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Abstract
NOD-like receptors (NLRs) are sensors of pathogen-associated molecular patterns with critical roles in the control of 
immune responses and programmed cell death. Recent studies have revealed inter-species differences in mammalian innate 
immune genes and a particular degeneration of nucleic acid sensing pathways in pangolins, which are currently investigated 
as potential hosts for zoonotic pathogens. Here, we used comparative genomics to determine which NLR genes are conserved 
or lost in pangolins and related mammals. We show that NOD2, which is implicated in sensing bacterial muramyl dipeptide 
and viral RNA, is a pseudogene in pangolins, but not in any other mammalian species investigated. NLRC4 and NAIP are 
absent in pangolins and canine carnivorans, suggesting convergent loss of cytoplasmic sensing of bacterial flagellin in these 
taxa. Among NLR family pyrin domain containing proteins (NLRPs), skin barrier-related NLRP10 has been lost in pangolins 
after the evolutionary divergence from Carnivora. Strikingly, pangolins lack all NLRPs associated with reproduction (germ 
cells and embryonic development) in other mammals, i.e., NLRP2, 4, 5, 7, 8, 9, 11, 13, and 14. Taken together, our study 
shows a massive degeneration of NLR genes in pangolins and suggests that these endangered mammals may have unique 
adaptations of innate immunity and reproductive cell biology.
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Introduction

Nucleotide-binding oligomerization domain (NOD)-like 
receptors (NLRs) are a family of proteins involved in the 
defense against pathogens and in reproduction (Fig. 1). 
NLRs are characterized by the presence of a NOD, also 
known as NACHT domain, which is followed by leucine-
rich repeats (LRRs). The NOD/NACHT domain mediates 
self-oligomerization upon binding of a ligand to LRRs. In 
addition, NLRs contain other domains such as 1 or 2 caspase 
recruitment domains (CARDs) or a pyrin domain (PYD), 
which mediate interactions with other proteins to control the 
initiation of inflammation, programmed cell death and other 
processes (Inohara et al. 2005; Fritz et al. 2006; Ting et al. 

2008; Zhang et al. 2010; Elinav et al. 2011; Zhong et al. 
2013; Geddes et al. 2009; Heim et al. 2019; Kienes et al. 
2021; Danis et al. 2021). Regulators of immune defense have 
played critical roles in the evolution of host–pathogen inter-
actions, leading to the diversification of defense strategies 
at the molecular level (Danilova 2006; Eckhart et al. 2005; 
Zhang et al. 2010; Chakraborty and Ghosh 2020).

The main subfamilies of NLRs are the NLR family 
CARD domain containing (NLRC) proteins and the NLR 
family pyrin domain containing (NLRP) proteins. Humans 
have 5 NLRCs (NOD1, NOD2, NLRC3-5) and 14 NLRPs 
(NLRP1-14). The primordial function of NLRs is the detec-
tion of pathogen-associated molecular patterns (PAMPs) 
and damage-associated molecular patterns (DAMPs), which 
include bacterial cell wall components, such as fragments of 
peptidoglycan that are sensed by NOD1 and NOD2 (Philpott  
et al. 2014; Wolf and Underhill 2018), viral RNAs which 
are sensed by NOD2 and NLRP6 (Sabbah et al. 2009; Wang 
2015; Liu and Gack 2020), and others (Kuss-Duerkop et al. 
2020; Pei et al. 2021). NLRs were originally identified as 
activators of inflammation and immune responses, but 
later research has demonstrated anti-inflammatory roles of 
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several NLRs, such as NLRC3 (Li et al. 2019) and NLRP12 
(Williams 2005; Chen et al. 2019).

