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Abstract: The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants
in different continents is causing a major concern in human global health. These variants have
in common a higher transmissibility, becoming dominant within populations in a short time, and
an accumulation of a high number of mutations in the spike (S) protein, especially within the
amino terminal domain (NTD) and the receptor binding domain (RBD). These mutations have direct
implications on virus infection rates through higher affinity of S RBD for the cellular angiotensin-
converting enzyme-2 (ACE-2) receptor. There are also signs of enhanced virulence, re-infection
frequency, and increased resistance to the action of monoclonal and polyclonal antibodies from
convalescence sera and in vaccinated individuals in regions where the variants spread dominantly.
In this review, we describe the different SARS-CoV-2 variants that have thus far been identified in
various parts of the world with mutational changes and biological properties as well as their impact
in medical countermeasures and human health.

Keywords: SARS-CoV-2; COVID-19; variant; spike protein; mutation; lineage; vaccine efficacy;
neutralizing antibodies

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causal agent of
the worldwide coronavirus disease 2019 (COVID-19) pandemic, which is causing major
health as well as social and economic burden with unprecedented consequences. Records
show 116 million infection cases worldwide with a global death of 2.6 million people early
March 2021. At the beginning of the SARS-CoV-2 pandemic, there were only modest levels
of genetic evolution mainly because of two factors: (i) the global absence of immunity
against this new pathogen; and (ii) the low mutation rates of the coronaviruses which
encode an enzyme with proofreading function that increases the fidelity of the replication
process [1]. In early March 2020, a new variant was detected with a single D614G mutation
in the spike (S) glycoprotein of SARS-CoV-2 that spread to global dominance over the next
month due to increased transmissibility and virus replication [2,3]. Since December 2020,
novel SARS-CoV-2 variants that accumulate a high number of mutations, mainly in the
S protein, have been detected in some geographical regions. These variants have been
considered by the World Health Organization (WHO) as variants of concern (VOC) because
of their potential risk to human health. The changes observed in the viral mutation rate
during the course of the pandemic indicate a tendency towards a rapid antigenic variation
and, hence, it is important to strengthen surveillance systems to control the emergence and
the dissemination of new variants, looking over their impact on disease transmission and
severity and on the efficacy of vaccines and treatments used globally.

The COVID-19 pandemic has required rapid action and development of vaccines in
an unprecedented timeframe. According to WHO (https://www.who.int/publications/
m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 9 March 2021)),
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76 vaccine candidates based on several different platforms are being currently evaluated in
human clinical trials, while 182 candidates are under investigation in preclinical models.
The four SARS-CoV-2 vaccines licensed at present by the regulatory agencies are based on
nucleic acid or non-replicating viral vectored platforms.

The two vaccines based on messenger ribonucleic acid (mRNA) have been developed
by Moderna (mRNA-1273) and Pfizer/BioNTech (BNT162b2) pharmaceutical companies
and contain the genetic information for the synthesis of the stabilized pre-fusion form of
the SARS-CoV-2 spike (S) protein encapsulated in a lipid nanoparticle (LNP) vector that
enhances uptake by host immune cells. These vaccines used host cell transcription and
translation machinery to produce the viral S protein, that is afterwards processed and
recognized by specific B and T cells eliciting both humoral and cellular adaptive immune
responses able to confer protection against COVID-19 illness, including severe disease. The
reported efficacy of a two-dose regimen of the mRNA-1273 or the BNT162b2 vaccines is
94.1% [4] or 95% [5], respectively.

The two other licensed vaccines have been developed by Oxford University/AstraZeneca
(AZD1222) and Janssen (Ad26.COV2.S) pharmaceutical companies and are based on two
different modified non-replicating adenoviruses. The AstraZeneca candidate is a mono-
valent vaccine composed of a single recombinant, replication-deficient chimpanzee ade-
novirus (ChAdOx1) vector encoding the S glycoprotein of SARS-CoV-2. The S protein
is expressed in the trimeric pre-fusion conformation. Following administration, the S
glycoprotein of SARS-CoV-2 is expressed locally, stimulating neutralizing antibody and
cellular immune responses, which may contribute to protection against COVID-19. The
AZD1222 vaccine has an efficacy of 63.09% against symptomatic SARS-CoV-2 infection.
Vaccine efficacy was 62.6% in participants receiving two recommended doses with any dose
interval (ranging from 3 to 23 weeks) [6]. The Janssen vaccine is based on the adenovirus
serotype 26 (Ad26) which expresses the stabilized pre-fusion SARS-CoV-2 S protein. As
opposed to the ubiquitous Ad5 serotype, very few people have been exposed to the rare
Ad26 serotype; therefore, pre-existing immunity against the vector reducing this candi-
date’s immunogenicity is not expected to be a major concern. A phase 3 randomized and
placebo-controlled trial of the single-dose Ad26.COV2.S in approximately 40,000 partici-
pants is currently ongoing. The primary analysis of 39,321 participants using a data cut-off
date of 22 January 2021 demonstrated a vaccine efficacy of 66.9%.

