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Abstract
Objective
To describe the clinical phenotypes, treatment response, and outcome of children with anti-
bodies against aquaporin-4 (AQP4-Ab) neuromyelitis optica spectrum disorder (NMOSD).

Methods
Retrospective, multicenter, and multinational study of patients with AQP4-Ab NMOSD aged
<18 years at disease onset from a center in Brazil and 13 European centers. Data on de-
mographics, clinical findings, and laboratory results were analyzed; calculation of annualized
relapse rates (ARRs) pre- and on-treatment with disease-modifying therapies (DMTs) and of
ORs for predictors of poor outcome was performed.

Results
A total of 67 children were identified. At last follow-up (median 4 years, interquartile range
2–10 years), 37/67(57.8%) were found to have permanent disability. A more severe disease
course was seen in the non-White ethnicity with both a shorter time to first relapse (p = 0.049)
and a worse Expanded Disability Status Scale score at last follow-up (p = 0.008). The median
ARR on treatment was 0.18 on azathioprine (n = 39, range 0–4), 0 on mycophenolate mofetil
(n = 18, range 0–3), and 0 on rituximab (n = 29, range 0–2). No patient treated with rituximab
as first-line therapy relapsed. Optic neuritis at onset was associated with a poor visual outcome
below 20/200 (OR 8.669, 95% CI 1.764–42.616, p = 0.008), and a younger age at onset was
associated with cognitive impairment (OR 0.786, 95% CI 0.644–0.959, p = 0.018).

*These authors have contributed equally to this manuscript.

From the Department of Neurology (R.B.P., S.L.A.-P., J.A.d.P.) and Department of Radiology (INRAD) (C.d.M.R.), Hospital das Cĺınicas, Faculty of Medicine, University of São Paulo
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Conclusions
AQP4-Ab NMOSD in children is an aggressive disease with permanent disabilities observed in over half the cohort. All DMTs
were associated with a reduction of ARR. First-line rituximab prevented further clinical relapses. International consensus on
treatment protocols for children is required to reduce heterogeneity of treatment regimens used worldwide.

Classification of evidence
This study provides Class IV evidence that for children with AQP4-Ab NMOSD, all DMTs, particularly first-line rituximab,
reduced the ARR and prevented further clinical relapses.

Antibodies against aquaporin-4 (AQP4-Ab) were first described
in 2004 in patients with neuromyelitis optica (NMO)1 allowing
the expansion of the phenotype.2 The most recent criteria for
the diagnosis of NMO spectrum disorder (NMOSD) stratify
patients by the presence/absence of AQP4-Ab.3 AQP4-Ab se-
ropositivity is associated with relapsing disease.4,5 This led to the
use of B-cell targeting therapies, which clearly reduce relapse
rates.6 This reduction is not seen when therapies known to be
effective for MS7 are used in NMOSD.

The clinical features and MRI abnormalities in children with
AQP4-Ab NMOSD are similar to the adult phenotype.8–11

The prevalence of AQP4-Ab was reported in 0.7% (2/279)12

to 4.5% (3/64)13 of children presenting with a first pre-
sentation of acquired demyelinating syndrome (ADS) and 8/
102 (7.8%) of children with relapsing syndromes.14 Children
are reported to have a less severe disease course and may take
longer to reach disability than adults.15 Children are at a
higher risk of visual impairment compared with adults but are
less likely to acquire motor deficits.16 Previous pediatric
publications highlighted that AQP4-Ab NMOSD in Europe is
rare,9 whereas the prevalence in South America8 is higher.

With the rarity of pediatric presentation, treatment is derived from
adult guidelines and can be influenced by medication availability
and cost. Current available treatments used, such as azathioprine

Glossary
ADS = acquired demyelinating syndrome; AQP4-Ab = antibodies against aquaporin-4; ARR = annualized relapse rate;
AZA = azathioprine; CRF = case reporting form; DMT = disease-modifying therapy; EDSS = Expanded Disability Status
Scale; IQR = interquartile range; MMF = mycophenolate mofetil; MOG-Ab = myelin oligodendrocyte glycoprotein
antibody; NMOSD = neuromyelitis optica spectrum disorder; ON = optic neuritis; TM = transverse myelitis.
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(AZA), mycophenolate mofetil (MMF), and rituximab, have not
received regulatory approval for NMOSD. In this retrospective,
multicenter, and multinational study, patients’ demographics, first
attack features, paraclinical characteristics, and disease course are
described to ultimately evaluate responses to different treatment
strategies in children with AQP4-Ab NMOSD.

