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Abstract
Background: Investigators designing clinical trials often use composite outcomes to overcome many statistical issues. 
Trialists want to maximize power to show a statistically significant treatment effect and avoid inflation of Type I error 
rate due to evaluation of multiple individual clinical outcomes. However, if the treatment effect is not similar among 
the components of this composite outcome, we are left not knowing how to interpret the treatment effect on the 
composite itself. Given significant heterogeneity among these components, a composite outcome may be judged as 
being invalid or un-interpretable for estimation of the treatment effect. This paper compares the power of different 
tests to detect heterogeneity of treatment effect across components of a composite binary outcome.

Methods: Simulations were done comparing four different models commonly used to analyze correlated binary data. 
These models included: logistic regression for ignoring correlation, logistic regression weighted by the intra cluster 
correlation coefficient, population average logistic regression using generalized estimating equations (GEE), and 
random effects logistic regression.

Results: We found that the population average model based on generalized estimating equations (GEE) had the 
greatest power across most scenarios. Adequate power to detect possible composite heterogeneity or variation 
between treatment effects of individual components of a composite outcome was seen when the power for detecting 
the main study treatment effect for the composite outcome was also reasonably high.

Conclusions: It is recommended that authors report tests of composite heterogeneity for composite outcomes and 
that this accompany the publication of the statistically significant results of the main effect on the composite along 
with individual components of composite outcomes.

Background
Composite outcomes can often be difficult to interpret,
especially when the treatment effects on some of its com-
ponents individually show differences in magnitude or
even in direction. For example, in a trial of localized
intracoronary gamma-radiation therapy versus placebo
[1] the primary composite outcome of death, myocardial
infarction, or revascularization of target lesion showed an
overall benefit of gamma-radiation compared to placebo
(24.4% vs 42.1%, p = 0.02); however, myocardial infarction
individually had a non-significant effect in the opposite
direction (9.9% vs. 4.1%, p = 0.09). Many authors have
expressed concerns regarding interpretation of a treat-

ment effect for a composite outcome when it appears that
there is heterogeneity in the treatment effect across the
composite components [2-4]. How then can we best
determine the existence of important composite hetero-
geneity in treatment effect among the individual compo-
nents of a composite outcome?

A composite outcome is defined as having occurred if
one of a group of outcomes occurs. The main treatment
effect is defined as the absolute or relative difference
between treatment and control in the proportions of par-
ticipants who have at least one component of the com-
posite. The problems with interpreting composite
outcomes are well known. The treatment effect observed
on the components may go in opposite directions and
reduce the power of the trial [5,6]. The components may
not have similar importance or frequency to one another
[2-4,7]. These issues make composite outcomes difficult
to interpret in many trials.
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Despite difficulties with interpretation, trialists are
unlikely to abandon composite outcomes. Trials in car-
diovascular disease commonly use composite endpoints
as their primary outcome [8] and there are efforts in
many other areas of research to follow suit. Many authors
have expressed the need to use composite outcomes to
increase the feasibility of conducting clinical trials
research in their areas including: cardiology [9,10], HIV/
AIDS [11], organ transplantation [12], psychiatric disor-
ders [13], adverse event reporting [14], and obstetrics and
gynecology [15]. The reasons for use of composite out-
comes are well documented and include: reduced sample
size due to increased outcome rates, the ability to answer
important questions quickly, capturing the multi-dimen-
sional nature of disease, seeking a better understanding of
total disease burden, the inability to select the most
important of many outcomes, concerns with multiplicity
for testing many outcomes, and addressing competing
risks.