The fifth vaccine waiting for approval has been developed by Novavax Company
(NVX-CoV2373). It is a protein subunit vaccine constructed from the full-length, stabi-
lized, pre-fusion SARS-CoV-2 S glycoprotein, produced in the established Sf9 insect cell
expression system and adjuvanted by saponin-based Matrix M1 [7]. In January, Novavax
announced that, in the British trial, the vaccine had an efficacy rate of 89%. Since all the
vaccines that have been administered worldwide are focused on the spike protein, which
accumulates high rate of mutations during viral evolution, as evidenced in the genome
sequences from the new emerging SARS-CoV-2 variants, it is imperative to evaluate the
impact of those mutations on the actual efficacy of COVID-19 vaccines.

2. Emerging SARS-CoV-2 Variants That Raise Global Concern

Natural selection usually determines the fate of a newly arising mutation. However,
other potential mechanisms such as chance events, host shifts, persistent infection in
immunocompromised host, or mutations affecting the proofreading function could also
drive viral evolution. Those mutations that confer a competitive advantage with respect
to viral replication, transmission, or escape from immunity will increase in frequency,
becoming the dominant variant. Currently, an exhaustive surveillance monitoring has
being performed on three SARS-CoV-2 variants: B.1.1.7 (VOC 202012/01 or 20B/501Y.V1),
B.1.351 (20H/501Y.V2), and P.1 (B.1.1.28.1).
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2.1. B.1.1.7 (VOC 202012/01 or 20B/501Y.V1) Variant

B.1.1.7 variant, also known as VOC 202012/01 or 20B/501Y.V1, was unveiled on
14 December 2020 by the United Kingdom (UK) authorities who declared an increase in the
incidence of SARS-CoV-2 infections in eastern and south-eastern England and the London
metropolitan area associated with the emergence of a new SARS-CoV-2 variant. The first
clinical sample in which it could be identified dates back to September 2020. Since then,
it has largely replaced the circulating viruses, becoming the predominant variant in the
UK. This variant is characterized by greater transmission, which has contributed to an
increase in incidence, hospitalizations, and pressure on the health system since the second
half of December 2020. Epidemiological studies and mathematical modeling suggest that it
spreads 56% faster than other lineages and results in higher nasopharyngeal viral loads
than the wild-type strain [8]. By January 2021, the UK reported the highest daily mortality
from COVID-19 since the onset of the pandemic [9]. Retrospective observational studies
estimate a 35% (12–64%) increased risk of death associated with B.1.1.7 variant, indicating
that it is not only more transmissible than pre-existing linages but can also cause a more
serious disease [10]. However, there was no evidence of more severe disease in children
and young people [11].