Besides functions in innate immunity, NLRPs are impli-
cated in germ cell biology and early embryonic development. 
There are nine human NLRPs that appear to have functions 
related to reproduction: NLRP2, NLRP4, NLRP5, NLRP7, 
NLRP8, NLRP9, NLRP11, NLRP13, and NLRP14 (Tian 
et al. 2009; Zhang et al. 2008; Abe 2017; Amoushahi et al. 
2019; Yin et al. 2020). These NLRP genes, which are phy-
logenetically distinct from other NLRPs (Tian et al. 2009), 
are expressed in germ cells and pre-implantation embryos 
(Zhang et al. 2008). Gene knockout studies showed that 
NLRP2 controls age-associated maternal fertility (Kuchmiy 
et al. 2016), NLRP5 is required for early embryonic devel-
opment (Tong et al. 2000), and NRLP14 is essential for dif-
ferentiation of spermatogonial stem cells in mice (Yin et al. 
2020). The mechanisms of action of reproduction-associated 
NLRPs are elusive.

Pangolins (order: Pholidota) are nocturnal mammals that 
feed on ants and termites. Phylogenetically, they are most 
closely related to carnivorans (order: Carnivora), a clade 
comprised of cat-like (Feliformia) and dog-like (Caniformia) 
mammals with the latter including canines, bears, procyo-
nids (raccoons and relatives), mustelids (weasels and rela-
tives), skunks (mephitids), red pandas (ailurids), and pin-
nipeds. The body of pangolins is covered by keratinous 
scales which serve as a protective armor (Choo et al. 2016; 
Li et al. 2020). Few comparative studies of the mammalian 
immune defense have included pangolins, but the interest 
in pangolins has increased recently due their possible role 
as intermediate hosts for the pandemic severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), a betacorona-
virus with a single-stranded RNA genome (Lam et al. 2020; 
Xiao et al. 2020; Zhang et al. 2020; Andersen et al. 2020). 

Recently, we have reported that interferon-induced with heli-
case C domain 1 (IFIH1)/MDA5, Z-DNA-binding protein 
(ZBP1), cyclic GMP-AMP synthase (cGAS), and stimulator 
of interferon genes (STING), which initiate innate immune 
responses to intracellular nucleic acids, have been lost dur-
ing the evolution of pangolins (Fischer et al. 2020a, b). 
Likewise, toll-like receptor (TLR) 5, an endosomal receptor 
of bacterial flagellin, is absent in pangolins (Sharma et al. 
2020).

Here we investigated whether NLR genes are conserved 
in pangolins and found that NOD2 and several other NLRs 
have underdone pseudogenization or were entirely lost, 
indicating that immune responses to specific pathogens and 
NLR-dependent processes in the reproduction system are 
altered in pangolins.

Materials and methods

Genes were identified in the genome sequences of the 
Malayan pangolin (Manis javanica), Assembly: ManJav1.0 
(GCA_001685135.1), submitted by the International Pango-
lin Research Consortium (Choo et al. 2016); Chinese pan-
golin (M. pentadactyla), Assembly: M_pentadactyla-1.1.1 
(GCA_000738955.1), submitted by Washington Univer-
sity; and tree pangolin (Phataginus tricuspis, previously 
named Manis tricuspis), Assembly: ManTri_v1_BIUU 
(GCA_004765945.1), submitted by Broad Institute. At 
the time of this study (July 2021), GenBank gene annota-
tions were available for M. javanica (NCBI Manis javanica 
Annotation Release 100) and M. pentadactyla (NCBI Manis 
pentadactyla Annotation Release 100) but not for the other 
species of pangolins. Other nucleotide sequences were 
downloaded from GenBank, and accession numbers are 
indicated in the text.

Sequence similarities were identified with the Basic 
Local Alignment Search Tool (BLAST) (Altschul et al. 
1990). Nucleotide sequences were translated into amino acid 
sequences using the Translate tool at the Expasy website of 
the Swiss Institute of Bioinformatics (https:// web. expasy. 
org/ trans late/). Sequences were aligned with MUSCLE 
(https:// www. ebi. ac. uk/ Tools/ msa/ muscle/) and Multalin 
(http:// multa lin. toulo use. inra. fr/ multa lin/). Phylogenetic 
relationships and divergence times were obtained from the 
Timetree website (www. timet ree. org) (Hedges et al. 2015).

