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ABSTRACT

Deep learning provides an opportunity to automatically segment and extract cellular features from high-throughput microscopy images.
Many labeling strategies have been developed for this purpose, ranging from the use of fluorescent markers to label-free approaches.
However, differences in the channels available to each respective training dataset make it difficult to directly compare the effectiveness of
these strategies across studies. Here, we explore training models using subimage stacks composed of channels sampled from larger, “hyper-
labeled,” image stacks. This allows us to directly compare a variety of labeling strategies and training approaches on identical cells. This
approach revealed that fluorescence-based strategies generally provide higher segmentation accuracies but were less accurate than label-free
models when labeling was inconsistent. The relative strengths of label and label-free techniques could be combined through the use of merg-
ing fluorescence channels and using out-of-focus brightfield images. Beyond comparing labeling strategies, using subimage stacks for training
was also found to provide a method of simulating a wide range of labeling conditions, increasing the ability of the final model to accommo-
date a greater range of candidate cell labeling strategies.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0027993

I. INTRODUCTION

As high-content, high-spatiotemporal cellular imaging becomes
more widespread, the ability to perform cellular segmentation both
quickly and accurately becomes increasingly critical for efficient cellu-
lar analysis and feature extraction. Advances in deep learning have
positioned neural networks as a powerful alternative to traditional
approaches such as manual or algorithmic-based segmentation.” In

incongruity across images of cells. For instance, images of cells
may appear significantly different as a result of either the imaging
techniques'” or even the imaging settings used (e.g., using a different
numerical aperture or magnification of the objective lens).
Furthermore, the cells themselves may demonstrate an enormous
range of morphologies depending on factors such as cell type, cell con-
fluency, and local environment. Cell appearance may also vary signifi-

particular, the development of the U-Net architecture provided a
significant boost to segmentation performance™ and has now
become the template for many modern segmentation models.””
Advancements in our understanding of deep learning have also made
the technique more accessible for smaller-scale operations. Techniques
such as data augmentation have significantly reduced dataset size
requirements, while improvements to training (e.g., transfer learning,
initialization, dropout, hyperparameter schedulers, and optimizers)
have reduced training times considerably.” "'

Adapting deep learning techniques for cellular segmentation,
however, presents some unique challenges due to the high levels of

cantly depending on the cellular structures targeted through the
experimental labels or dyes used. To address this variety, many seg-
mentation algorithms are highly tailored to their target application and,
therefore, do not experience widespread adoption.”” The specialized
nature of each dataset and the resulting solution also mean that it is dif-
ficult to compare individual labeling approaches or segmentation strat-
egies and establish best practices. The challenges when developing a cell
segmentation approach for novel applications are, therefore, threefold:
(i) developing a method of assessing which imaging or labeling strate-
gies produce the greatest segmentation accuracies, (ii) developing strat-
egies to efficiently train models capable of maintaining an acceptable
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level of segmentation accuracy across a wide range of potential input
configurations, and (iii) keeping dataset requirements small enough
that they are feasible to retrain for new applications when necessary.

Traditional approaches to automated cell segmentation from
microscope images generally fall into two main categories:
fluorescence-based and label-free approaches. Fluorescence-based
approaches often boast higher segmentation accuracies but require the
addition of fluorescent markers. However, reliance on specific fluores-
cent markers confers some significant disadvantages as microscopy
tends toward multiparametric, high-throughput imaging. Most nota-
bly, fluorescence-based segmentation limits multiparametric imaging
by dedicating a portion of the fluorescence spectra for segmentation
that might, otherwise, be used. Fluorescent markers can also induce
stress on the cell, either directly or as a by-product of imaging, and are,
therefore, best avoided when possible.” '® For genetically encoded
sensors, the successful co-expression of the desired sensors
and markers in a single cell becomes increasingly difficult in hard-to-
transfect cell lines, which limits the population of cells that can be both
successfully segmented and analyzed. In contrast, label-free approaches
(e.g., brightfield imaging) have the advantage of not requiring a fluores-
cent marker but often struggle with reduced performance in high con-
fluency when the boundaries between cells are not distinct.’