Various approaches have been suggested for the analy-
sis and interpretation of composite outcomes. For exam-
ple, a multivariate global test across all the components
could be used to look for simultaneous demonstrated
benefit; but readers may find it difficult to interpret such
a result [16,17]. Alternatively, if the composite shows a
statistically significant treatment effect, the component
specific tests can be performed using a closed test proce-
dure. Many authors recommend that each component of
the composite should be defined as secondary outcomes
for the trial [6]. However, it is doubtful that there would
be sufficient power to detect effects on the individual
components for the very reason that the composite out-
come was chosen (i.e. there are too few events for each
outcome). Individual tests on each component would also
inflate the overall Type I error rate for the study. Berger
[18] has suggested the use of informative preserving com-
posite endpoints and the use of omnibus test functions.
However, trialists have rarely utilized this procedure.
Finally, another method would involve analysis of the
weighted components of the composite. Although many
different weighting schemes have been suggested
[6,9,19,20], these methods are not in common use by tri-
alists [5]. Further, weighting systems can introduce their
own set of problems with interpretation, due to the per-
ceived subjectivity of the weights.

Composites may be used either under the assumption
of homogeneity of treatment effect across components or
to summarize a risk-benefit profile of an intervention. In
this manuscript we address the former use, where the
best knowledge of the disease being studied points to a
likely similarity of treatment effect on all component out-
comes, based on known physiological pathways and theo-
retical models. While the treatment effect is assumed to
be similar across each of the components in terms of

direction, it is recognized that the magnitude may differ
[2,5]. Many authors recommend reviewing suspected
treatment homogeneity through visual inspection of the
direction of relative risk estimates for individual compo-
nents of the composite in a trial [2,7]. However, it is pos-
sible to test for heterogeneity of these treatment effects
across components directly using standard methods for
correlated binary data. If significant heterogeneity is
found then the composite outcome may be invalidated or
inappropriate for use. If not, we may have more confi-
dence in the composite outcome, viewing it as meaning-
ful, interpretable to represent treatment effect as a whole,
and likely free from evidence of heterogeneity. However,
tests for heterogeneity have been shown to lack power in
meta-analyses and subgroup analyses [21]. The purpose
of this paper is to compare the power of different tests to
detect heterogeneity of treatment effect across compo-
nents of composite binary outcomes. We then explore the
usefulness of such tests for detecting composite heteroge-
neity when the power is high for the treatment compari-
son on the composite outcome as a whole.

Methods
A. Methods for analysis of correlated binary outcomes
Participants in a trial who are followed beyond their first
outcome may experience more than one component of
the composite primary outcome. For example, for a trial
with the primary outcome of myocardial infarction,
stroke or cardiovascular death, a participant may experi-
ence a stroke and then die a cardiovascular death. Thus
there is a repeated measurement of the different compo-
nent outcomes for each individual. This binary data then
has an intra cluster correlation due to repeated outcomes
on the same individuals.

All models used contain parameters that estimate the
treatment effect, the specific individual outcome compo-
nent in the composite outcome, and the interaction of
these two factors. These are presented for the jth treat-
ment group, the kth component of the composite compo-
nent outcome, and the ith participant in the trial. The test
of the interaction term will allow detection of possible
heterogeneity or difference in the study treatment effect
across the composite components.

The following models will be studied using SAS 9.1 [22]
as presented in Shoukri and Chaudhary [23]:
Model 1 Logistic regression ignoring correlation
It is possible that the intra cluster correlation seen among
outcomes in typical cardiovascular trials is too small to
make a difference to this analysis of composite homoge-
neity. We will fit a simple logistic regression to test this
hypothesis (implemented in SAS using proc logistic [22]).
The model fit will be: Logit(yijk) = β0 + β1x1 + β2x2 + β3x3 +
εijk
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Here yijk is a binary response representing whether an
event (i.e. one of the components of a composite out-
come) has occurred (coded 1) or not (coded 0). The fixed
factors for all participants are the intercept β0, treatment
effect β1, composite outcome component β2, and interac-
tion of treatment and outcome β3. With more than two
component outcomes to the composite, there would be
additional regression coefficients for each additional
component and an additional term for its interaction with
treatment. The error term εijk here does not take into
account the correlation of composite outcome compo-
nents within each individual. Therefore, the fitted regres-
sion coefficients are:

For example, the following matrices display the out-
comes status (Y) and independent variables (X) for the
first two participants in our simulation. Since our com-
posite outcomes has two components, the vector Y has
two rows for each participant with the first containing the
outcome status (0,1) for the first component and the sec-
ond row for the outcome on the second component. Both
of the following participants have experienced a compos-
ite outcome. Participant 1 experienced both components
of the composite outcome and participant 2 experienced
only the second component.