Methods
Participants
In this multicenter, multinational study, we collected de-
mographic, clinical, and radiologic data of 67 patients from a
single center in Brazil (São Paulo, n = 20) and from 13 centers
in 7 countries as part of the EU Paediatric Demyelinating
Disease Consortium (United Kingdom [n = 18], France [n =
11], Spain [n = 6], Germany/Austria [n = 5], the
Netherlands/Belgium [n = 4], Italy [n = 2], and Ukraine [n =
1]). This consortium was initiated to study children with
ADS, as part of the European Reference Network for Rare
Immunodeficiency, Autoinflammatory and Autoimmune
Disease.

We retrospectively identified participants who were
recruited into the respective centers or national de-
myelination programs and fulfilled the following inclusion
criteria: (1) NMOSD, fulfilling the 2015 International Panel
for NMO diagnosis criteria,3 (2) AQP4-Abs detected at
onset or at the time of a clinical relapse, using live cell-based
assays in the local laboratories, and (3) age <18 years at first
presentation.

Standard protocol approvals, registrations,
and patient consents
Patients included in this study had been enrolled in national
programs with respective review board/ethical committee
approvals (Brazil [Hospital das Cĺınicas, Faculty of Medicine,
University of São Paulo, São Paulo], France [Hôpital Bicêtre,
Paris], the Netherlands [Medisch Ethische Toetsingscom-
missie Erasmus Medical Centre, Rotterdam], United King-
dom [West Midlands-South Birmingham Research Ethics
Committee], Germany and Austria [University of Innsbruck
Ethics Committee], and Spain [Hospital Clinic and by Sant
Joan de Déu Children’s Hospital] or provided verbal and/or
written informed consent to the respective referring physician
(Italy, Ukraine). All data were deidentified.

Procedure
Clinical data already collected as part of national de-
myelination programs were deidentified and entered by each
participating investigator onto a unified case reporting form
(CRF), detailing selected demographics, clinical findings and
laboratory results (AQP4-Abs, CSF cell count, protein, and
oligoclonal bands), first and subsequent attack characteristics,
and treatment information. Demyelinating phenotype at on-
set and relapses were clinically determined according to
established criteria18 as being optic neuritis (ON), transverse
myelitis (TM), brainstem and/or cerebellar and/or

hemispheric syndromes (associated with encephalopathy or
without encephalopathy).

Brain and spinal cord MRI were performed in 61 and 50
patients, respectively, at disease onset. All patients had un-
dergone brain and spinal cord imaging according to local MRI
protocols (not routinely including orbits). Gadolinium-
enhanced imaging was performed in 54 patients. Lumbar
puncture for CSF analysis was performed in 57/67 (85.0%)
patients.

The acute treatment for each of these patients at presentation
and subsequent episodes of relapses was decided by the
treating pediatricians, on the basis of protocols influenced by
their regional and/or national reference center for CNS de-
myelination, guided by severity and persistence of symptoms.
Disease-modifying therapies (DMTs) referred to all forms of
maintenance immunomodulation or immunosuppression
therapies.

Annualized relapse rates (ARRs) on retrospective data were
calculated as number of relapses per year and only included
patients with at least 6 months of follow-up after initiation of
treatment. If time to treatment was less than 6 months, the
pretreatment ARR was calculated over a 6-month period. The
outcomes, as measured by a range of difficulties the patients
were experiencing (cognitive, visual, and motor), at last
follow-up were retrieved from the patient’s medical records to
represent the most contemporary assessment of disability. If
unavailable, this assessment was obtained directly from the
patient’s primary treating physician. Patients were considered
to have motor disability if they were a wheelchair user, needed
crutches (or a cane) to walk, or could walk for less than 500 m
without support. Cognitive performance was estimated by
looking at their school performance at last follow-up: patients
were considered to have cognitive difficulties if there was
significant school support, grade repetition, or needing of
special education schools. Patients were considered to have
visual sequelae if the logMAR scale was <0.3 (Snellen <20/
40) or persistent visual field defects. The Expanded Disability
Status Scale (EDSS) scores were documented at first attack
nadir and at final follow-up (at point of disease stability at least
3 months from acute or relapsing events).

