AUC, a metric derived from the ROC curve, is commonly used when 
evaluating the predictive accuracy of a model, and a higher AUC implies that the model has a higher true positive rate and 
a lower false positive rate, which is crucial in minimizing misclassifications in risk prediction. Altogether, our observations 
on the AUC of ancestry-adjusted PRS suggest the potential for developing more accurate models in the Asian population, 
a prospect that could become a reality as larger Asian cohorts become available to identify population-specific variants. 
Current population-genomic initiatives, such as the Biomedical and Genome Science Initiative (BGSi) in Indonesia, are 
poised to bridge this gap. It is also important to emphasize that our method of interpreting risk scores into categories relies 
on absolute risk, not relative risk. By incorporating localized data on disease incidence and mortality from Indonesian sta-
tistics, we achieved improved performance in risk scores compared to solely interpreting PRS (AUC of 0.68 for absolute 
risk scores vs. 0.63 for ancestry-adjusted PRS). This localized approach demonstrates a more significant impact when 
comparing our risk prediction results with those from a third-party software that relies on a broader population reference to 

Table 6.  Pathogenic mutations in BRCA1/2 detected in individuals of the study cohort.

Sample ID Gene Variant

41001901220141_BC BRCA2 NC_000013.10:g.32900253del

41001901222134_BC BRCA2 NC_000013.10:g.32911683C>G

41001901222172_BC BRCA2 NC_000013.10:g.32954279dup

41001901222179_BC BRCA2 NC_000013.10:g.32900253del

41001901222199_BC BRCA2 NC_000013.10:g.32903583_32903584del

41001901222199_BC BRCA2 NC_000013.10:g.32912271del

41001901222276_BC BRCA2 NC_000013.10:g.32911693del

41001901223762_bc BRCA2 NC_000013.10:g.32945167del

41020010504567_BC BRCA2 NC_000013.10:g.32915235_32915247del

41020010504567_BC BRCA2 NC_000013.10:g.32915245_32915246del

41210853015036_BC BRCA2 NC_000013.10:g.32900253del

41210853016075_bc BRCA2 NC_000013.10:g.32936794_32936795insC

41210853016167_BC BRCA2 NC_000013.10:g.32915118_32915119del

41210853016255_BC BRCA2 NC_000013.10:g.32900253del

41210853016296_BC BRCA2 NC_000013.10:g.32914068_32914071del

41210853018027_BC BRCA2 NC_000013.10:g.32953960T>G

https://doi.org/10.1371/journal.pone.0321545.t006

https://doi.org/10.1371/journal.pone.0321545.t006
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derive risk categories based on PRS percentiles, as demonstrated by the higher concordance with phenotypic outcomes 
in our software compared to the third-party tool (59.38% vs. 37.50%). Altogether, our observations show, for the first time, 
the applicability of the Gail and Mavaddat models in the Indonesian context and highlight the potential for further enhanc-
ing performance through the creation of new models based on localized datasets.

Fig 7.  Combined risk outcomes and comparison of AUCs. (A) Comparison of ROC curves between clinical, polygenic and three-factor combined 
risk (clinical, polygenic, and monogenic). (B) Percentage of samples categorized as average or elevated based on three-factor combined risk (clinical, 
polygenic and monogenic). (C) UpSet plot showing the number of samples classified as elevated by each of the three factors and their intersections.

https://doi.org/10.1371/journal.pone.0321545.g007

https://doi.org/10.1371/journal.pone.0321545.g007
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While the results presented above showcase the performance of both clinical and PRS models individually, they under-
scores that the best accuracy is achieved when these models are combined (AUC of 0.71 for the combined risk model vs. 
0.67 for single-factor models). This finding aligns with previous research, suggesting that a multifaceted approach to risk 
prediction surpasses the efficacy of single-factor models. For example, research conducted by Hurson et al [41] utilizing 
multiple datasets of European ancestry illustrated that integrating classical factors with PRS can enhance the detection 
of individuals at increased risk. Yang et al reported a comparable trend in a dataset encompassing various Asian popu-
lations, including Chinese, Japanese, Korean, Thai, Singaporean, and Malaysian groups [42]. Additionally, our analysis 
reveals that individuals classified as elevated risk are more likely to exhibit a single elevated risk factor rather than mul-
tiple factors. This observation highlights the complementarity of the risk evaluations and underscores the potential for 
enhanced sensitivity when using a combined risk approach. While the integration of various risk factors can enhance 
predictive capabilities, it also introduces complexity into model development, validation, and interpretation. Our research 
addresses these challenges and extends previous observations to include data from the Indonesian population, thereby 
contributing additional demographic variability to the analysis of risk factors across heterogeneous populations. In addi-
tion, emerging studies suggest that developing risk models with additional input data can substantially enhance predictive 
accuracy. In this context, the emergence of advanced models such as BRISK [43], which aggregates mammographic den-
sity, polygenic risk, and clinical factors, and BOADICEA [44], which incorporates a comprehensive range of inputs includ-
ing detailed family history, genetic data, PRS, and lifestyle factors. Thus, there is potential to further enhance the accuracy 
of models in the Indonesian population through the inclusion of additional datasets.