For this and all subsequent models, the test for hetero-
geneity will test whether β3 is significantly different from
zero at p < 0.05 level.
Model 2 Weighted logistic regression
Simple methods for the analysis of binary correlated data
have been suggested using weighted logistic regression.
Donald and Donner [24] proposed a weighting based
directly on the intra cluster correlation (ρ) calculated for
the trial overall and Rao and Scott [25] base the weights
on the variance inflation factor (υ) estimated per treat-
ment group (proc logistic [22] with weights ρ or υ). Note
that a single weight may not be appropriate with more
than two components to the composite outcome. The fit-
ted regression coefficients are:

Model 3 Population average logistic models (GEE)

Here treatment and outcome component effects are

estimated at the margin by averaging across individuals.

The generalized estimating equations (GEE) methods

will be used, which treats the correlation among individ-

uals as a nuisance factor. Correlation between outcomes

of individuals is modeled through a working correlation

matrix and adjustments for misspecification are made

using the sandwich variance formula [26]. The covari-

ance matrix will be unstructured to allow for different

variances for each composite component (proc genmod

[22]). The model is: Logit(ijk) = β0 + β1x1 + β2x2 + β3x3

where μijk = E(yijk ), the marginal expectation and the β*'s

estimate the population average response parameters.
Model 4 Random effects logistic models
This model incorporates a term for the individual in the
analysis and allows the intercept to vary across individu-
als. Individuals are considered to be randomly selected
from a population that has a normally distributed inter-
cept component [27]. The model is

Logit(E[yijk|γk]) = β0 + β1x1 + β2x2 + β3x3 + γi + ijk where
γi  is the random effect of participant with composite out-
come component clustered within individual and ijk is
the error term (proc glimmix [22]). The covariance matrix
will be unstructured, or determined by the random effect.

B. Simulation data
The purpose of this simulation was to examine the power
to detect heterogeneity among the components of a com-
posite outcome for a well-designed trial. We began with a
study design that had good power to detect a modestly
estimated main treatment effect on the odds ratio (OR).
Such a design was chosen since it is unlikely that a com-
posite outcome heterogeneity test would be performed if
the main treatment effect were not statistically signifi-
cant. The total study sample size was 2000 for a two-arm
trial with equal allocation to each treatment group, and a
50% composite outcome event rate in the control group.
This was calculated using a continuity corrected chi-
square test of equal proportion with two-sided type I
error rate of 0.05. There was 88% to detect a 25% reduc-
tion in the OR and 97% power for a 30% OR. A composite
with two components was simulated with a correlation
between the two components of ρ = 0.10 (estimated using
cardiovascular outcomes from the HOPE trial [28],
unpublished data). Simulations were run with 10,000 iter-
ations and we recorded both power for the test of treat-
ment effect on the composite outcome and for the
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heterogeneity of treatment across the composite compo-
nents for each model. We examined the power for these
tests by varying the following:

a) Degree of treatment heterogeneity of the compos-
ite components: The odds ratio of the first compo-
nent (OR1) was kept constant, while the second 
component odds ratio (OR2) was varied to simulate 
composite heterogeneity. Low heterogeneity is dem-
onstrated by both OR's showing the same direction of 
treatment effect, moderate is indicated by a neutral 
effect in one component, and large is seen where the 
OR's have opposite patterns of risk.
b) Balance of the components: Simulations included 
cases where the components occurred equally (1:1) or 
unequally. For the unequal case, the composite out-
come contained one component that occurred three 
or five times more often than the other.