All CRFs were initially reviewed by the respective national
leads and subsequently analyzed by 3 investigators (R.B.P.,
Y.H., and K.D.).

AQP4-Ab testing
Within 1 month of an acute event (either onset or relapse),
clinically symptomatic children underwent testing for serum
AQP4-Ab, using live cell-based assays in the respective ref-
erence laboratories of the following referring countries
(France,18 Brazil,19 United Kingdom,20 Spain,21 the
Netherlands,22,23 in Germany/Austria in the Clinical De-
partment of Neurology, Medical University of Innsbruck,
Innsbruck, Austria and in Italy and Ukraine anti-AQP4
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antibodies testing were performed with commercial IFA
[Euroimmun]). Routine assessments of antibody testing in
the CSF were not performed.

Statistical analysis
We tested the hypothesis that patients treated with AZA,
MMF, and/or rituximab experienced a reduction in ARR
providing Class IV evidence for therapeutic decision.

Descriptive data of demographic, clinical, radiologic, and se-
rologic characteristics were reported for children with AQP4-
Ab NMOSD. To compare between the different ethnicities,
parametric or nonparametric statistical tests (Mann-Whitney
U and Kruskal-Wallis tests) were used for continuous distri-
butions, as appropriate given normality, and χ2 or Fisher exact
tests for nominal data. In particular, comparisons between
White and non-White ethnicities and stratified EDSS score at
last follow-up were performed. Logarithm transformation was
performed for nonparametric data. Effect sizes were calculated
by OR, Cohen d, and eta-squared (η2) measures.

In addition, parametric or nonparametric statistical tests were
used for continuous distributions, as appropriate, and χ2 or
Fisher exact tests for nominal data to compare patients who
were treated with AZA, MMF, and rituximab as first-line
treatment. A paired 2-tailed t test was used to compare ARRs
before and during treatment.

Univariate logistic regression was used to evaluate age at
onset, sex, ethnicity, demyelinating phenotype at onset, ab-
normal MRI at onset, time to treatment, number of relapses
before treatment, and follow-up duration as potential pre-
dictors of motor (wheelchair or walking aid), visual (blind-
ness), and cognitive outcomes at last follow-up. Multivariable
analyses were modeled for the same outcomes, including as
covariates those variables significant at the (p < 0.05) level in
the univariate analysis. Results were presented as ORs and
95% CIs. A 2-sided p < 0.05 was considered significant. Data
were analyzed using SPSS 20 software and GraphPad Prism 5.

Data availability
Anonymized data will be shared by request from qualified
investigators.

Results
Patients
A total of 67 children with AQP4-Ab NMOSD were included
in this study (table 1). Mean age at onset was 10.2 ± 3.6 years
(range 2–16 years). The female/male ratio was 4.1:1. Of the
67 children, 29 (43.3%) were White, 14 (20.9%) Black, 13
(19.4%) Brazilian mixed ethnicity, and 11 (16.4%) other
ethnicities. Of the 67 children, 29 (43.3%) were White, 14
(20.9%) Black, 13 (19.4%) Brazilian mixed ethnicity and
11 (16.4%) other ethnicities (Asian, Indians, Nepali, Afro-
Caribbean, Omani). Non-White ethnicity was more common
in both European (25/47) and Brazilian (13/20) populations.

Family history of autoimmune diseases was reported in 9
(13.7%) patients, personal history of inflammatory diseases in
7 (10.4%), and 8 (11.9%) had a preceding infection. Patients’
demographic, clinical, and paraclinical features and EDSS
scores, stratified to ethnicities, are summarized in table 1. The
groups were similar except for shorter time to first relapse (η2

= 0.071, p = 0.049) and higher EDSS score at last follow-up
(η2 = 0.056, p = 0.008) in the non-White population.