Results

NOD2 is inactivated by gene mutations in pangolins

We investigated foreign nucleic acid response genes in the 
Malayan pangolin, a species that is considered a potential 

Fig. 1  Roles of NOD-like receptors (NLRs). NLRs are involved in the 
activation of NF-kB-dependent gene expression and inflammasome-
dependent cell death and immune responses. Besides their role in the 
defense against pathogens, NLRs have also unknown functions in the 
reproductive system. Evolution has shaped host–pathogen interactions 
and control mechanisms of reproduction in mammals
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intermediate host of the SARS-CoV-2 (Lam et al. 2020; Xiao 
et al. 2020; Zhang et al. 2020; Niu et al. 2021). Comparative 
analysis of NOD2, which had been reported to be involved in 
sensing single-stranded RNA (Sabbah et al. 2009), showed 
that a NOD2 gene locus is present in pangolins, dog, cattle, 
and human (Fig. 2a). However, frame-shift and premature 
stop mutations were detected in exons 1, 3, 4, 5, and 8 of M. 
javanica NOD2 (Fig. 2b). Analysis of genome sequences of 
two other pangolin species, the Chinese and the tree pango-
lin, revealed that inactivating mutations were also present 
in those species, whereby a frame-shift mutation leading to 
a premature stop of the reading frame in exon 1 was identi-
fied in all three species of pangolins investigated (Fig. 2c). 
By contrast, NOD2 is intact in all other mammalian species 
investigated (Suppl. Fig. S1). These data suggest that NOD2 

has been inactivated by a gene mutation in the last common 
ancestor of pangolins (Fig. 2d).

NLRC4 and NAIP are inactivated by gene mutations 
in pangolins

Next we investigated whether the inactivation of NOD2 is 
unique among NLR family genes in pangolins. We analyzed 
the loci of NLR genes and flanking genes in human, cattle, 
dog, and the Malayan pangolin. The nucleotide sequences 
of all NLR gene homologs were screened for the presence of 
mutations that would disrupt the coding sequences. NOD1, 
CIITA, NLRX1, NLRC3, and NLRC5, which is comprised of 
47 exons in the pangolin and encodes the longest of all NLR 
proteins with 1859 amino acids, are free from inactivating 

Fig. 2  NOD2 is a pseudogene 
in pangolins. a Gene locus of 
NOD2 in the Malayan pangolin, 
dog, cattle, and human. Genes 
are represented by arrows 
pointing into the direction of 
transcription. The mutated 
NOD2 gene is shown as a 
broken arrow. b Inactivating 
mutations in multiple exons of 
pangolin NOD2. Positions of 
frame-shift and premature stop 
mutations are indicated by verti-
cal arrows. Exons of NOD2 of 
pangolin, dog, cattle and human 
are shown as boxes. c Nucleo-
tide sequence alignment of a 
segment of exon 1 that contains 
a conserved frame-shift muta-
tion (red shading) leading to 
a premature stop codon (grey 
shading) in three species of 
pangolins. Nucleotides identical 
in all species are shown with 
blue fonts. d The absence ( −) 
or presence ( +) of intact NOD2 
in 6 species was used to map the 
NOD2 gene loss (flash symbol) 
on a simplified phylogenetic 
tree of mammals. Species: 
Malayan pangolin (Manis 
javanica), Chinese pangolin 
(Manis pentadactyla), tree 
pangolin (Phataginus tricuspis), 
dog (Canis lupus familiaris), 
cattle (Bos taurus), and human 
(Homo sapiens)
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mutations in the four aforementioned species. By contrast, 
NLRC4 was entirely absent from the genomes of pango-
lins (M. javanica, M. pentadactyla, Phataginus tricuspis) 
although both genes flanking NLRC4 in the human genome 
are conserved (Fig. 3a). In line with the results of a previous 
study (Eckhart et al. 2009), NLRC4 contains inactivating 
mutations in the dog. NLRC4 is also a pseudogene in the 
ermine (Mustela erminea) but not in the cat. These data indi-
cated that NLRC4 was inactivated in the last common ances-
tor of pangolin and, by parallel evolution, in the last common 
ancestor of Caniformia (“dog-like” carnivorans, including 
dogs, mustelids, bears, pinnipeds, and others) (Fig. 3a).

