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Zizimin proteins belong to the Dock 
(dedicator of cytokinesis) superfam-

ily of guanine nucleotide exchange factor 
(GEF) proteins. This family of proteins 
plays a role in the regulation of Rho family 
small GTPases. Together the Rho family 
of small GTPases and the Dock/Zizimin 
proteins play a vital role in a number of 
cell processes including cell migration, 
apoptosis, cell division and cell adhesion. 
Our recent studies of Zizimin proteins, 
using a simple biomedical model, the 
eukaryotic social amoeba Dictyostelium 
discoideum, have helped to elucidate the 
cellular role of these proteins. In this 
article, we discuss the domain structure 
of Zizimin proteins from an evolution-
ary viewpoint. We also compare what is 
currently known about the mammalian 
Zizimin proteins to that of related Dock 
proteins. Understanding the cellular 
functions of these proteins will provide 
a better insight into their role in cell sig-
naling, and may help in treating disease 
pathology associated with mutations in 
Dock/Zizimin proteins.

Introduction

Zizimins are guanine nucleotide exchange 
factor (GEF) proteins, which specifically 
regulate the cycling of Rho family of 
small GTPases (Rac, Rho and Cdc42) 
from an inactive to an active state. Since 
these small GTPases have a crucial role 
in regulating the cytoskeleton in many 
important cellular processes such as cell 
migration, proliferation, cytokinesis and 
phagocytosis,1-3 Zizimins therefore play 
central role in regulating a broad spec-
trum of cellular functions. Zizimins are 
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related to Dock proteins, which have a 
similar domain topology and together 
they constitute the Dock superfamily of 
proteins (Fig. 1A). There are five human 
Dock and six human Zizimin proteins 
which are subdivided into four subclasses: 
consisting of the Zizimin (Ziz), Zizimin-
related (Zir), Dock4 and the Dock180 
subfamilies, based on their domain struc-
ture and sequence similarity. Within these 
groupings, our current understanding of 
cellular role of Ziz and Zir proteins is the 
most limited and our recent study of these 
proteins has provided some new insights.4

Dock and Zizimin proteins are char-
acterized by their common domains; the 
Dock Homology Region 1 (DHR1) and 
Dock Homology Region 2 (DHR2).5,6 
Although the role of the DHR1 domain 
is unclear, it has been and is also associ-
ated with lipid binding activity [phos-
phatidylinositol-(3,4,5)-trisphosphate 
(PtdIns(3,4,5)P

3
)].5,7,8 The DHR2 domain 

is responsible for GEF activity.6,9,10 The 
Zizimin subfamily, but not the Zizimin-
related subfamily, contains a Plekstrin 
Homology (PH) domain involved in 
membrane localization through phospho-
lipid binding.11

Phylogeny of Domain Structure

Zizimin proteins are widespread through-
out eukaryotes. They are found in all king-
doms of the eukaryotic tree. Dock proteins 
are much more sparse. They are notably 
absent from plants and Chromalveolates. 
This begs the question whether Zizimins 
may have evolved first.

The exact location of the root of the 
eukaryotic tree is still debated, but a 
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Figure 1. Nomenclature and evolution of the Dock and Zizimin protein families. (A) Schematic representation of eukaryotic evolution. The root of the 
tree is on the left. The presence of Zizimin (orange) and Dock (red) genes in the genomes of respective organisms is indicated. (B) Full length sequenc-
es of Dock and Zizimin homologs of indicated species were aligned and a bootstrapped (n = 1000) tree was drawn. Bootstrap values of the branches 
that separate the different subfamilies are indicated. Hs, Homo sapiens; Bf, Branchiostoma floridae; Sp, Strongylocentrotus purpuratus; Dm, Drosophila 
melanogaster; Ci, Ciona intestinalis; Nv, Nematostella vectensis; Aq, Amphimedon queenslandica; Mb, Monosiga brevicollis. (C) Most likely sequence of 
events that lead to the current distribution of Dock and Zizimin isoforms in human.
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recruitment of the WAVE complex.15,19 
Expression of encoded proteins also var-
ies, with Dock2 showing expression in 
neutrophils,15 Dock3 is expressed in neu-
rons,15,19 and Dock1 is expressed in a range 
of human tissue, but highest in kidney 
and placenta.16 Thus, our understanding 
of human Dock proteins suggests that 
they are commonly involved in regulating 
cell shape and movement, and membrane 
protrusions. This functional role of Dock 
proteins is evolutionary conserved since 
our recent study has shown that the single 
celled amoeba, Dictyostelium discoideum, 
expresses three Dock paralogues that have 
both a DHR1 and a DHR2 domain. All 
three proteins are recruited to the leading 
edge of moving cells and disruption of the 
genes leads to a decrease in cell speed20 
and our unpublished observations suggest 
that the functional role of Dock proteins is 
evolutionary conserved.