First attack features
Themost frequent phenotype at onset was isolatedON (n = 20,
29%) followed by isolated TM (n = 15, 22%) and isolated area
postrema syndrome (n = 11, 16.4%). Of the children presenting
with ON, 9/20 (45%) had bilateral ON. Of the 15 children
presenting with isolated TM, 10 (66.7%) had longitudinally
extensive TM. Six (9%) patients had simultaneousON andTM.
Six (9%) patients presented with ADEM, 1 (1.5%) patient with
isolated diencephalic syndrome, 3 (4.5%) with isolated brain-
stem syndrome, and 5 (7.5%) patients with multifocal syn-
dromes involving the spinal cord, optic nerve, and brain
(brainstem, area postrema, or diencephalic syndromes).

At onset, 44/61 (72.1%) patients had abnormal brain MRI,
32/50 (64%) patients had abnormal spinal cordMRI, and 16/
54 (29.6%) had contrast-enhancing lesions. Abnormal CSF
was reported in 37/57 (64.9%) children, with oligoclonal
bands detected in 7/57 (12.2%). CSF pleocytosis was present
in 35/50 (70%) examinations, with a median of 10 cells
(interquartile range [IQR] 2.5–38.5 cells). Elevated CSF
protein was found in 13/27 (48%) examinations with a me-
dian of 0.030 g/dL (IQR 0.002–0.850 g/dL). Myelin oligo-
dendrocyte glycoprotein antibodies (MOG-Abs) were
negative in the 60 patients who were tested.

Disease course and outcome
A total of 297 attacks were reported in the cohort. Themedian
time to first relapse was 4 months (range 1.7–100.5 months).
At last follow-up (median disease duration of 4 years, IQR
2–10 years), 58 (86.6%) patients had a second clinical event
with a median ARR of 1.05 relapses per year and median
(IQR) EDSS score = 2.0 (1.0–3.5). Moderate disability with
EDSS score ≥3 was reported in 29/67 (43.2%). Visual im-
pairment was seen in 32 (47.8%) patients, of which 20 were
registered blind (visual acuity <20/200; logMAR >1), motor
deficits were found in 14 (21.2%, of which 5 were wheelchair
users and 2 used a walker), and cognitive impairment was
detected in 17 (25.4%) patients.

A more severe disease course was seen in the non-White
ethnicity with worse EDSS score at last follow-up (p = 0.008)
and a shorter time to first relapse (p = 0.049).

Response to immunotherapy
DMTs were given in 63/67 (95%) children. A total of 41
patients were treated with 1 DMT, 12 with 2, 7 with 3 DMTs,
2 with 4 DMTs, and 1 with 5 sequential DMTs. Patients were
commenced on DMTs at a median of 6 months from
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symptom onset (IQR 2–13.5 months) and a median of 2
clinical attacks (IQR 1–3 clinical attacks). Of the 4 untreated
patients, at a median follow-up of 5 years (range 2–10 years),
only 1 patient relapsed despite persistent antibody positivity.

A total number of 139 relapses on treatment were observed in
the cohort. Relapses occurred on all treatments, except the 2
patients treated with ofatumumab and the 1 patient who
underwent hematopoietic stem cell transplantation (HSCT).
The clinical course and disease activity in patients who un-
derwent therapy with maintenance treatment are illustrated in
figure 1. Most frequently used treatments were AZA (total
treatment duration 209.5 patient years, relapses = 92; 0.43
relapses/treated year), rituximab (total treatment duration 88
years, relapses = 13; 0.15 relapses/treated year), and MMF
(total treatment duration 46.2 years, relapses = 23; 0.49
relapse/treated year). Patient characteristic stratified to first-
line treatments is summarized in table 2 and table e-4, links.
lww.com/NXI/A287.

Thirty-nine children were treated with AZA, 35 (89.7%) as
first-line therapy, and 4 as second-line treatment. AZA

treatment was associated with a mean reduction in the ARR of
1.10 (mean ARR pretreatment 1.69 vs 0.59 on treatment, mean
difference 1.10, 95%CI 0.54–1.66, t = 4.01, Cohen d = 0.63, p <
0.001). Twenty-five of 39 (64.1%) patients relapsed on treat-
ment. Of these, treatment was escalated in 16 patients toMMF
(n = 6), rituximab (n = 8), cyclosporine (n = 1), and glatiramer
acetate (n = 1). Of the 4 who were treated with AZA as second
line, 3 previously failed treatment withmethotrexate, glatiramer
acetate, and cyclophosphamide, and in 1, treatment was de-
escalated after being relapse free on rituximab.