Strikingly, the second receptor of intracellular flagellin, 
i.e., NLR family apoptosis inhibitory protein (NAIP), is also 
absent from pangolins and caniforms (Fig. 3b). We conclude 
that parallel evolution has led to the loss of both NLR pro-
teins involved in intracellular flagellin detection in pangolins 
and caniforms.

The majority of NLRP genes have been inactivated 
in pangolins

NLRP genes represent the largest group of NLR genes with 
14 members in the human genome. Comparative genom-
ics showed that NRLP1 (Fig.  4a), NLRP3, NLRP6, and 
NLRP12 are conserved in pangolins, whereas NLRP2 and 
7, which are neighbors in the human genome (Fig. 4b); 
NLRP4, 5, 8, 9, 11, and 13, which are clustered in the human 
genome (Fig. 4c); and NLRP10 (Fig. 4d) are absent from the 
genomes of pangolins. Absence was confirmed by BLAST 
searches against entire genome sequences and against the 
genome region between orthologs of genes that flank the 
aforementioned NLRP genes in other mammalian species 
(Fig. 4b–d). An ortholog of NLRP14 is present in pangolins, 
but its coding sequence is disrupted by inactivating muta-
tions (Fig. 4e; Suppl. Fig. S2).

In total, there are only 8 intact NLR genes in the Malayan 
pangolin, as compared to 20 in human and 15 in both cattle 
and dog (Table 1). Remarkably, nine NLRPs that are pre-
dominantly or exclusively expressed in germ cells and early 
stages of embryonic development, i.e., NLRP2, NLRP4, 
NLRP5, NLRP7, NLRP8, NLRP9, NLRP11, NLRP13, and 
NLRP14, lack orthologs in pangolins (Table 1).

Fig. 3  Absence of NLRC4 and NAIP in pangolins. a Gene locus of 
NLRC4. Genes are represented by arrows pointing into the direction 
of transcription. Intact NLRC4 genes are shown as blue arrows. Red 
broken arrows indicate inactivating mutations of NLRC4 in cani-
formia, represented by dog and ermine. NLRC4 is absent in pango-
lins. Loss of NAIP was mapped (red flash symbols) onto a simplified 
phylogenetic tree of mammals. b Gene locus of NAIP. Genes are rep-
resented by arrows pointing into the direction of transcription. Intact 
NAIP genes are shown as blue arrows. NAIP is absent in pangolins, 
dog, and ermine. Loss of NAIP was mapped (red flash symbols) onto 
a simplified phylogenetic tree of mammals. Species: Malayan pan-
golin (Manis javanica), Chinese pangolin (Manis pentadactyla), cat 
(Felis catus), ermine (Mustela erminea), dog (Canis lupus familiaris), 
cattle (Bos taurus), and human (Homo sapiens)

Fig. 4  Absence of multiple NLRP genes in pangolins. Gene loci of 
NLRP1 a, NLRP2 and NLRP7 b,  NLRP4, NLRP5, NLRP8, NLRP9, 
NLRP11, and NLRP13 c, NLRP10 d, and NLRP14 e  of Malayan 
pangolin, dog, cattle, and human are schematically depicted. Intact 
NLRP genes are shown as blue arrows with white numbers indicat-
ing the number of the NLRP gene. Red broken arrows indicate NLRP 
genes that are inactivated by mutations. Grey arrows indicate evolu-
tionarily conserved genes flanking NLRP genes. White arrows repre-
sent genes that are not conserved across species. Species: Pangolin 
(Manis javanica), dog (Canis lupus familiaris), cattle (Bos taurus), 
and human (Homo sapiens)
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Discussion