What are Zizimins Doing? 

The name Zizimin originates from the 
Hebrew word, “Zizim,” meaning spike.10 
The mammalian Zizimin and Zizimin-
related proteins have been shown to have 
a range of functions including lamelli-
podia and filopodia formation, microtu-
bule localization and cell migration10,21-23  
(Table 1). Studies in Zir3 knockout mice 
(Dock8 null) showed that the Zir3 pro-
tein regulates actin dynamics during cell 
migration in dendritic cells, through the 
activation of Cdc42.24 In mouse neuronal 

with this, the Dock/Zizimin proteins from 
the Choanoflagellate Monosiga do not 
group with any of the subfamilies.

The widespread distribution of Zizimin 
genes even in evolutionarily ancient 
eukaryotes signifies its importance in basic 
cellular function. Similarly, the split of the 
Dock180/Dock4 and Zizimin/Zizimin-
related in early metazoa indicates that the 
different isoforms may be involved in ele-
mentary organization of multicellular tis-
sues. The conserved domain sequence and 
domain structure of Docks and Zizimins 
suggest that their cellular functions are 
also conserved. The function of these pro-
teins, the cellular localization mechanisms 
and the role of specific domains is now 
slowly being uncovered.

What are Docks Doing?

The human genome encodes five 
Dock subfamily paralogues (numbered 
Dock1–5, Fig. 1). All of these proteins 
are exchange factors for Rac1, although 
Dock2 has also been shown to also cata-
lyze GTP exchange in Cdc42.15 The ini-
tial discovery of mammalian Dock1 (also 
known as Dock180) first identified a role 
of Dock proteins in controlling cell mor-
phology.16 This function is shared with 
its closest homologs, Dock5, that regu-
lates spreading and migration of epithe-
lial cells,17 Dock2 regulates motility and 
polarity during neutrophil chemotaxis15,18 
and the related Dock3 that induces axo-
nal outgrowth by stimulating membrane 

recent paper puts the root close to the 
Euglenozoa.12 A schematic based on the 
proposed eukaryotic tree in this paper 
is drawn in Figure 1A and the presence 
and absence of Docks and Zizimin genes 
was indicated. Interestingly, a Zizimin 
gene is found in Leishmania, a member of 
the Euglenozoa. The excavate Naegleria, 
which falls on the next branch of the tree 
encodes both Zizimin and Dock pro-
teins. As such, the Dock gene must have 
been lost in Plants and Chromalveolates, 
which share a single branch. Both Dock 
and Zizimin proteins are well conserved 
throughout unikont evolution, as both 
genes are found in Amoebozoa, insects 
and vertebrates. Taking the uncertainty of 
the location of the root of the eukaryotic 
tree into account, the most likely sequence 
of events is that the Dock and Zizimin 
families split before the eukaryotic last 
common ancestor (Fig. 1C).

To investigate the further split of Dock 
and Zizimin into the Dock180/Dock4 and 
Zizimin/Zizimin-related subfamilies that 
are found in human and Drosophila,13,14 
Dock and Zizimin genes were collected 
from various metazoan species and the 
Choanoflagellate Monosiga. Sequences 
were aligned using ClustalX and a phy-
logenetic tree was constructed from the 
results (Fig. 1B). All metazoan Dock/
Zizimin homologs fall into the indicated 
Dock180/Dock4 and Zizimin/Zizimin-
related subfamilies, demonstrating that 
these subfamilies must have split at the 
onset of metazoan evolution. In agreement 

Table 1. Mammalian Zizimin cellular functions

Name Alternative name Function Substrate Mammalian cell type Refs.