As biology moves further into multiplexed imaging, including
using localized sensors of the microenvironment, it is often not feasible
to sacrifice the bandwidth to an ideal segmentation marker. Thus, we
envision using multiple sensors that are biologically relevant but non-
ideal for segmentation. For instance, genetically encoded sensors
expressed in either the cytoplasm or the mitochondria may each be
used to help demarcate and mask individual cells. However, the infor-
mation provided by these signals is very different: cytoplasmic markers
can clearly define cell boundaries in isolation but may become indis-
tinct across adjacent cells; mitochondrial markers do not reach the
limits of cell boundaries but provide a gap in fluorescence, which can
be used to more broadly separate adjacent cells. The primary challenge
when using this information is that the combination of auxiliary fluo-
rescence signals available to the segmentation model may vary from
experiment to experiment or cell to cell. This requires that a segmenta-
tion model is trained to maintain performance across a wide range of
potential experimental labeling conditions, including the absence of
fluorescence labels of any kind. This would be difficult under the tradi-
tional approach to training deep learning models, as accounting for all
possible experimental configurations would require collecting and
labeling a prohibitively large and expensive dataset. Fortunately,
microscope images possess a unique property that may be exploited to
substantially reduce this dataset requirement: the channels of micro-
scope images exist as stacks of independent images. This means that a
subset of channels from a larger image stack can be assembled to cre-
ate an entirely new representative microscope image. For example, an
image stack of a cell composed of channels capturing a cytoplasmic
marker, a membrane marker, a mitochondrial marker, and a bright-
field image can be used to simulate a cellular image where only the
cytoplasmic marker is present. The ability to create representative
image substacks from a larger image stack is in stark contrast to other
vision-based image modalities (e.g., object detection using camera
footage), where removing a specific color channel would produce an
image that is no longer representative of the target data. Here, we use
source image stacks composed of three fluorescence labels and
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brightfield images imaged at seven different focal planes to simulate a
wide range of expected experimental images (see supplementary
material Fig. S2) to train a robust cell segmentation model. For
simplicity, we, henceforth, refer to the source image stack as the hyper-
labeled image stack and subsets of images used during training as sub-
image stacks. Beyond reducing the dataset size, this approach to training
confers some additional advantages, including the ability to compare
different labeling approaches on an identical dataset. In particular, we
use this dataset to explore new approaches to preprocess data entering
segmentation models including the use of out-of-focus (OoF) brightfield
images and the concept of merging fluorescence channels into a single
input channel. To keep the implementation practical, our approach uses
fewer than 300 labeled cell examples and can be trained in less than a
day on a modern Graphics Processing Unit.

Il. RESULTS

A. Comparing segmentation accuracies when using
common cell labeling approaches

Segmentation models were trained using three-channel sub-
image stacks generated from the ten-channel hyper-labeled image
stacks [Fig. 1(a) and Sec. IV D]. This approach allows a direct
comparison of labeling strategies using a diverse set of source
inputs [e.g., label-free segmentation using only brightfield images
or fluorescence-based segmentation using a combination of
cytoplasmic, membrane, and mitochondrial markers; Figs. 1(b)
and 1(c)]. Generation of subimage stacks in this manner also
permits more advanced features such as channel randomization,
channel merge, channel dropout, and merge dropout [Figs.
1(d)-1(f)]. In particular, adding a channel dropout rate can be
used to simulate varying expressions of a particular fluorescence
channel across cells [e.g., cells that are variably labeled with a
cytoplasmic tag; Fig. 1(e)]. The ability to simulate variable expres-
sion is critical for training models where any fluorescence chan-
nel may vary across cells, experiments, or even channels. This is
particularly true when auxiliary fluorescence signals are used for
cell segmentation.