The results of this study show that pangolins lack numerous 
NLRs, suggesting that the evolution of pangolins was com-
patible with or even supported by the loss of these pattern 
recognition receptors and the associated defense processes. 
This study was focused on pangolins because (1) previous 
investigations had suggested a partial degeneration of anti-
viral and antimicrobial defense in these peculiar mammals 
(Kotze et al. 2016; Fischer et al. 2020a, b; Sharma et al. 
2020) and (2) a better understanding of pathogen-host inter-
actions in pangolins might help to evaluate the potential role 
of pangolins in the origin of zoonoses such as Covid-19 
(Lam et al. 2020; Xiao et al. 2020; Zhang et al. 2020; Niu 
et al. 2021). Our findings lend support to the notion that 
the innate immune system of pangolins is unique among 
mammals and provide a basis for further investigations into 
the possible role of pangolins as reservoirs of pathogens 
that might benefit from the lack of NLR-dependent defense 
mechanisms.

NOD2 is inactivated by multiple mutations in pangolins, 
whereas it is conserved in all other mammalian species inves-

tigated (Suppl. Fig. S1) and human NOD2 loss-of-function  
mutations cause Crohn’s disease, a chronic inflammatory 
intestinal disease (Nayar et al. 2021). In non-mammalian 
vertebrates, NOD2 is evolutionarily conserved in fish (Nayar 
et al. 2021) but not in reptiles (Choo et al. 2019). NOD2 
is primarily required for antibacterial defense but has also 
been implicated in antiviral defense and general sensing of 
perturbations of cellular homeostasis, in particular the forma-
tion of sphingosine-1-phosphate (Pei et al. 2021). Recently, a 
drug that targets NOD2 was shown to have antiviral activity 
against SARS-CoV-2 and other RNA viruses (Limonta et al. 
2021). It is conceivable that NOD2-dependent responses to 
specific intracellular bacteria or viruses are not required or 
even detrimental for pangolins, possibly due to unfavorable 
reactions against commensal microorganisms. Furthermore, 
NOD2-independent defense mechanisms may have evolved 
in pangolins. Studies on tissues or cells of pangolins are 
required to test these hypotheses.

Both cytosolic sensors of bacterial flagellin, i.e., NLRC4 
and NAIP, have been lost in pangolins, making them in 
this regard similar to species of the clade Caniformia (dog-
like carnivorans) (Eckhart et al. 2009) and pigs (Dawson 

Table 1  Presence and absence of NLR genes in pangolins and other mammals

DAP γ-D-glutamyl-meso-diaminopimelic acid, MDP muramyl dipeptide, ds double-stranded
1 Ligands and functions of several NLRPs are uncertain. Only subsets of proposed functions are listed

Gene Ligand,  function1 Main expression site (adult) Human Cattle Dog Pangolin Gene evolution

NOD1 Ligand: DAP (peptidoglycan) Lung and most other organs  +  +  +  + Conserved
NOD2 Ligand: MDP (peptidoglycan) Bone marrow, skin  +  +  +  − Loss in pangolins
NLRC3 Ligand: DNA; inhibition Lymph node, spleen  +  +  +  + Conserved
NLRC4 Ligand: flagellin Appendix, bone marrow  +  +  −  − Loss in pangolins and Caniformia
NLRC5 MHC class I gene expression Spleen, lymph node  +  +  +  + Conserved
NLRP1 Proteolysis, dsRNA Skin, spleen, lymph node  +  +  +  + Conserved
NLRP2 Early embronic development Placenta, testis, bladder  +  +  +  − Loss in pangolins
NLRP3 Stimulus: Potassium efflux Bone marrow  +  +  +  + Conserved
NLRP4 Early embronic development Testis  +  −  −  − Origin in Euarchontoglires
NLRP5 Early embronic development Testis  +  +  +  − Loss in pangolins
NLRP6 Antimicrobial defense Intestine, duodenum  +  +  +  + Conserved
NLRP7 Early embronic development Testis  +  +  −  − Loss in pangolins and dog
NLRP8 Early embronic development Testis, prostate  +  +  +  − Loss in pangolins
NLRP9 Ligand: dsRNA Prostate, testis  +  +  +  − Loss in pangolins
NLRP10 Anti-inflammatory Skin  +  −  +  − Loss in pangolins
NLRP11 Anti-inflammatory Testis  +  −  −  − Origin in primates
NLRP12 Anti-inflammatory Bone marrow  +  +  +  + Conserved
NLRP13 Unknown Testis  +  +  +  − Loss in pangolins
NLRP14 Early embronic development Testis  +  +  +  − Loss in pangolins
NLRX1 Anti-inflammatory Esophagus, skin  +  +  +  + Conserved
CIITA MHC class II gene expression Bone marrow  +  +  +  + Conserved
NAIP Ligand: flagellin Appendix, spleen  +  +  −  − Loss in pangolins and Caniformia