Compared to ancestral viruses containing the D614G mutation, the B.1.1.7 variant has
accumulated 23 mutations, and it is not phylogenetically related to the viruses circulating
in the UK when it was detected. Of these mutations, 14 are non-synonymous: [[T1001I,
A1708D, and I2230T] in open reading frame (ORF)1ab; [N501Y, A570D, P681H, T716I,
S982A, and D1118H] in the spike (S) protein; [Q27stop, R52I, and Y73C] in ORF8; and [D3L
and S235F] in the nucleocapsid (N) protein]; 6 are synonymous: [[C913T, C5986T, C14676T,
C15279T, and T16176C] in ORF1ab; and [T26801C] in M (membrane) gene]; and 3 are
deletions: [[SGF 3675-3677del] in ORF1ab; and [H69-V70del and Y144del] in S protein]. It
is unclear how this variant achieves prominence, although the unusual genetic divergence
of the B.1.1.7 lineage may have resulted, at least in part, from the evolution of the virus
in an individual with chronic infection [12]. Excluding synonymous mutations, 47% of
reported changes in B.1.1.7 variant occur in the gene encoding for the spike protein that
contains the receptor binding domain (RBD). SARS-CoV-2 S protein is the main target of
neutralizing antibodies and, hence, it has been used as vaccine antigen in most of the SARS-
CoV-2 candidates under development and in the licensed vaccines that are being globally
administered. The high frequency of mutations in this protein has caused global concern
because these mutations, either individually or as a whole, can induce structural changes
that might: (i) alter the interaction with the human angiotensin-converting enzyme-2
(hACE2) receptor, modifying the infection rate or even the interaction of the virus with
the ACE2 receptor from other species supporting host shifts; (ii) modify the efficacy of
both neutralizing antibodies and specific T cells elicited either during natural infection or
through vaccination; or (iii) alter the sensitivity to neutralization by monoclonal antibodies
or sera from convalescent patients, compromising the efficacy of treatments. The three
mutations of B.1.1.7 with the greatest potential to affect the biological behavior of the virus
are: H69-V70del, N501Y, and P681H. H69/V70 deletion is one of the recurrent mutations
observed in the amino terminal domain (NTD) of S protein and emerged independently
in at least six lineages of the SARS-CoV-2 virus prevalent in Europe. It is present in over
6000 sequences worldwide and often co-occurs with the RBD amino acid replacements
N501Y, N439K, and Y453F [13,14]. H69/V70 deletion itself favored a two-fold increase in
S protein-mediated infectivity in vitro using pseudotyped lentivirus, indicating that this
effect on virus fitness seems to be independent of the RBD changes [13]. Protein structure
modeling shows that H69/V70 deletion could be a “permissive” mutation that modifies
the immunodominant epitopes located at variable loops within NTD, conferring resistance
to neutralization by sera from both convalescent patients and vaccinated individuals [14].
The N501Y mutation is of major concern because it involves one of the six key amino
acid residues determining a tight interaction of the SARS-CoV-2 RBD with ACE2 receptor.
Modeling analysis showed that the N501Y mutation would allow a potential aromatic ring—



Vaccines 2021, 9, 243 4 of 13

ring interaction and an additional hydrogen bond between RBD and ACE2 [15] and, hence,
an increase in the binding affinity of SARS-CoV-2 S protein for hACE2 receptor [16]. A
retrospective study has recently reported a three-fold higher inferred viral loads in a group
of UK individuals infected with the viral variant carrying the N501Y mutation, evidencing
the high efficiency of infection and transmission associated with B.1.1.7 variant [17]. The
N501Y mutation has also been associated with increased infectivity and virulence in mouse
and ferret models [18]. The function of the P681H mutation is not yet clear, but it is located
immediately adjacent to the amino acids 682–685, the furin cleavage site (FCS) identified at
the S1/S2 in the spike protein. SARS-CoV-2 FCS is not found in closely related coronavirus
and has been shown to promote the entry of the virus into respiratory epithelial cells [19].
Similarly, it has been shown that the insertion generated by FCS into SARS-CoV-2 S protein
enhances transmembrane serine protease (TMPRSS)-induced cleavage ability and viral
infectivity [20]. Both N501Y and P681H mutations have been reported independently, but
thus far they have not appeared in combination.

The mutation Q27stop in ORF8 observed in the B.1.1.7 variant truncates the ORF8
protein or makes it inactive, allowing the accumulation of additional mutations in other
regions. At the beginning of the pandemic, multiple viruses with deletions that led to the
loss of ORF8 expression were isolated worldwide, including a large group in Singapore.
These deletions were associated with a milder clinical infection and lower post-infection
inflammation; however, this group disappeared at the end of March after Singapore
successfully implemented control measures. In subsequent reports, it was found that the
deletion of ORF8 has only a very modest effect on virus replication in human primary
respiratory cells compared to viruses without the deletion [21].

The rapid transmission of B.1.1.7 variant in and out of the UK suggests that this variant
could become the dominant lineage responsible for the upcoming infections in Europe. As
of 16 February 2021, 71.413 sequences of B.1.1.7 lineage have been detected in 64 countries,
while 82 have reported cases related with this variant [22]. This emphasizes the importance
of a global approach to surveillance, tracking, and vaccine deployment.