Using this approach, we compared the performance of segmenta-
tion models trained on distinct subimage stacks loaded with a single
fluorescent marker (the cytoplasmic, membrane, and mitochondria
models), the in-focus brightfield channel (the brightfield model), or a
combination of all three fluorescent markers (the fluorescence model),
random channels (the random model), or black channels as a negative
control (the “all black” model). Supplementary material Fig. S2 shows
an example of each subimage stack. Training was performed for 105
epochs, which was sufficient for all models to reach at least 90% of
their peak accuracy [Fig. 2(a)]. Segmentation performance of the fluo-
rescence, cytoplasmic, and membrane models was significantly better
than that of the other approaches [Fig. 2(b)]. More generally, single-
channel fluorescence images performed well when the fluorescence
touched the cell boundary (cytoplasm and membrane, >96%), but
poorly when this was not the case (mitochondria, reaching ~92%).
The brightfield model performed only slightly better than the mito-
chondrial equivalent (reaching ~93%) but is not influenced by label-
ing conditions as is the case for the models based on fluorescent
markers. To determine how variability in labeling would affect the per-
formance of fluorescence-based models, a channel dropout rate [as
outlined in Fig. 1(e)] was added to each fluorescence channel ranging
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FIG. 1. Overview of the dataloader. (a)
Three-channel subimage stacks are assem-
bled from a source, or hyper-labeled, image
stack according to a model-specific loading
code. (b) and (c) Segmentation models are
trained independently using their unique
subimage stacks. Each model begins with
the same pretrained model and the same
training-validation split for a given replicate.
Once training is complete, model accuracy
is assessed by comparing the average
accuracy of each model over the final 10
training epochs. Note: the prediction image
shown is from the example hyper-labeled
image for simplicity; however, the actual vali-
dation is composed of images not seen dur-
ing fraining. (d) Individual channels are
constructed using three core techniques: (i)
simple loading, which loads the channel
directly, (ii) randomization, which chooses a
channel at random from a preset subset of
channels, and (jii) channel merging, which

Model Comparison
Against Ground Truth

averages the intensities from multiple chan-
nels into a single channel. (e) Channels
may also be affected by a “channel dropout”
rate, which determines the probability that
an individual channel will be replaced by a
blank channel. (f) Channel merge may also
be affected by its own “merge dropout” rate,
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from 0% to 100% with the latter representing black input channels
[Figs. 2(c) and 2(d)]. As the level of dropout increased, performance
converged to that of the all-black control in all models with the excep-
tion of brightfield. This was particularly devastating for models relying
on a single fluorescent marker (cytoplasm, membrane, and mitochon-
dria), where brightfield performance began to surpass that of the cyto-
plasmic or membrane models at ~20% and ~30%, respectively. In
contrast, the use of three distinct fluorescent markers in the fluores-
cence model allowed it to suffer a dropout rate of ~50% before perfor-
mance dipped below that of the brightfild model. These data
highlight the value of using specific fluorescence signals to improve
segmentation performance as compared to brightfield alone; however,
relying exclusively on fluorescence may significantly impact perfor-
mance when labeling is inconsistent. Furthermore, these data suggest
that only certain fluorescence signals offer an improvement over

label-free approaches (e.g., membrane and cytoplasmic markers) and
that brightfield may be the more effective option in others (e.g, the
mitochondria).

B. Improving brightfield performance using out-of-
focus (OoF) brightfield imaging

Despite the aforementioned advantages of using label-free seg-
mentation, the brightfield segmentation model performed significantly
worse than the cytoplasmic, membrane, and three-marker fluores-
cence models. The brightfield model was particularly poor at distin-
guishing cell boundaries when cells were highly confluent [Fig. 2(e)].
Examining intensity profiles revealed the likely cause here: cell bound-
aries are much more difficult to discern using brightfield images than
their fluorescence counterparts, especially when cells are in close
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FIG. 2. Comparison of segmentation accuracies when using common cell labeling approaches. (a) Representative training accuracies of models trained using subi-
mages representing common segmentation techniques. (b) Final accuracies after training determined by a 10-point rolling window. Data are presented as mean
+ s.e.m. “P < 0.05 compared to the brightfield as determined by a paired t-test. All bars were significant compared to the all black control. (c) Representative training
accuracies of fluorescence-based models as the rate of fluorescence dropout was gradually increased. (d) Heatmap representing the final segmentation accuracy of
models trained under various fluorescence dropout conditions. () Example segmentation results for a cell in a low- or high-density environment. Results are presented
on the order of input image and model prediction for both the fluorescence and brightfield subimages created from the same hyper-labeled source image. The images
on the left represent a cell that is isolated from its neighbors, while the cell on the right is in direct contact with neighboring cells. The white scale bar represents