In addition to evaluating AUCs for risk models, our study also includes an assessment of the genotyping accuracy of 
our risk prediction workflow. To this end, we utilized GIAB reference materials and focused the performance evaluation 
on the markers needed for calculating PRS under the Mavaddat model. We determined the analytical sensitivity and 
specificity of our array genotyping workflow to be 99.25% (±0.46) and 96.89% (±0.5), respectively. Such evaluation is 
vital in establishing a clinical-grade testing workflow, as it ensures the accuracy of results inputted into the risk calcula-
tion software. Most importantly, it should be conducted with the target loci in mind. Given that PRS models encapsulate 
common variants from numerous genomic loci, which can vary significantly in number and nature between models and 
considering that different models might encompass a larger representation of SNPs (Single Nucleotide Polymorphisms) or 
INDELs (insertions/deletions), genome-wide evaluation alone may not necessarily be representative of the performance 
at selected loci. Additionally, we assessed genotyping accuracy in BRCA1/2 genes using Horizon reference materials, 
emphasizing that such assessments, while challenging to conduct, should be pursued when possible.

Conclusions

In conclusion, our study underscores the efficacy of the Gail and Mavaddat models in predicting breast cancer risk in the 
Indonesian population, demonstrating a performance comparable to studies conducted in other demographics. Further-
more, we illustrate that a combined risk model that integrates clinical, polygenic and monogenic risk scores, excels in 
accuracy compared to single-factor models. The study serves as a preliminary yet promising exploration, as larger sample 
sizes will be required to fully capture the rich genetic diversity in Indonesia. The emergence of novel datasets and bio-
banks from population genomics initiatives such as BGSi promises to facilitate further evaluation of risk models and poten-
tially foster the development of new models finely tuned to local populations. Beyond accuracy evaluations, the integration 
of personalized risk assessment into routine clinical practice requires a broader focus that also encompasses consider-
ations of utility and cost efficiency. While the practical application of enhanced breast cancer risk assessment models in 
hospital settings remains largely unexplored, pilot studies in other health domains show evidence that it could potentially 
foster behavioral changes, promoting risk-reducing behaviors among high-risk individuals [45]. This could in turn sig-
nificantly reduce the incidence of advanced-stage breast cancer cases and the associated healthcare costs [12,44,46]. 
Moreover, this type of personalized risk assessment could be especially beneficial in regions such as Indonesia, where 
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population-based screening is unavailable and where given the population size, resources are limited, aiding in the 
identification of individuals who would benefit most from more frequent monitoring. Current global initiatives, such as 
“Our Future Health” in the UK [47] and the Genomes2Veterans study in the US [48], are leading the way in integrating 
personalized risk assessment in healthcare settings, thereby setting a precedent for further localized studies to emulate. 
Although still in its infancy, our collective efforts, in conjunction with others, mark the onset of a transformative era in risk 
assessment, steering toward a more personalized and proactive approach to healthcare.

Supporting information

S1 File.  Clinical risk questionnaire. This questionnaire was administered to study participants after obtaining their 
informed consent.
(PDF)

S2 File.  Example of personalized risk report for an individual with average risk. Patients will be provided with a 
comprehensive report delineating their average risk of developing breast cancer. This report includes an analysis of both 
genetic and clinical risk factors and offers guidance on steps that can be taken after the risk assessment.
(PDF)

S3 File.  Example of a personalized risk report for an individual with elevated risk. Similar to Supplementary File 
2, the following report is customized for individuals exhibiting an elevated risk. The interpretation of this report is to be con-
ducted under the guidance of a medical professional.
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