Multivariate binary correlated data was generated using
the method described in Park et al. [29]. Sums of inde-
pendent Poisson random variables were generated which
share components such that the resulting sums are multi-
ple correlated Poisson variables. Indicator functions were
used to transform these variables into correlated binary
data with the desired correlational structure.

Results
As expected the power to detect heterogeneity among the
composite outcome components increased as the differ-
ence between the two component odd ratios became
larger (see Table 1 and Figure 1). The Population Average
logistic regression had the greatest power across all levels
of composite heterogeneity. The next largest power was
seen in both the independent and random effects logistic

regressions. Lastly, the weighted logistic regression dis-
played the least power for this test. It should also be
noted that the population average model had a type I
error rate of 0.053 for the case of no composite heteroge-
neity, exceeding chance level of 0.05.

When imbalance existed between the frequencies of
the two components the power to demonstrate heteroge-
neity decreased as this imbalance increased (see table 2).
This power was greater when the component displaying
moderate treatment heterogeneity was also the less fre-
quent of the two components. Note again that population
average logistic model had the greatest power, except for
the single case of 1:5 imbalances, where the component
with the larger OR was the most frequent. For this case
only, the weighted logistic regression had the greatest
power and the population average logistic regression had
the second greatest power.

Table 3 and Figure 2 show the relationship between
power for the test of treatment on the composite out-
come as a whole and power to detect treatment heteroge-
neity among it components, using the population average
model. Both the effect size of the composite outcome and
the degree of composite heterogeneity are varied to show
the relationship in power for both tests. The region in
bold for this table indicates the conditions when both
tests show greater than 50% power, over various combi-
nations of the two odd ratios for each component. This is
illustrated in Figure 2, where the region between the ver-
tical dotted lines indicates the range where both the test
of the composite outcome and the test for composite het-
erogeneity are both have 50% power or greater. When the
odds ratio for the most effective component is 0.75, this
region is the narrowest.

Table 1: Power to detect heterogeneity between the two components of a composite outcome by degree of heterogeneity 
(equal balance among components) with OR1 = 0.65

Hetero- geneity OR2
Composite 
Overall OR

Weighted DD Weighted RS Independent Random 
Effects

GEE

None 0.65 0.65 3.0 3.2 3.9 4.0 5.3

0.70 0.67 5.1 5.2 6.3 6.4 8.1

Low 0.75 0.70 13.1 13.2 15.6 15.6 17.9

0.80 0.72 26.0 26.2 29.5 29.8 33.4

Moderate 0.85 0.75 42.7 42.9 46.9 46.9 51.1

0.90 0.78 60.2 60.3 63.9 64.0 67.8

0.95 0.80 74.6 74.6 77.7 77.8 80.7

1.00 0.83 85.3 85.4 87.6 87.5 89.9

High 1.05 0.85 92.2 92.3 93.8 93.8 95.0

1.10 0.88 96.6 96.7 97.4 97.4 97.8

1.15 0.91 98.4 98.4 98.8 98.8 99.0

1.20 0.93 99.4 99.4 99.6 99.5 99.7
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Discussion
These simulations demonstrate that generally the popula-
tion average (GEE) model has the greatest power to
detect composite outcome treatment heterogeneity, of
the four methods investigated. This is further supported
by the conclusion that population average models (GEE)

are the more powerful test among possible methods for
analyzing cluster randomized trials data [30]. It should be
noted that the GEE and random effects models do not
estimate the same parameters, since GEE is a marginal
model and the random effects allows the estimation of
individual effects. For effect estimation the GEE models

Figure 1 Power for composite outcome heterogeneity by model as a function of treatment effect for the second component. Note that pow-
er curves for both weighted models completely overlap in this figure. Independent and Random Effects line also overlap to a large degree.
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Table 2: Power for detecting heterogeneity of treatment effect by varying degrees of balance among the components of 
the composite for a moderate heterogeneity pattern OR1, OR2= (0.65, 1.00) and ratio (p1:p2) of occurrence of components 
1 and 2.