0.5 um.
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proximity [Fig. 3(a)]. This mirrors human performance, where
segmentation of confluent cells was much less accurate in
brightfield images than in either cytoplasmic or membrane images
(supplementary material Fig. S9). The segmentation of brightfield
images can be impacted by focus.”* As the focal plane shifts creating
an out-of-focus (OoF) brightfield image, diffraction patterns begin to
occur near the cell boundary. These diffraction patterns serve to either
highlight or darken these edges, producing an intensity pattern with
either peaks or valleys at the cell boundary [Figs. 3(a) and 3(b)].
Supplementing the in-focus brightfield channel with one OoF image
above the plane of focus (43, +5, or +10um) and one below
(=3, —5, or —10 um) slightly improved performance compared to
the in-focus brightfield model [Figs. 3(c) and 3(d)]. However, it was

(a)
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found that the optimal focal distance was cell-type dependent
(supplementary material Fig. S6), with thinner AD293 cells perform-
ing better at lower offsets and thicker INSIE cells performing best at
higher offsets. To account for these differences, a segmentation model
(RAND Br A+B) was trained using subimage stacks composed of one
of the lower OoF brightfield channels chosen at random, the in-focus
brightfield image, and one of the higher OoF brightfield channels
chosen at random. Although this did not result in the best overall per-
formance of the models tested, it performed reasonably well on both
cell types (supplementary material Fig. S6) presenting a more robust
approach to training cells of variable morphologies or heights. These
data suggest that using OoF brightfield images provide a method of
improving the baseline performance of label-free segmentation models

(b)
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FIG. 3. Analysis of brightfield imaging. (a) Representative images of cells expressing membrane-tagged YFP imaged with fluorescence as well as a brightfield image taken in
and out of focus. The white scale bar represents 1 um. Lines drawn in the images represent the axis along which intensity plots (b) were taken. (c) Representative run of the
models trained using various combinations of brightfield images. (d) Final accuracies of training (n = 6). Data are presented as mean *+ s.e.m. *P < 0.05 compared to the in-

focus brightfield alone as determined by a paired t-test.
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although care must be taken to account for the range of expected cell
thicknesses and confluencies found across samples.

C. Fluorescence merging as a solution to uneven
labeling

Despite the performance advantage afforded by incorporating
OoF imaging, peak brightfield performance alone was still significantly
below that of the fluorescence, cytoplasm, and membrane models
[comparing Figs. 2(b) with 3(d)]. To combine the performance advan-
tage of fluorescence with the reliability of brightfield under label-free
conditions, we explored training segmentation models using combina-
tions of fluorescence and brightfield channels (Fig. 4). For these mod-
els, subimage stacks were composed of one fluorescence channel, one
in-focus brightfield channel, and one OoF brightfield channel, with
the fluorescence channel composed of either an individual channel or
a combination of all the fluorescence channels available [see supple-
mentary material Fig. S2 and Figs. 1(d) and 1(e)]. In all cases, the
introduction of a fluorescence channel either maintained or improved
the accuracy of the brightfield alone [Fig. 4(b)], with the addition of a
cytoplasmic, membrane, or merged fluorescence channel conferring
the largest advantages. The performance of fluorescence-based models
(cytoplasm, mitochondria, membrane, and fluorescence) was previ-
ously found to substantially decrease under variable labeling condi-
tions. To determine whether the inclusion of brightfield channels in
the subimage stacks would guard against this effect, models were
trained in a range of dropout rates as before. As the rate of dropout
was increased, the fluorescence model dropped in performance signifi-
cantly, while the combination models each converged to the perfor-
mance of the OoF brightfield model [RND Br A+B, Fig. 4(c)]. These
data suggest that training cell segmentation models using a combina-
tion of fluorescence and brightfield channels can produce a model that
can effectively segment cells in the absence of fluorescent markers,
while also being capable of capitalizing on fluorescent markers to
improve performance when they are available. In particular, perform-
ing cell segmentation using subimage stacks composed of both a
merged fluorescence and an OoF brightfield channel (the Merge + Br
model) presents itself as a promising strategy to maximize perfor-
mance across a range of labeling conditions.