Twenty-nine children were treated with rituximab, 14
(48.3%) first line, 9 (31.0%) second line, 5 (17.2%) third line,
and 1 (3.4%) fourth line. The treatment with rituximab was
associated with a mean reduction in the ARR of 2.36 (mean
ARR pretreatment 2.50 vs 0.14 on treatment, mean difference
2.36, 95% CI 1.57–3.15, t = 6.13, Cohen d = 1.14, p < 0.001).
All 14 patients treated with rituximab as first line did not have
further relapses. Of these, 1 patient had prolonged oral ste-
roids (for 1 year) before commencing rituximab, and a second
patient had additional intravenous immunoglobulin for the
first 6 months. Seven of 29 patients (24.1%) treated with

Table 1 Clinical/paraclinical features and outcome in childrenwith AQP4-AbNMOSD stratified to the different ethnicities

White (N = 29) Non-White (N = 38) All (N = 67)

Age at onset, y, mean (SD) 10.6 (3.5) 9.9 (3.7) 10.2 (3.6)

Female sex, n (%) 25/29 (86.2) 29/38 (76.3) 54/67 (80)

EDSS score at nadir, median (IQR) N = 17; 3.0 (2–4.5) N = 30; 4.7 (3.3–7.5) N = 47; 4.0 (3–6.5)

Baseline attack

Area postrema syndrome (all), n (%) 8/29 (27.6) 6/38 (15.8) 14/67 (21)

Optic neuritis presentation (all), n (%) 15/29 (51.7) 14/38 (36.8) 29/67 (43)

Transverse myelitis presentation (all), n (%) 10/29 (34.5) 14/38 (36.8) 24/67 (36)

Brainstem/cerebral involvement (all), n (%) 9/29 (31) 17/38 (44.7) 26/67 (39)

Abnormal brain MRI at onset, n (%) 20/27 (74.1) 24/34 (70.6) 44/61 (72)

Abnormal spinal cord MRI at onset, n (%) 14/21 (66.7) 17/29 (58.6) 31/50 (62)

Intrathecal OCB, n (%) 3/22 (13.6) 4/23 (17.4) 7/47 (15)

Time to first relapse, mo, median (IQR) 5.5 (3–14.2) 4 (2–5) 4 (2–10)

No. of attacks, median (IQR) 3 (2–5.7) 2 (2–5) 3 (2–5)

No. of attacks in the first 2 y, mean (SD) 2.2 (1.3) 2.1 (0.9) 2.2 (1.1)

Time to treatment, mo, median (IQR) 6 (2–17) 4.5 (1–10.2) 5 (1–13.5)

FU, y, median (IQR) 6 (4–10.7) 3.5 (2–6.2) 4 (2–10)

Visual sequelae, n (%) 14/29 (48.3) 18/35 (51.4) 32/64 (50)

Motor sequelae, n (%) 5/29 (17.2) 9/37 (24.3) 14/66 (21)

Cognitive sequelae, n (%) 5/28 (17.9) 12/38 (31.6) 17/66 (26)

EDSS score at last FU, median (IQR) 2.0 (0–3) 2.5 (1–4) 2.0 (1–3.5)

Abbreviations: EDSS, Expanded Disability Status Scale; FU, follow-up; IQR = interquartile range; OCB = oligoclonal band.
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rituximab relapsed on treatment, and these patients were
previously treated with AZA (n = 5) andMMF (n = 2). In the
4 children in whom the CD19 count was measured acutely, 1
relapsed with absent B cells and 3 during B cell reconstitution.

Eighteen children were treated with MMF, 10 (55.6%) first
line, 6 (33.3%) second line, 1 (5.6%) third line, and 1 fifth line
(5.6%). MMF treatment was associated with a mean re-
duction in the ARR of 0.32 (mean ARR pretreatment 1.04 vs
0.72 on treatment, mean difference 0.32, 95% CI −0.57 to
1.22, t = 0.77, Cohen d = 0.18, p = 0.452). Ten patients
remained relapse free on treatment. Of the 8 who relapsed on
treatment, 5 were changed to rituximab.