How does B.1.1.7 dissemination impact the efficacy of vaccines and treatments that
are being administered globally? To date, low or no significant impact of the vaccines
efficacy against B.1.1.7 variant has been reported. Xiu et al. show small effects of some
of the mutations present in the B.1.1.7 variant on neutralization by sera from vaccinated
individuals elicited after two BNT162b2 doses (Pfizer). Nevertheless, the modified virus
used in the study lacked the full set of spike mutations described in B.1.1.7 variant [23].
Similarly, Collier et al. did not observe a significant reduction in the ability of sera from
vaccinated individuals (Pfizer) to inhibit parental or mutant pseudoviruses including only
three (H69/V70del, N501Y, and A570D) S mutations; however, a reduction in the neutraliza-
tion titers was evident using pseudoviruses with the complete set of mutations described
for B.1.1.7 variant [24]. Slightly reduced but overall largely preserved neutralizing titers
against the B.1.1.7 lineage pseudovirus were also detected in sera from people receiving
the Pfizer vaccine [25]. Correspondingly, modest reductions in the neutralizing activity
of both plasma from convalescent patients (2.7–3.8-fold) and sera from individuals that
received Moderna or Pfizer vaccines (1.8–2-fold) were described by Wang et al. [26]. This
group also evaluated a panel of 30 monoclonal antibodies (mAbs) directed against the
NTD and the RBD domains of S protein and observed that the B.1.1.7 variant is refractory
to neutralization by most of the mAbs that recognized NTD and is relatively resistant
to several RBD-directed mAbs, including two that have been approved for emergency
treatment [26]. Finally, Wu et al. did not detect a significant impact in the neutralizing
capacity of sera from human subjects or non-human primates (NHPs) who received the
mRNA-1273 (Moderna) vaccine against the B.1.1.7 variant [27]. Overall, although these
in vitro studies have their limitations either by methodology, by sample size, or by only
considering the humoral arm of the immune response, what they indicate is that the efficacy
of the vaccines that have being administered is similar or moderately lower against the
B.1.1.7 variant.
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2.2. B.1.351 (20H/501Y.V2) Variant

The second variant that has raised global concern is the B.1.351 variant, also known
as 20H/501Y.V2, identified on 18 December 2020 by the authorities from Republic of
South Africa. The first clinical sample in which this variant could be detected dates back
to 8 October 2020, and one month later, it replaced the circulating viruses in the region,
becoming the dominant variant. This behavior suggests higher transmission rates, although
no evidence of greater virulence or disease severity has been reported to date. As of
16 February 2021, 1383 sequences of B.1.351 lineage have been detected in 35 countries,
while 40 have reported cases related with this variant [22].

Compared to the Wuhan reference strain, the B.1.351 variant has 12 non-synonymous
mutations and one deletion. Approximately 77% of these mutations are located in the spike
protein [L18F, D80A, D215G, LAL 242–244 del, R246I, K417N, E484K, N501Y, D614G, and
A701V] while the remaining ones are located in ORF1a [K1655N], envelope (E) [P71L], and
N [T205I] viral proteins. Similar to B.1.1.7 variant, it could have emerged through intra-host
evolution in one or more individuals with prolonged viral replication. However, the high
number of mutations accumulated within two of the most immunodominant regions of
S protein, such as the NTD and the RBD domains, suggests that it could also be originated
as an escape variant to neutralization [28]. Therefore, the concern about the effect that the
B.1.351 mutations might have on vaccine efficacy and treatments is even greater than with
the B.1.1.7 variant.

B.1.351 and B.1.1.7 variants share the N501Y mutation, located in the RBD domain of
the spike protein. As described above, this mutation confers an increased binding affinity
of S RBD for the ACE2 receptor, raising the viral transmission rate. However, in addition
to the N501Y mutation, this variant accumulates two additional mutations in the same
RBD domain (K417N and E484K) that could play a pivotal role in both the interaction
with the receptor and the immune evasion. The E484K mutation is present in <0.02% of
sequences outside South Africa. There is evidence that this mutation can modestly improve
the binding affinity of the virus to the receptor. Similarly, although K417 residue is a unique
SARS-CoV-2 S RBD residue that interacts with ACE2 contributing to an enhanced affinity
of the virus for the receptor, a mutational scanning study suggests that the amino acid
change of K by N minimally affects this binding [16]. Moreover, a molecular dynamics
simulation study reveals that both E484K and N501Y mutations increase affinity of S RBD
for hACE2 and E484K in particular switches the charge on the flexible loop region of
S RBD, which leads to the formation of novel favorable contacts. Moreover, the combination
of E484K, K417N, and N501Y mutations results in the highest degree of conformational
alterations of S RBD when bound to hACE2, compared to either E484K or N501Y alone,
allowing the virus a more effective escape to neutralization [29]. It should be noted that
the rest of the mutations that this variant holds in the spike protein are located in the
NTD region (L18F, D80A, D215G, LAL 242-244 del, and R246I), especially within or near
flexible variable loops that accept sequence changes without modifying the structure of the
functional domains of S protein. NTD is also a preferential target of antibodies isolated
from convalescent patients or vaccinated individuals. Preliminary studies highlight that a
combination of RBD and NTD mutations in the B.1.351 spike protein significantly affects
the neutralization of this variant by both mAbs targeting these regions and immune sera
derived from convalescent or vaccinated patients [26,27,30–33]. Studies evaluating panels
of potent mAbs that have been identified against the spike protein indicate that B.1.351
variant is refractory to be neutralized by antibodies that recognize S NTD while the S RBD
mutations reduce or abolish the neutralization capacity of nearly 80% of the mAbs that
recognize this region [26,30,31]. In line with these findings, a significant reduction in
the neutralization capacity of polyclonal antibodies derived from convalescent patients
against B.1.351 variant has been reported, being the sera from hospitalized patients with a
more severe disease those who displayed higher neutralization efficacy [26,31–33]. These
data point to a possible decrease in the efficacy of the treatments based on monoclonal or
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polyclonal antibodies as well as an increase in the rate of reinfection in regions where this
variant spreads dominantly.