Cell segmentation models are robust if they can maintain seg-
mentation accuracy across a wide range of labeling conditions, which
can be simulated by altering the rate of dropout during the validation
set independent of the rate used to train that model. For instance, a
model trained without any dropout (i.e., a training dropout rate of
0%) can then be independently validated using a dataset where either
all fluorescence channels are replaced by black equivalents (i.e., a vali-
dation dropout rate of 100%), no channels are replaced (i.e., a valida-
tion dropout rate of 0%), or a mixture (1%-99%). The robustness of a
model can, therefore, be determined by its performance across the
range of validation dropout rates spanning 0% to 100%. To determine
how to maximize the robustness of the Merge + Br model, 11 models
were trained using a single merge dropout rate (ranging from 0% to
100% in 10% increments). Each was then validated across the full
range of dropout rates [Figs. 4(d) and 4(e)]. Although models trained
using low dropout rates had the greatest overall accuracy on well-
labeled datasets, they quickly lost accuracy as labeling became more
sparse [Fig. 4(d)]. Similarly, the model trained without fluorescence
(i.e, a merge dropout rate of 100%) lost performance as labeling was

scitation.org/journal/apb

introduced, indicating that the presence of novel information was dis-
ruptive to the model if not previously encountered. Instead, models
trained using a merge dropout rate between 40% and 60% were the
most consistent across the labeling spectrum [Fig. 4(e)]. A closer
examination of the segmentation outputs [Fig. 4(f)] from models
trained using dropout rates of 0%, 60%, and 100% revealed that train-
ing a model using only one type of source input (i.e., 0% or 100%)
obliterated its ability to segment cells when not presented with the
same input. These data highlight the importance of maximizing the
range of experimental conditions experienced by the model during
training. These results were further validated using a test set (supple-
mentary material Fig. S7).

To determine whether the benefits of combining a fluorescence
merge channel with the brightfield were also beneficial to other cell-
based datasets, an external dataset was sourced and labeled as
described in Sec. IV A. For this dataset, segmentation using fluores-
cence alone was not significantly better than segmentation using the
in-focus brightfield channel [supplementary material Fig. S8(b)]. Here,
the combination of brightfield and fluorescence resulted in increased
segmentation accuracy as compared to either fluorescence or bright-
field alone [supplementary material Fig. $8(d)], while maintaining this
performance in the face of inconsistent fluorescence labeling [supple-
mentary material Fig. S8(e)]. As with the primary dataset, training the
model with a moderate dropout rate produced models that maintained
their performance across a wider range of validation dropouts [supple-
mentary material Fig. S8(f)].

lll. DISCUSSION

The unique nature of microscope images provides many exciting
opportunities for innovation when adapting deep learning techniques
for cell segmentation. Notable among them is the independence of
channels within a microscope image stack, such that representative
subimage stacks can be generated from a larger source, or hyper-
labeled, image stack [Fig. 1(a)]. Training segmentation models from
these subimage stacks confers some key advantages, including the
ability to (i) directly compare labeling approaches using identical cells
[Figs. 1(b), 2(a), and 2(b)], (ii) test biologically relevant but nonideal
segmentation markers [e.g., mitochondrial marker Fig. 2(b)], (iii) out-
line confluent cells with additional information from out-of-focus
images [Fig. 3(d)], and (iv) simulate experimental conditions during
training [i.e., variable fluorescence labeling, see Figs. 1(e), 1(f), 2(c),
and 2(d)]. Here, we demonstrate these advantages using a dataset
composed of image stacks constructed from three fluorescent tags
(cytoplasmic, membrane, and mitochondrial) and seven brightfield
images (each at different focal planes) to both compare the relative
advantages of fluorescence- and brightfield-based segmentation
approaches and explore novel strategies. Central to this comparison
was the trade-off between peak segmentation accuracy and
consistency.

Fluorescence-based approaches boast strong accuracies for fully
labeled cells [Figs. 2(a) and 2(b)], but performed poorly as labeling
became increasingly sparse [Figs. 2(c) and 2(d)]. In contrast,
brightfield approaches had lower peak accuracy scores, but were label-
independent. Improving general performance was, therefore, accom-
plished using a two-pronged approach: first, by improving the base
performance of brightfield images and second, making use of fluores-
cence information when available without relying on it explicitly.