Zizimin-related1 Dock6
Lamellipodia formation, Filopodia formation, 

Regulate neuronal outgrowth
Cdc42 Rac1

N1E-115 
Neuroblastoma cells

1

Zizimin-related2 Dock7
Microtubule localization, Neuronal axon  
formation, OE causes multiple axons, KO  

suppresses axon formation, Cell migration
Rac1 Rac3

Hippocampal Neurons, 
Schwann cells

45

Zizimin-related3 Dock8
Lamellipodia formation, Cell migration, 

Proliferation, adhesion
Cdc42 Rac1 Dendritic cells 24, 35

Zizimin1 Dock9 Filopodia formation Cdc42
NIH-3T3 cells, COS-7 

cells
7, 10

Zizimin2 Dock11 Filopodia formation, Cell migration Cdc42
293T cells, Dendritic 

cells
23, 10

Zizimin3 Dock10 Amoeboid invasion Cdc42
A375M2 Melanoma 

Cells
44

A table showing the conserved functions and substrate specificity of the mammalian Zizimin/Zizimin-related subfamilies of Dock proteins.
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to localize the protein and to determine 
potential roles in cell movement and devel-
opment.4 ZizB-GFP shows enrichment 
in the cortex, while ZizA-GFP localizes 
to the Microtubule Organizing Centre 
(MTOC) (Fig. 2). This localization is 
distinct to that of the Dictyostelium Dock 
family proteins, which localize exclusively 
to the leading edge of the cell during 
movement,20 suggesting that the Zizimin 
proteins have a different functional role.

Dictyostelium cells are chemotactically 
sensitive to cAMP. A common way to 
analyze the response of proteins to cAMP 
stimulation is the sudden perfusion of 
cells with a saturating concentration of 
cAMP. In resting cells, prior to stimula-
tion, ZizB-GFP is enriched in the cortex, 
but this enrichment is transiently lost fol-
lowing cAMP stimulation, and returns 
to the membrane after eight seconds.4 
This behavior is opposite to that of the 
Dictyostelium Dock family proteins, which 
move from the cytosol onto the membrane 
upon cAMP stimulation. The localization 
of ZizB is similar to that of that of corti-
cal actin filaments. These filaments help 
reinforce the membrane integrity in the 

on yeast and bacteria.27 When conditions 
are unfavorable, the surrounding cells 
communicate with each other via pulses of 
extracellular cAMP.28 These signals act as 
a chemoattractant initiating aggregation 
by chemotaxis. Cells aggregate together 
forming mounds which differentiate into 
multi-cellular spore producing fruiting 
bodies within 24 h. When the environ-
mental conditions subsequently become 
favorable for growth, spores released from 
the fruiting body germinate and repro-
duce as single cells.27 This chemotaxis and 
development process can be easily mim-
icked in a laboratory by artificially pulsing 
cells with cAMP, creating a simple model 
system to examine cell movement and 
development, and a range of intriguing 
biomedical questions.29,30

Zizimins in Dictyostelium

There are four Zizimin family proteins 
in Dictyostelium (ZizA-ZizD) and the 
roles of ZizB and ZizA have been recently 
investigated.4 In this study, isogenic cell 
lines in which these proteins are either 
overexpressed or knocked-out were used 

cells, Zir1 (Dock6) has been shown to reg-
ulate neuronal outgrowth through Rac1 
and Cdc42 activation, as well as promot-
ing lamellipodia and filopodia formation.25 
The Zizimin-related protein in Drosophila 
has been implicated in the cellular immune 
response.13,14 Other studies show that Ziz1 
(Dock9) regulates neuronal growth and 
filopodia formation through Cdc42 activa-
tion.10,26 Although Ziz and Zir proteins are 
involved in a diverse range of cell functions, 
the common trend involves the formation 
of filopodia and cell migration through 
regulation of the actin cytoskeleton. This 
is not surprising considering the small 
GTPases, Cdc42 and Rac1 are mainly 
involved in regulating actin cytoskeletal 
dynamics, with Cdc42 specifically regulat-
ing F-actin dynamics during filopodia for-
mation. Two of the most highly expressed 
Dictyostelium Zizimin paralogues have 
recently been characterized, providing new 
insights into the role of these proteins.4