Tocilizumab was used in 2 patients as third-line DMT, and
both relapsed and satralizumab in 2 patients (who were
enrolled in the open-label SAkuraSky trial as an add-on
treatment to MMF), who have not relapsed. Two patients

were treated with ofatumumab following infusion reaction
with rituximab and have not relapsed. Three patients treated
with cyclophosphamide, 2 with methotrexate and 1 with
cyclosporine; all continued to relapse with worsening ARR.
Two patients were treated with glatiramer acetate for a
presume diagnosis of MS, and both relapsed on treatment.
ARRs before and after treatment initiation are shown in
figure 2.

Adverse events
Of the 37 patients treated with AZA, 5 (13.5%) developed
lymphopenia (<0.5 × 109/L) without infectious complica-
tions, 3 developed infections (viral meningitis, pneumonia,
and varicella), and 3 did not tolerate the treatment in view of
gastrointestinal symptoms or raised liver function test. One
child developed lymphopenia (<0.5 × 109/L) on MMF. In-
fusion reactions with rituximab occurred in 3 of 29 (10.3%)
children, of which 2 were switched to ofatumumab due to the

Figure 1 Disease course in relation to respective therapies

Patient relapsed on all treatments with a total of 139 relapses on treatment reported in the cohort. Forty-three (69.3%) remained relapse free on treatment;
10/35 (28.6%) treated with azathioprine (AZA), 10/17 (58.8%) treated with mycophenolate mofetil (MMF); and 23/29 (79.3%) treated with rituximab. One
patient who relapsed AZA and cyclosporine underwent hematopoietic stem cell transplantation (HSCT) and has not relapsed (follow-up 2 years).
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side effects. One child developed persisted neutropenia on
rituximab and was changed to AZA.

Predictors of poor outcome
ORs to estimate the effects of parameters at onset on the
occurrence of disability (EDSS score ≥3) are illustrated in
table 2. Children with an EDSS score ≥3 (n = 29, 43.2%) were
younger, presented with ON, and had a higher EDSS score at
nadir. Patients with a better outcome at last follow-up (EDSS
score <3.0) were more commonly girls and presented with
cerebral syndrome (table 3). Logistic regression looking at
age at onset, ethnicity, demyelinating phenotype at onset,
abnormal MRI at onset, time to treatment, and number of
relapses before treatment were evaluated as predictors of
motor, visual, and cognitive outcomes (table e-1, links.lww.
com/NXI/A284, table e-2, links.lww.com/NXI/A285, and
table e-3, links.lww.com/NXI/A286). Multivariable analysis

did not identify any predictors for motor disabilities (wheel-
chair or walking aid). ON at onset was associated with worse
visual outcome below 20/200 (p = 0.008, OR 8.669, 95% CI
1.764–42.616), and younger age at onset was associated with
worse cognitive impairment (p = 0.018, OR 0.786, 95% CI
0.644–0.959).

Discussion
AQP4-Ab NMOSD is now well recognized in children. Nat-
ural history studies suggest an attack-related stepwise accu-
mulation of disabilities. Therefore, attack prevention
strategies are used as maintenance treatment. In this multi-
national cohort of children with AQP4-Ab NMOSD, the
phenotype observed was overall similar to that reported
previously in children or adults.3 The time to first relapse was

Table 2 Patients characteristic stratified to first-line treatment

Azathioprine
(n = 35)

Mycophenolate
mofetil (n = 10)

Rituximab
(n = 14)

Other treatment/no
treatment (n = 8)

Age when starting treatment, y,
median (range)

11 (4–17) 9 (3–17) 12 (5–15) 11 (9–15)

Non-White ethnicity, n (%) 21/35 (60) 4/10 (40) 8/14 (57,1) 3/8 (37.5)

Country of origin, n (%)

Brazil (n = 20) 17/20 (85) 1/20 (5) 0 2/20 (10)

United Kingdom (n = 18) 7/18 (38.9) 5/18 (27.8) 3/18 (16.7) 3/18 (16.7)

France (n = 10) 2/10 (20) 1/10 (10) 6/10 (60) 1/10 (10)

Spain (n = 6) 2/6 (33.3) 1/6 (16.7) 3/6 (50) 0

Germany/Austria (n = 5) 4/5 (80) 0 1/5 (20) 0

Belgium/the Netherlands/Italy/Ukraine (n = 8) 3/8 (37.5) 2/8 (25) 1/8 (12.5) 2/8 (25)

