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Bacillus subtilis 3NA reaches high cell densities during fed-batch fermentation and is an interesting target for further optimiza-
tion as a production strain. Here, we announce the full genome of B. subtilis 3NA. The presence of specific Bacillus subtilis 168
and W23 genetic features suggests that 3NA is a hybrid of these strains.
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Bacillus subtilis 3NA, obtained from the Bacillus Genetic Stock
Center (BGSCID 1S1), is extensively used in our laboratory

for heterologous gene expression and high cell density fermenta-
tion (1, 2). The strain is a spo0A mutant isolated by Michel and
Millet (3). Due to this mutation the strain produces no spores and
low amounts of proteases. Despite the fact that the strain was
characterized as nontransformable we found transformation fre-
quencies comparable to B. subtilis 168.

To the best of our knowledge, 3NA is the only Bacillus strain
which allows high cell densities during fed-batch fermentations
(cell dry weight [CDW] up to 75 g/L). B. subtilis 168 and mutants,
deficient in sporulation-specific sigma factors stopped growth al-
ready during the batch phase and reached CDWs between 5 and
15 g/L. For a better understanding of the phenotype and genetic
optimization of 3NA as a production strain, the genome sequence
was determined from 5.54 million reads obtained from an Illu-
mina 2 � 75-bp paired-end run. The reads were aligned to the
B. subtilis 168 genome (GenBank accession no. NC_000964 [4])
using the Geneious 6.0.3 Read Mapper included in the Ge-
neious 7.1.7 software from Biomatters Ltd. (5). The final cir-
cular sequence has 4,195,102 nucleotides with 92� mean cov-
erage and a 99% identity to the reference genome of B. subtilis
168. The genome of B. subtilis 3NA shows 425 variations (single
nucleotide polymorphism [SNP], deletion, insertion, and substi-
tution) with a minimal coverage of 25 and a minimum variant
frequency of 0.8 compared to the B. subtilis 168 genome. A full list
of all the variations can be obtained from the corresponding au-
thor on request.

The mutation of the spo0A gene could be confirmed. A frame-
shift mutation (�G) leads to an early stop codon. Further frame
shift mutations were found in the yvdK and putP gene (maltose
phosphorylase and proline permease). Another interesting muta-
tion was found in the abrB gene. A base exchange in the translation
stop codon elongates AbrB from 96 aa to 107 aa.

Two major differences between 3NA and B. subtilis 168 were
observed. One is the lack of the integrative conjugative element
ICEBs1 (6). The second one is a 6.4-kb region between trpC and

cheR which contains 90.6% of all 425 single nucleotide poly-
morphisms identified between 3NA and B. subtilis 168. This
region is highly homologous to B. subtilis subsp. spizizen W23.

According to Michel and Millet (3), 3NA is derived from the
B. subtilis Marburg wild type. The presence of single base duplica-
tions in the genes swrA, sfp and a 9-bp duplication in gudB typical
for B. subtilis 168 and a “W23 island” at the trpC locus indicate that
3NA is actually a B. subtilis 168-W23 hybrid as described before for
other Bacillus strains by Zeigler et al. (7). The 6.4-kb size of the
W23 island further indicates that the strain SMY described by
Bohin et al. (8) might be the 3NA parental strain.

Nucleotide sequence accession number. The genomic se-
quence of B. subtilis subsp. subtilis 3NA is deposited in GenBank
under the accession no. CP010314.
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