In terms of vaccine efficacy against B.1.351 variant, the results are more worrying than
those shown for B.1.1.7. Wang et al. show that B.1.351 variant is notably more resistant to
neutralization by polyclonal antibodies derived from individuals vaccinated with Pfizer
(6.5-fold) or Moderna (8.6-fold) vaccines [26]. Furthermore, Wu et al. reported a significant
decrease in the neutralization of B.1.351 variant by sera from either humans or NHPs
who were vaccinated with mRNA-1273 (Moderna); however, the authors highlight that,
despite the observed decreases, the geometric mean of the neutralization titers in sera from
human vaccinated individuals against B.1.351 variant remained at ~1/300, a value that
they still consider acceptable for protection [27]. Finally, a new study assaying the antibody
responses and memory B cells in volunteers who received Moderna (mRNA-1273) or Pfizer
(BNT162b2) vaccines reported a reduced activity against the SARS-CoV-2 variants that
contain the E484K or the N501Y mutations or the K417N:E484K:N501Y combination [31].
Overall, these data reflect a more pronounced decrease in the efficacy of antibody-based
vaccines and therapies against this variant.

The most worrying statistics are derived from the interim efficacy results from two
randomized placebo-controlled clinical trials reported in press release by Novavax and
Janssen companies in South Africa, the region where B.1.351 variant prevails. Biotechnology
company Novavax reports that its COVID-19 vaccine NVX-CoV2373, which includes
the S protein from the SARS-CoV-2 Wuhan reference strain, has shown 85.6% efficacy
against the B.1.1.7 variant (95.6% against the original strain) in the phase 3 clinical trial
involving 15,000 participants between 18 and 84 years old in the UK. However, in the
phase 2b study developed in South Africa, involving more than 4400 individuals, the
efficacy in the overall population was 49.4% against B.1.351 variant. This value increases
up to 60% efficacy in the prevention of mild, moderate, and severe COVID-19 disease if
the human immunodeficiency virus (HIV) positive group is eliminated from the overall
count [34]. These interim data evidence a significant decrease in the efficacy of a vaccine
influenced by the dominance of a viral variant such as B.1.351. Additionally, Janssen’s
coronavirus vaccine has shown 72% efficacy in a single dose in the ENSEMBLE trial in
the United States to prevent moderate to severe COVID-19 at 28 days after vaccination.
However, these values were reduced to 66% in Latin America and 57% in South Africa.
Despite the reduced efficacy, the rAd26 vaccine was 85% effective overall in preventing
severe COVID-19, and protection was similar in all regions [35]. Finally, a clinical trial
evaluating two-dose regimen of AZD1222 (AstraZeneca/Oxford vaccine) in South Africa
did not show protection against mild to moderate COVID-19 due to B.1.351 variant [36].
Altogether, these results confirm that it is imperative to minimize the circulation of the
virus, prevent infections, and reduce the opportunities for the SARS-CoV-2 to evolve,
resulting in mutations that could reduce the efficacy of existing vaccines.

2.3. P.1 (B.1.1.28.1) Variant

The third variant of SARS-CoV-2 that raises concerns is P.1 variant, also known as
B.1.1.28.1. It was detected by Japan’s National Institute of Infectious Diseases on 6 January
2021 and was isolated from four travelers who arrived in Tokyo from Amazonas, Brazil,
on 2 January 2021 at airport control. P.1 variant was later identified in Brazil, where
it has become the dominant circulating virus [37]. The rapid increase in the number
of hospital admissions by COVID-19 in January 2021 (six-fold higher than the number
reported in December) [38] is unexpected and worrying considering that this city reached
76% seroprevalence during the summer wave [39].