APL Bioeng. 5, 016101 (2021); doi: 10.1063/5.0027993
© Author(s) 2021

5, 016101-6


https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://www.scitation.org/doi/suppl/10.1063/5.0027993
https://scitation.org/journal/apb

APL Bioengineering

(b)

ARTICLE

scitation.org/journal/apb

1.00 = _rl 1.00
95 0.95
0.95 0.95
> >
7 $ 0.904 0.90
S 090 = RND Br A+B P
2 — Merge+Br 3
3] == Cytoplasm+Br © 0.85 0.85
< 0.85 = Membrane+Br <
i = Mitochondria+Br
— Fluorescence 0.80+ 0.80
--- All Black
L
I T T 0.75 = 0.75
0 50 100 Q& & & & & &
Epoch s on R f’@f’ & o
SEF LS
L K &L & F
& & & <
(d) 1.00 (e) 1.00
-
— Training Dropout 0.0 g
— Training Dropout: 0.1 Q 0.95
0.95- . ) [
= Training Dropout: 0.2 5
‘>)- — Training Dropout: 0.3 % 0.90
© 0.90- — Training Dropout: 0.4 =
s (7]
3 — Training Dropout: 0.5 =
8 0.85
2 Training Dropout: 0.6 c :
0.85 = Training Dropout: 0.7 g
— Training Dropout: 0.8 g 0.80
= Training Dropout: 0.9 =
0.80- o rep S
. 0.75
0.0 0.5 1.0 0.00.10.20.30.40.50.6 0.70.80.9 1.0
Validation Merge Dropout Training Merge Dropout
(f) Validation Merge Dropout

Training Merge Dropout

Prediction

Input

1.0

Prediction

FIG. 4. Combining fluorescence and brighffield techniques. (a) Representative run of models trained on various fluorescence/brightfield combinations. (b) Final accuracies of
the training runs (n = 3). Data are presented as mean = s.e.m. *P < 0.05 compared to the in-focus brightfield alone as determined by a paired t-test. (c) Heatmap of final
training accuracies for each model as the rate of fluorescence dropout increased. Representative run (d) and pooled heatmap [(e) n = 3] relating validation accuracy for each
model when exposed to data of varying merge dropout rates. (f) Representative image of a cell segmented under various training and validation conditions. The left image in
each pair represents the merged image fed into the network; the right image represents the resulting mask. The white scale bar represents 0.5 um.

Improvements to brightfield performance were accomplished by aug-
menting brightfield images with out-of-focus (OoF) brightfield chan-
nels (Fig. 3), while fluorescence information was added through a bulk
combination of all fluorescence signals (Fig. 4). What resulted was a

model (named Merge + Br) that maintained performance across a
wide range of labeling conditions [Figs. 4(a)-4(c)]. The Merge + Br
approach to cell segmentation is particularly appealing as merging all
available fluorescence channels renders both training and prediction
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label-agnostic. In other words, source images with differing numbers
of available fluorescence channels can be processed identically during
either model training or predictive purposes. These results also serve
to highlight the utility of using subimage stacks generated from the
larger source image stacks to minimize dataset size requirements and
compare approaches. To account for all the possible labeling combina-
tions tested here without using subimage stacks would not only have
required a prohibitively large dataset but also lost the statistical power
gained by comparison strategies on identical cells.

The ability to simulate various labeling conditions using sub-
image stacks was found to be particularly important when training
models that are required to segment a more diverse set of experimental
setups. For instance, we found that models trained on perfectly labeled
cells boasted the highest accuracies but were also the quickest to lose
performance as labeling became more inconsistent [Fig. 4(c)]. In con-
trast, models trained on cells with varying degrees of fluorescence
labeling (simulated using dropout rates between 40% and 60%) main-
tained a more consistent performance across the full range of labeling
scenarios [Figs. 4(d) and 4(e)]. Although training models in this man-
ner may not produce the highest academic segmentation accuracies, it
is critical for segmentation models used in image analysis pipelines
where the set of available fluorescence labels may vary considerably
across experiments.