Demyelinating phenotype at onset, n (%)

Optic neuritis (n = 29) 16/29 (55.1) 7/29 (24.1) 4/29 (13.7) 2/29 (6.8)

Transverse myelitis (n = 24) 13/24 (54.1) 2/24 (8.3) 7/24 (29.1) 2/24 (8.3)

All area postrema syndrome (14) 7/14 (50) 1/14 (7.1) 4/14 (28.5) 2/14 (14.2)

All brainstem/encephalic (n = 26) 13/26 (50) 3/26 (11.5) 6/26 (23) 4/26 (15.3)

Time to treatment, mo, median (range) 6 (0–84) 6 (0–16) 1 (0–9) —

No. of attacks before treatment,median (range),
n (%)

2 (1–6) 2 (2–4) 2 (1–9) —

Median duration on treatment, y, median
(range)

5.5 (0.5–11) 1.5 (0.8–6) 2 (1–11) —

ARR, median (range) 0.18 (0–4) 0 (0–2) 0 —

No. of patients who relapsed on treatment, n (%) 22/35 (62.8) 3/10 (30) 0 —

No. of patients who changed treatment, n (%) 14/35 (40) 2/10 (20)
additional
one stopped

2/14 (14.2) —

Abbreviation: ARR = annualized relapse rate.
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short, and the ARR pretreatment was high, indicating a high
risk of relapses and permanent disability in children with
AQP4-Ab NMOSD.

We detected cognitive impairment in 25.4% of the cohort.
Abnormal brain MRI was not a risk factor, but younger age at
onset and brainstem/cerebral attacks were associated with

Figure 2 The efficacy of various disease-modifying therapies in children with AQP4-Ab NMOSD

Annualized relapse rates (ARRs) before and after treatment initiation with the most frequently used medications. (A) Azathioprine (AZA). (B) Mycophenolate
mofetil (MMF). (C) Rituximab. (D) After escalation from treatment with AZA or MMF to rituximab.

Table 3 Univariable analysis and OR for parameters associated with the EDSS score (EDSS ≥3) at final follow-up

EDSS score <3 (n = 38) EDSS score ≥3 (n = 29) OR (95% CI) p Value

Sex (F:M) 34:4 20:9 0.261 (0.071–0.960) 0.043

Age at presentation, y, mean (SD) 11.1 (3.1) 9.1 (3.9) 0.847 (0.732–0.980) 0.026

Ethnicity (White:non-White) 19:19 10:19 1.900 (0.702–5.141) 0.206

Optic neuritis presentation, n (%) 12/38 (31.6) 17/29 (58.6) 3.069 (1.121–8.402) 0.029

Transverse myelitis presentation, n (%) 12/38 (31.6) 12/29 (41.4) 1.529 (0.559–4.186) 0.408

Brainstem/cerebral presentation, n (%) 19/38 (50) 7/29 (24.1) 0.318 (0.110–0.920) 0.035

Abnormal brain MRI, n (%) 25/35 (71.4) 19/26 (73.1) 1.096 (0.349–3.379) 0.887

Intrathecal OCBs, n (%) 7/28 (25) 0/17 NA >0.999

EDSS score at nadir, mean (SD) N = 26; 4.0 (2.3) N = 21; 5.4 (2.2) 1.303 (1.004–1.690) 0.046

Time to treatment, mo, median (IQR) 6 (1.5–16) 4.5 (1–10.7) 1.003 (0.967–1.041) 0.859

No. of relapses before treatment, median (IQR) 1 (0.2–2) 1 (0–2) 1.061 (0.749–1.503) 0.739

FU, y, median (IQR) 4 (3–6) 5 (2–12) 1.1109 (1.009–1.218) 0.032

Abbreviations: CI = CI for OR calculated for nominal variables; EDSS = Expanded Disability Status Scale; FU = follow-up; IQR = interquartile range; OCB =
oligoclonal band.
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cognitive deficits. Cognitive impairment had not been sys-
tematically addressed in pediatric NMOSD, and our results
highlight its importance. Although no objective cognitive
measure was used in this study, we selected measures that are
consistent across the diverse educational systems that reflect
clear difficulties and thus would be a reasonable surrogate for
cognitive performance. ON at onset was a risk for visual im-
pairment and blindness in keeping with previous report that
young children do not recover well following ON.16 Of in-
terest, time to starting treatment and number of relapses
before starting treatment were not associated with worst
outcome. As previously reported,24 non-White ethnicity was
associated with a more aggressive disease course but was not
predictive of moderate disabilities at last follow-up.