P.1 variant belongs to the B.1.1.28 lineage and contains 17 non-synonymous muta-
tions: [L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I,
and V1176F] in S protein, [S1188L, K1795Q, and E5665D] in ORF1ab, [E92K] in ORF8,
and [P80K] in N protein; 1 deletion: [SGF 3675-3677del] in ORF1ab; and 4 synonymous
mutations. P.1 is the SARS-CoV-2 variant that accumulates the highest number of mutations
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in the spike protein (12 mutations). The mutation N501Y is present in the three variants,
while L18F, K417T, E484K, and D614G mutations are shared with the B1.351 variant. As
described above, this set of spike mutations has important implications for transmission,
reinfection rates, and evasion of antibody-mediated immunity. In fact, one clinical case of
reinfection has been reported in this region [40]. As of 16 February 2021, 150 sequences of
P.1 lineage have been detected in 14 countries, while 18 have reported cases related with
this variant [22].

One of the most worrying mutations in terms of immune evasion is the E484K, which
is shared by the P.1 and the B.1.351 variants. Recently, the effect of this mutation has been
evaluated in the neutralization ability of sera from convalescent or vaccinated patients
considering their SARS-CoV-2 spike immunoglobulin G (IgG) antibody titer. The efficacy
of serum neutralization against the virus carrying the E484K mutation was reduced in both
vaccination samples and convalescent sera. However, sera with high anti-S IgG titers were
still able to neutralize the virus with the mutation, indicating that it is important to induce
the highest possible levels of specific antibodies through vaccination to improve protection
against emerging variants of SARS-CoV-2 [41]. Although this study does not use a virus
containing the entire set of mutations that are present in combination with E484K in the
spike protein of the different variants in order to provide a more realistic estimate of this
effect, it makes clear that it is necessary to optimize the vaccination schedules to increase
the possibility of counteracting the expansion of the new variants. Findings by Planas
et al. using authentic clinical viral isolates to assess inherent viral fitness and potential
impact of additional mutations outside of the spike on sensitivity to neutralizing antibod-
ies also demonstrated that low global antibody levels or declining antibody responses
are associated with a loss of cross-reactivity against novel emerging variants [42]. These
findings indicate that it is necessary to follow rigorously the vaccination regimen estab-
lished and approved by the regulatory authorities for the different licensed vaccines. In
addition, it is important to study in the clinical settings how the introduction of combined
or “prime/boost” heterologous vaccination protocols could optimize the strength of both
humoral and cellular immune responses [43].

There is still a long way to go into the study of this and other variants circulating in
Brazil; however, considering the high number of mutations that P.1 accumulates in the
spike protein, it is probable that it behaves as resistant or even more resistant than B.1.351
variant to neutralization by monoclonal antibodies and vaccinee sera.

Scientists in Brazil reported on 14 January 2021 that the coronavirus vaccine of the
Chinese pharmaceutical company Sinovac (CoronaVac) based on inactivated virus was
50.38% effective when tested in 12,508 volunteers, all of them health professionals in direct
contact with the coronavirus [44]. It remains to be determined whether the efficacy of this
vaccine (which is close to the approval threshold for emergence use) is maintained against
the new P.1 variant that is expanding dramatically in the country.

A summary of the key features of the emergent SARS-CoV-2 variants is depicted
in Table 1.

Table 1. Main characteristics of the emergent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. Data
updated on February 16 2021 (https://outbreak.info (accessed on 9 March 2021)).

Variants B.1.1.7 B.1.351 P.1

1st detection September 2020 8 October 2020 2 January 2021

Detection site United Kingdom South Africa Japan/Brazil

Mutations in S protein

7 mutations: N501Y, A570D,
D614G, P681H, T716I,

S982A, D1118H
2 deletions:

H69-V70del, Y144del

9 mutations: L18F, D80A,
D215G, R246I, K417N, E484K,

N501Y, D614G, A701V
1 deletion: LAL 242-244 del

12 mutations: L18F, T20N,
P26S, D138Y, R190S, K417T,

E484K, N501Y, D614G,
H655Y, T1027I, V1176F

Countries reported cases 82 40 19

Countries with sequences 64 35 14

https://outbreak.info
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Table 1. Cont.