Number of NLRs: 20 15 15 8
Number of NLRPs: 14 11 11 4
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et al. 2017; Sakuma et al. 2017). Strikingly, the endosomal 
receptor of flagellin, TLR5, has also been lost in pangolins 
(Sharma et al. 2020), suggesting that the response of pango-
lins to flagellated bacteria is uniquely degenerated. It is con-
ceivable that these gene losses are linked to the evolution of 
a special gut microbiome due to the solely insectivorous diet 
or to the evolution of tolerance to specific pathogen groups 
in pangolins. Thus, it remains to be elucidated whether the 
response to flagellated bacteria, such as Salmonella typh-
imurium, Legionella pneumophila, and Shigella flexneri, 
with pathogenic potential in other species is suppressed in 
pangolins.

The number of NLRP genes varies among mammalian 
species (Tian et al. 2009). Until recently, the limited avail-
ability and quality of genome sequences has hampered a 
comprehensive study of NLRP genes across mammals. Our 
data show that pangolins have fewer NLRPs than dog, cattle, 
and humans. NLRP4, NLRP11, and possibly also NLRP7 
have originated after the divergence of the phylogenetic lin-
eages leading to humans and pangolins, but the presence 
of NLRP2, NLRP10, and NLRP14 in a common ancestor 
of humans and pangolins can be inferred from their dis-
tribution in other mammals (Table 1). Therefore, at least 
NLRP2, NLRP10, and NLRP14 have been lost in pangolins. 
NLRP10 is expressed predominantly in the skin where it is 
transcriptionally upregulated during epidermal cornification 
(Lachner et al. 2017). Keratinocyte cell death by cornifica-
tion, like apoptosis and unlike pyroptosis, does not induce 
pro-inflammatory signaling, and we have put forward the 
hypothesis that NLRP10 contributes to the suppression of 
inflammation during cornification (Eckhart and Tschachler 
2018). NLRP10 may have been lost in the course of the evo-
lutionary adaptation of the integument in pangolins, which 
is characterized by an almost complete replacement of hairy 
skin by keratinous scales.

Remarkably, all nine reproduction-associated NLRPs 
of humans, i.e., NLRP2, NLRP4, NLRP5, NLRP7, NLRP8, 
NLRP9, NLRP11, NLRP13, and NLRP14 (Tian et al. 2009), 
lack orthologs in pangolins. The loss of NLRPs that are asso-
ciated with germ cell biology and embryonic development 
(Table 1) suggests that the reproduction of pangolins does not 
depend on NLRP-mediated processes, which are not under-
stood at present but may include the control of inflammation 
(Amoushahi et al. 2019; Yin et al. 2020; Carriere et al. 2021). 
Deepening the knowledge on the physiology of reproduc-
tion and embryology of pangolins would be beneficial for 
conservation aspects of these highly endangered species as 
breeding efforts in zoos are scarce (Yang et al. 2007; Sipos 
and Lutonsky 2021).

In summary, the repertoire of NLRs is greatly reduced in 
pangolins as compared to other mammals, which indicates 
diversification of immune defense and reproduction-related 
processes during the evolution of different mammalian 

lineages. Pangolins, presumably anergic to a series of oth-
erwise pathogenic agents, may carry distinct microbes and 
viruses that can be transmitted to other species and poten-
tially give rise to as-yet-unknown zoonoses. Therefore, com-
parative studies of innate immunity in pangolins and other 
mammals are warranted.
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