Dictyostelium Discoideum

Dictyostelium is a unicellular social 
amoeba that inhabits forest soil, feeding 

Figure 2. A schematic diagram representing the localization of the Dictyostelium Dock superfamily of proteins. Within the Zizimin family, Zizimin A 
localizes to the microtubule organizing center (MTOC) (purple) and Zizimin B (orange) localizes to the front and sides of the cell. Within the Dock fam-
ily, Dock A, B and D (green) all localize to the leading edge (pseudopods) of the cell.
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techniques for cell biology analysis in 
this model may therefore enable a bet-
ter understanding of the multiple roles 
of Zizimin and Dock-related proteins in 
human disease.
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mutations in Zir3 have resulted in an 
immunodeficiency syndrome,34 and an 
autosomal-recessive form of hyper-IgE syn-
drome,35,36 presenting with eosinophilia 
(increased eosinophil count in peripheral 
blood), increased serum IgE levels and 
recurrent pneumonia, skin abscesses and 
viral infections. Furthermore, reduced 
Zir3 gene expression has also been asso-
ciated with squamous cell lung cancer 
and has been investigated in the various 
lung cancer cell lines.37 Truncated Zir1 
leads to Adams-Olivers syndrome leading 
to sever developmental defects.38 Single 
nucleotide polymorphisms in Ziz1 have 
been associated with an increased risk of 
bipolar disorder.39 Dock1 and Dock4 have 
been implicated in tumorigensis40,41 and 
the latter is associated with autism and 
dyslexia.42 Dock3 has recently been found 
to play a critical role in integrating neuro-
nal death signals by presenilin proteins in 
Alzheimer disease.43

Understanding the mechanisms of  
these proteins in each condition is 
thus likely to help in treatment. Since 
Dictyostelium has been identified as a suit-
able research model for over 33 human dis-
eases,29,30 and both the Dock and Zizimin 
family of proteins show conserved struc-
ture and function between Dictyostelium 
and mammalian systems, this model may 
provide a robust system to investigate the 
conserved function of these proteins in 
the pathophysiology of Dock/Zizimin-
associated diseases.

Conclusion

The cellular functions outlined in this arti-
cle show that Zizimin proteins play a role in 
regulating the cytoskeleton. Mammalian 
Zizimins show a common role in the reg-
ulation of filopodia formation, although 
little is known about the molecular mech-
anisms. In Dictyostelium, two Zizimin 
proteins have so far been partly character-
ized: ZizA, which localizes to the MTOC 
and binds tubulin; and ZizB which shows 
more stereotypical Zizimin characteristics 
through localizing to the cortex, regulat-
ing and stabilizing the actin filament net-
work and filopod formation. These roles 
suggest that Dictyostelium Zizimin family 
proteins have a more diverse function than 
the Dock family proteins. The advanced 

resting state, but their rigidity impairs the 
formation of new protrusions. Our obser-
vations suggest that ZizB may be involved 
in cortex stabilization and that activation 
of chemoattractant receptors may inhibit 
ZizB to locally reduce cortical tension.4 
It remains to be determined if the local-
ization signal is a phospholipid, such as 
phosphatidylinositol-(4,5)-bisphosphate 
[PtdIns(4,5)P

2
], or if the localization 

domain on ZizB is within DHR1 domain.
Consistent with a role in cortex sta-

bilization for ZizB, Dictyostelium cell 
lines lacking ZizB showed defects in cell 
migration, development, cytokinesis 
and growth,4 and a reduced response to 
environmental stress induction (data not 
shown). These divergent processes would 
all be expected to be regulated by cortex 
integrity.31-33

Overexpression of ZizB-GFP results 
in an increase in filopodia formation. 
This behavior is common to mammalian 
Ziz and Zir proteins,10,25,26 through Rac1  
and/or Cdc42 activation. Identification of 
the binding partners of ZizB confirmed 
that the protein binds to Dictyostelium 
Rac1 in vivo, multiple Rac proteins in 
vitro and a variety of actin and myosin 
associated proteins, including, ForminA, 
Arp2/3 subunits, Cap32/34 subunits 
and Severin.4 The cellular localization 
and binding partners of ZizB therefore 
strongly support a conserved role for the 
protein in Dictyostelium and mammalian 
systems.

In contrast to ZizB, the ZizA-GFP 
protein is recruited to the MTOC and 
does not show chemoattractant-induced 
localization or cause any alterations in cell 
movement or filopod formation.4 A role for 
the protein in cell function is thus likely 
to be related to microtubule organiza-
tion, which was confirmed by preliminary 
immunoprecipitation data that suggests 
an interaction between ZizA and tubulin. 
These factors indicate a divergent role for 
ZizA in Dictyostelium, with the potential 
mammalian homologs still to be defined.

Zizimin and Dock Proteins  
in Disease

Zizimin and Dock family proteins have 
been implicated in a number of human 
diseases. Multiple deletions and single 
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