Variants B.1.1.7 B.1.351 P.1

Potential risk

- Higher transmission
- Higher disease severity
- Modest reduction in the

neutralization efficacy of
sera from convalescent
patients or vaccinees

- Higher transmission
- Higher reinfection rates
- Significant reduction in

the neutralization
efficacy of sera from
convalescent patients or
vaccinees

- Higher transmission
- Higher reinfection rates
- Significant reduction in

the neutralization
efficacy of sera from
convalescent patients or
vaccinees

3. Other Variants of Interest

The United States is the country with the highest incidence rates of COVID-19, and
different states have reported the prevalence of all the emergent variants of concern. How-
ever, the expansion of a novel variant descended from cluster 20C and designated CAL.20C
(20C/S:452R or B.1.429) has been reported in Southern California [45]. CAL.20C variant
was first observed in July 2020 in one of 1247 samples from Los Angeles County and was
not detected in Southern California again until October. Since then, the prevalence of this
variant has increased, and, in January 2021, it accounted for 35% and 44% (37 of 85) of
all samples collected in California state and Southern California, respectively. However,
relatively few samples have been sequenced, and sequencing is not performed uniformly
throughout the state, making it difficult to establish a more accurate estimate of the expan-
sion of this variant [46]. CAL.20C variant is defined by five mutations (ORF1a: I4205V;
ORF1b: D1183Y; S: S13I, W152C, and L452R). In particular, the L452R mutation in the spike
protein has been found to be resistant to certain therapeutic monoclonal antibodies [47].
As clinical outcomes have yet to be established, the functional effect of CAL.20C variant
regarding infectivity and disease severity remains uncertain.

Another new coronavirus variant, named A.23.1, has been detected in Uganda and
has quickly become the most common coronavirus in Uganda’s capital city, Kampala. The
set of the spike mutations in A.23.1 includes R102I, F157L, V367F, Q613H, and P681R.
Additional substitutions in non-spike regions include non-structural protein (nsp) 3: E95K;
nsp6: M86I and L98F; ORF8: L84S and E92K, and N: S202N and Q418H. As of 16 February
2021, 274 sequences of A.23.1 lineage have been detected in 17 countries [48]. In addition,
an emerging lineage (now designated as B.1.526) of viral isolates in the New York region
that shares mutations with previously reported variants has been recently detected by
West et al. using a tool to query the spike mutational landscape. The most common sets of
spike mutations in B.1.526 are L5F, T95I, D253G, and E484K or S477N, D614G, and A701V.
This lineage appeared in late November 2020, and it accounts for ~5% of coronavirus
genomes sequenced and was deposited in Global Initiative on Sharing Avian Influenza
Data (GISAID) during late January 2021 [49]. Although the clinical impact of the A.23.1 and
the B.1.526 variants is not yet clear, it is essential to perform a careful monitoring of these
variants as well as a rapid assessment of the consequences of the spike protein changes for
vaccine efficacy.

The UK has strengthened genomic surveillance to evaluate the molecular evolution of
the prevalent B.1.1.7 variant. New variants with different substitutions have emerged as
a consequence of both the high replication rates of the virus and the increasing selection
pressure resulting from the growth of the seroprevalent fraction of the population of
England. The ones that worry the most are L18F and E484K. The introduction of the
L18F mutation confers a replicative advantage to the virus [50], whereas E484K mutation
could confer resistance to immunity. Moreover, other non-B.1.1.7 lineages with the E484K
mutation have been identified in some UK regions such as the VUI 202102/01 (A.23.1
with E484K) or the B.1.525 (VUI 2021 02/03) with 4 mutations within the spike protein
(Q52R, E484K, Q677H, and F888L). Further work is needed to establish the impact of these
mutations on protective vaccines efficacy in the context of the evolving variants that have
acquired E484K mutation [51].
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There is substantial variability in the course of COVID-19, ranging from asymptomatic
infection to death. One of the main topics of ongoing research is how the emergence of the
new SARS-CoV-2 variants impacts patient’s outcome. However, there are no consistent
data published yet, in part due to the fact that most of the genome sequences shared are
not linked to clinical outcomes. One study performed by researchers from the University of
Washington comparing two dominant clades of virus in circulation showed no significant
difference in outcomes of hospitalization or death between clades [52]. Similarly, clinicians
and scientists working in the frontline in South Africa have not observed any differences in
symptoms in people infected with the new variant P.1.351, compared with people infected
with other variants [53]. Nevertheless, further analysis is necessary to screen differences in
COVID-19 symptom type, severity, or duration of the disease caused by the new VOC.

4. Population Monitoring of Variant by Genomic Sequencing

Worldwide expansion of genomic sequencing and data exchange is essential to detect
the emergence of new variants or their introduction in a given country or region. To date,
more than 528,000 sequences have been submitted to the GISAID that promotes the rapid
sharing of data from the coronavirus causing COVID-19; however, most of them come from
only a few countries. It is necessary that all the countries share sequence information to
understand the spread of SARS-CoV-2. Improving the geographical coverage of sequencing
is essential for the world to adequately capture the viral changes and establish alternative
measures, as previously reported in Netherlands [54]. Increased sequencing capacity is
a priority research area for the WHO. In order to achieve this objective, a number of
recommendations have been established highlighting the need to have or implement a
network of laboratories with sequencing experience integrated within the epidemiological
surveillance system to generate useful information for the decision-making of public health
measures and to ensure that resources are available to manage increasing numbers of
COVID-19 detection and characterization of sample requests.