Patients were treated according to each center experience, and
the choices of treatment were additionally influenced by the
access to treatments in each country and their related costs.
Almost all of the Brazilian children were commenced on AZA,
and none were given rituximab as first-line treatment. In
contrast, the European children were frequently commenced
on rituximab and MMF (table 3). A previous pediatric co-
hort10 (only 20/58 patients were treated with DMTs)
reported residual disability in 43/48 (90%), with 26/48
(54%) having visual impairment and 21/48 (44%) withmotor
deficits. Comparing to this cohort, the visual but not the
motor outcome is similar, which might be related to
treatment.

A key observation from our study was that all treatments
known to reduce relapses in adults (AZA, MMF, and ritux-
imab) were associated with a reduction in the ARR. More-
over, rituximab treatment resulted in the lowest ARR, and it
is remarkable that all 14 patients who started on rituximab as
first line did not have any further relapses. Treatment esca-
lation fromAZA andMMF to rituximab was beneficial in 12/
13, with only 1 child maintaining the same ARR (figure 2).
The benefit of early treatment with rituximab was previously
demonstrated in a pediatric cohort with a range of CNS
disorders including NMOSD.25 This apparent superiority
could be partially explained by the early treatment effect of
rituximab. In addition, in our cohort, patients were also
initiated with rituximab sooner compared with AZA/MMF
(1 month vs 6–10 months) after the attack. CD19 count was
not performed in all 7 patients who relapsed with rituximab.
Monitoring B-cell repopulation and redosing rituximab
might prevent relapses as demonstrated in a pediatric
study.26 Three patients treated with rituximab changed
therapy due to adverse effect, and none had severe infection.
Prospective follow-up was not performed to check on
hypogammaglobulinemia.27

Although we did not perform a direct comparison, the treat-
ment effect observed in this pediatric cohort appeared greater
than reported in adults with AQP4-Ab NMOSD.6,28–30 The
greater reduction in the ARR following initiation of DMTs is
also reported in children with MS compared with adults and

likely reflects the more inflammatory disease seen in the
younger patients.31 Of interest, in comparison to a cohort of
children with MOG-Ab–associated disease,32 despite the
higher ARR before treatment, the ARR on treatment was
lower across all treatments in the AQP4-Ab NMOSD group.

Our cohort was not optimal for a direct evaluation of an
individual treatment or a sequence of treatment effect, which
is better suited to a study design where the sequence of
DMTs, the lag phase of efficacy or washout period of specific
therapies are prospectively controlled. One particular treat-
ment that deserves specific attention would be the cumulative
use of corticosteroids, often used in conjunction with DMTs
and at low doses, but also during acute attacks. Time to ini-
tiation of acute treatment, the choice of treatment, and
treatment escalation are major predictors of long-term out-
come in AQP4-Ab NMOSD.33–35 As many of the children
presented initially to district general hospital, timing, dura-
tion, and sequence of acute treatment were not included in
the analysis.

A major limitation of this study is that not all patients were
systematically managed, with possible biases in treatment
initiation and/or escalation. Nevertheless, these real-world
clinical data from multiple countries allowed us to make im-
portant observations about the treatment responsiveness of
children with AQP4-Ab NMOSD. The important question
our study raises is whether rituximab should be first-line
treatment for children. Moreover, should children who are
already stable on AZA and MMF be changed to the more
efficacious therapies with a higher risk profile? Furthermore,
with new monoclonal antibodies (satralizumab,36 inebilizu-
mab,37 and eculizumab38) likely to become available, treat-
ment algorithms that accommodate risk stratification of
poorer prognosis (such as the patients age and severity of the
attack) and grouping of treatments with similar efficacy within
the sequence and choice of treatments in pediatric AQP4-Ab
NMOSD are urgently required.
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