A more subtle advantage of collecting hyper-labeled image stacks
for training is that they expedite the creation of ground-truth labels. In
certain cases, this may even allow ground-truth labeling to surpass
human level performance. For instance, segmenting brightfield images
of cells in close proximity is difficult for manual operators, but simple
when a cytoplasmic or membrane marker is present (see supplemen-
tary material Fig. §9). Even if the final objective is to create a label-free
segmentation model, imaging cells with a cytoplasmic or membrane
marker in addition to the relevant brightfield channels allows more
precise ground-truth labels to be created than through the brightfield
channels alone. The label-free model can then be generated by training
the model using subimage stacks containing only the relevant bright-
field channels. By extension, combinations of markers may even be
used in conjunction with other algorithmic or deep learning segmenta-
tion approaches to automate label generation for larger datasets,
whether or not those specific markers will be used to train the model.

IV. METHODS
A. Dataset collection

Cells were labeled with three distinct subcellular markers for the
cytoplasm  (Turquoise2-tagged Apollo-NADP™),"”” the membrane
(YFP-Mem), and the mitochondrial matrix (Mitotracker Deep-Red
FM). Imaging was performed using an ASI widefield fluorescence
microscope equipped with three excitation LEDs (405nm, 505 nm,
and 590nm), polarizing slider, high-speed filter wheels (ASI)
with emission filters (470/24, 535/30, and 632/60), automated stage,
60x/1.43NA oil objective (Olympus), and an IRIS 15 camera.
Additionally, brightfield images were taken of each cell at seven differ-
ent focal depths (—10, —5, —3, 0, +3, 45, and + 10 um), with 0 um
representing cells in manual focus. Altogether, these 10-channels were
used to form our hyper-labeled image stacks. From these images, 275
fully labeled cells (cells containing all three fluorescent markers) were
manually isolated using a custom Fiji plugin to form our training and
validation datasets. Ground-truth segmentation labels were generated
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in Gimp at the pixel level by two independent operators to minimize
inter-operator bias and by alternating between the fluorescence and
near-focus (—3 to 3 um) brightfield channels to minimize biasing per-
formance toward either imaging method. This final dataset represents
a combination of 106 AD293 and 169 INSIE cells, with an additional
175 cell-free images added to the dataset as negative control. Of the
cellular images, approximately 26% represented isolated cells (i.e., no
direct contact with other cells), while the remaining 74% had at least
one neighboring cell in the field of view. Cell images were resized to a
final size of 400 x 400 px (9.28 x 9.28 um®) before entering the
model.

An additional test set was created as described above using cells
that were labeled with subcellular markers for the endoplasmic reticu-
lum (Turquoise2-tagged Apollo-NADPY), the membrane (YFP-
Mem), and the mitochondrial matrix (Mitotracker Deep-Red FM).
This dataset was composed of 96 fully labeled cell images and 60 cell-
free negative controls.

The overall methodology was confirmed on an externally sourced
dataset.'® Briefly, the macrophage cells in the dataset were labeled with
two distinct subcellular markers for the cytoplasm (BODIPY 493/503)
and the nucleus (Sytox). Image stacks of these cells were composed of
both fluorescence channels with additional brightfield images taken at
five different focal depths. The final dataset represents a combination
of 264 labeled cells and an additional 122 cell-free images as negative
controls.

B. Model and training parameters

Training was performed on a variation of the U-Net model,’
which employs a descending arc (contracting path) to increase feature
information followed by an ascending arc (expansion path) to com-
bine feature and spatial information. The model used here was com-
posed of a traditional ResNet34'* architecture for the descending arc
path and a custom ascending arc that used pixel shuffling during
upsampling to reduce checkerboard artifacts™ (see supplementary
material Fig. S1). To make use of transfer learning, pretrained weights
(provided in Ref. 21) from the ResNet34 model were used for the
descending arc, while the ascending arc was randomly initialized.

The majority of hyperparameters used represent best-practice
recommendations.” However, the learning rate, number of training
epochs, and cross entropy weights were determined experimentally.
The learning rate was scheduled as a variation of the 1 cycle policy' "’
[supplementary material Figs. S3(a) and S3(b)]. The maximum learn-
ing rate was chosen by training the model over 100 iterations while
gradually increasing the learning rate from 1 x 1077 to 1 x 10! and
recording the training loss. The learning rate chosen was found in the
area of the steepest downward slope before loss started to rapidly
increase for any of the configurations tested [supplementary material
Figs. S3(c) and S3(d)]. As training was performed in two parts (5
epochs with the pretrained descending arc frozen and then 100 epochs
with the entire network unfrozen), two maximum learning rates were
chosen. Based on these results, the maximum learning rate was chosen
conservatively to be 2 x 10~* for the first 5 epochs and then increased
from 2 x 1076 to 1 x 10~* across the network’s parameter groups for
the final 100 epochs.