5. Defining SARS-CoV-2 Variants More Resistant to Vaccine Action

There are several lines of action to establish the role played by the mutations intro-
duced into the SARS-CoV-2 genome on resistance to the action of the immune responses
induced by current vaccines mostly targeting the spike protein. To this end, the scientific
community, WHO, and companies have warned of the need to experimentally establish
assays that determine to what extent the various variants already identified and those
upcoming, that are spreading in the population, are due to mutational changes that confer
an enhanced degree of resistance to the antibodies generated in infected or vaccinated
people. Experimental approaches to be followed are: (1) demonstration in experimental
animal models (humanized mice susceptible to virus, hamsters, ferrets, and macaques) that
emerging variants are more virulent (higher transmission, replication, organ damage, mor-
bidity, and mortality) than Wuhan’s reference strain; (2) demonstration that these variants
withstand the neutralizing action of immune sera induced in current vaccination cam-
paigns, such as mRNA-based vaccines (Pfizer, Moderna), non-replicating adenovirus-based
vaccines (AstraZeneca, Janssen, Sputnik), protein subunit (Novavax), inactivated virus
(Sinovac), and others; and (3) demonstration of the degree of variant control in vaccinated
personnel in comparison with infection by the parental Wuhan strain

In those cases in which increased resistance to antibodies was demonstrated, as indi-
cated by the above experimental data, it should also be confirmed that T cell responses are
also affected, or if, on the contrary, the controlling effect of the infection by T lymphocytes
is maintained. These experimental data in animals and humans are necessary to establish
the highest sensitivity and resistance of the different variants to the immune action.

The reduction in the efficacy of different vaccine candidates in regions where the
variants of concern have become prevalent has accelerated the decision of many of the
companies that produce current COVID-19 vaccines to consider modifying their designs to
cover circulating viral variants. The immediate consequence is that there should be on the
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market new vaccines from the same production companies, which could be given either
to those people already vaccinated as a recall dose or to those who have not yet received
the vaccine dose. These new vaccines modified in their specific platforms would entail
additional costs and could in turn lead to more resistant variants with additional mutations
due to selective pressure from the immune system. We hope this does not occur, but we
must remain vigilant about the evolution.

Anything that can be done to suppress spread of SARS-CoV-2 will help to limit the
emergence of new variants. However, other strategies that include multivalent designs
focused on conserved regions of different viral proteins could be of great prophylactic
relevance to counteract escape variants that are emerging. In this regard, a sustained effort
to develop a pan-SARS-CoV-2 vaccine is warranted. Similarly, to improve the efficacy of
the current treatments, it will be of relevance to use a combination of antibodies directed
against other viral regions in addition to the spike protein or to implement the “lethal
mutagenesis” strategy as alternatives that slow the viral diversification [55].

6. Concluding Remarks

The appearance of variants of SARS-CoV-2 is not an unexpected virological finding
but rather a result of natural selection, giving rise to mutations within the long-RNA
(30,000 nucleotides) sequence of coronaviruses. In spite of a viral proof-reading exonuclease,
multiple variants emerge in the population, but only those with an advantage on virus
replication and dissemination prevail. This is further enhanced by the large incidence of
infection rates within humans, accentuated by the presence within the viral genome of
genes encoding antagonists of host defense mechanisms, such as blocking interferon action
and other immune stimulatory molecules. The virus tries to counteract the host response,
giving rise to mutations. Within a year since the virus first appeared in China and its rapid
spread, we are confronted with the emergence of variants of concern in different parts
of the world. The main characteristics are higher binding affinity for the cellular ACE-2
receptor than the parental Wuhan virus, the enhanced resistance to neutralizing antibodies,
and increased virulence.

To promote actions for the control of the emerging variants, a major effort is being put
forward by different nations and institutions, such as WHO, CEPI (Coalition for Epidemic
Preparedness Innovations), Gates Foundation, GAVI (Global Alliance for Vaccines and
Immunizations), and others, with the purpose to make universal access to vaccines and
to assure control of virus infection. Indeed, we have proven that current and incoming
vaccines will cope with the control of variants and the potential eradication of the virus.
In this regard, the results coming out from Israel on the high efficacy of the Pfizer vaccine
against SARS-CoV-2 infections are encouraging, in a country where the UK variant is
prevalent. It will be only through the detailed understanding of the virus structure, biology,
and vaccine developments that we can finally achieve the control of SARS-CoV-2 infections.
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