Models were trained using a two-class weighted cross entropy
loss,
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loss(x, cls) = weight|cls] (—x[cls] + log (Z exp (x[]])>)7

J

where weight|cls] and x([cls] are the weight and prediction for a particu-
lar class and x[j] are the predictions for each individual class (cell or
background). The use of cross-entropy loss provides the opportunity
to weigh the losses related to the cell or the background differently.
Altering the background weight with respect to the cell weight pro-
duced conservative segmentations at low values and over-eager seg-
mentations at high values [supplementary material Fig. S3(e)]. Overall
accuracy declined in either direction; however, lower values were asso-
ciated with fewer background pixels being misclassified as belonging
to the cell, while the inverse was true for larger weights (supplementary
material Fig. S4). As many cell masking applications would prefer
falling slightly short of the cell boundary (false negative pixels) over
surpassing the cell boundary (false positive pixels), a scaling factor of
0.5 was chosen to minimize false positive pixels without significantly
impacting overall accuracy.

Training and validation sets were divided using a randomized
80:20 split of the cells from the complete dataset. To determine how
the split between the training and validation set may impact model
accuracy, models were trained on all-black images using either a con-
sistent (100 models) or a re-randomized (100 models) training-
validation split [supplementary material Figs. S3(f) and S3(g)].
Significant, normally distributed variability was found in the final
training accuracy when the dataset was randomly split. When the
dataset was consistently split, the accuracy did not vary. This indicates
that it is critical to use identically split training and validation datasets
across each model tested during a single experimental replicate. This
also suggests that the relative performance of each model is a more
useful metric than an absolute segmentation accuracy percentage.
Based on these findings, splits were kept consistent across models dur-
ing a run to reduce the impact of training-validation splits on relative
performance.

C. Data augmentation

Significant data augmentation was used to keep the dataset rela-
tively small. As outlined in supplementary material Fig. S5, examples
of brightfield and fluorescence channels were passed through a variety
of transforms including brightness and contrast, dihedral transforms,
image flipping, image jitter, perspective warping, image rotation, skew,
and symmetric warping. Parameter ranges for each transform were
chosen that produced realistic cell images for both fluorescence and
brightfield images. Despite the unnatural appearance, zero-padding
was used when necessary to avoid twin-cell artifacts in the ground-
truth labels (i.e., the presence of two labeled cells). Data augmentation
beyond a squaring crop and resize was not applied during validation.

D. Subimage stack generation

Training was performed on three-channel subimage stacks
assembled from the ten-channel, hyper-labeled image stacks. Creation
of these three-channel subimage stacks was performed during training
using model-specific loading codes. These loading codes provided
independent, channel-specific instructions to a custom dataloader
directing how each of the three channels would be assembled from the
source dataset (see Fig. 1). The use of loading codes permitted more
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complex interactions with the source image stack’s channels, providing
the dataloader with the following abilities:

* Simple loading: load a specific channel from the ten-channel
source image stack.

* Randomization: load a single random channel from a predefined
subset of channels.

* Channel dropout: perform a randomized test against a dropout
percentage. Load the channel normally if passed, load a blank
channel otherwise.

* Merge: merge the contents from multiple channels into a single
channel before loading.

* Merge dropout: perform a randomized test against a dropout
percentage and only include that particular channel in the merge
if passed.

A complete representation of the loading combinations used can
be found in supplementary material Fig. S2.

E. Plotting and metrics

Model performance was determined using their average segmen-
tation accuracy, which was calculated as the percentage of pixels that
were accurately classified as compared to the ground-truth label (also
known as pixel accuracy). Unless otherwise noted, line graphs were
plotted using a 10-point moving average for clarity (with empty pad-
ding for early epochs) and error bars represent the standard error of
the mean. Significance was assessed using a paired t-test.

F. Ethics

No ethics approval was required for the work in this paper.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional data on U-Net
architecture, segmentation parameters, and test sets referenced in this
article.
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