Balance (p1:p2) Weighted DD Weighted RS Independent Random Effects GEE

1:1 85.3 85.8 88.1 88.2 90.0

1:3 77.0 77.1 75.4 75.4 78.7

1:5 65.0 65.0 59.4 59.4 62.8

3:1 79.1 79.1 79.5 79.9 82.3

5:1 70.3 70.3 68.2 68.6 71.1
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are known to bias model parameter estimates towards the
null, but at the same time have smaller parameter stan-
dard deviations compared to random effects models [31].
Since the focus for this application is on the test statistics
itself, rather than estimation, it seems reasonable that the
population average model would have the greatest power.
We found only one exception to this conclusion. When
there was a large imbalance between the two composite
components, where the most frequent of these had the
smaller treatment effect, the weighted regression model
had higher power, with the population average (GEE)
model being second. We should also consider the fact
that the GEE model was somewhat liberal in its type I
error rate for the case of no composite outcome heteroge-
neity.

Even small amounts of component heterogeneity, can
reduce study power to detect a treatment effect for the
composite outcome. However, we did find regions where
the power for both tests for the composite outcome and
composite heterogeneity were greater than 50%. This
indicates a range of results where tests for composite het-
erogeneity would be useful. One may only want to per-
form a test of composite outcome heterogeneity when the
main effect is statistically significant but regardless of the
statistical significance of the composite outcome, test for
composite heterogeneity may provide insight into the dif-
fering mechanisms for each component outcome. This
information could then aid in the design of future trials.
However, for the current trial, the presence of composite
heterogeneity should never lead researchers to assume
that the composite outcome as a whole would have been

statistically significant if only the mix of components
were slightly altered.

The use of models for correlated binary data to explore
composite outcome heterogeneity has some important
advantages. It can easily be implemented in common sta-
tistical software packages using currently available
repeated/recurrent outcomes methods. The methodol-
ogy suggested in this manuscript can be generalized to
other outcomes types in addition to binary, including
continuous outcomes, time to first event and time to
recurrent events. Given the ease of implementation and
application to a variety of outcome types, trialists may be
encouraged to address the issue of potential composite
heterogeneity more often and more directly in the pre-
sentation of trial results.

There are limitations to the results presented here. We
have not explored differing event rates, component corre-
lations, extreme imbalance in component ratios, and the
effects of more than two composite components. This
area will require more research and such simulations
could be a productive exercise when designing a random-
ized clinical trial. The methods presented would not be
appropriate to use when the composite components are
expected to show differing treatment directions, as in a
risk-benefit composite outcome. Lastly, failure to detect
statistically significant composite heterogeneity may be a
result of lower power, rather than true treatment homo-
geneity across the composite components. Trialists
would be wise to consider the power to detect composite
heterogeneity in the design of trials with composite out-
comes.

Table 3: Comparison of power for the main treatment effect with power for interaction test, using the population average 
model (GEE)

OR1 = 0.65 OR1 = 0.65 OR1 = 0.70 OR1 = 0.70 OR1 = 0.75 OR1 = 0.75

OR2 Treatment 
Effect

Heterogeneity 
Test

Treatment 
Effect

Heterogeneity 
Test

Treatment 
Effect

Heterogeneity 
Test

0.65 >99.9 5.3 - - - -

0.70 99.9 8.1 99.4 5.0 - -

0.75 99.6 17.9 98.2 8.3 95.7 5.5

0.80 98.2 33.4 95.7 16.7 89.8 8.3

0.85 95.5 51.1 89.5 30.5 81.5 16.0

0.90 90.7 67.8 81.6 44.1 68.7 28.6

0.95 82.2 80.7 70.4 63.5 55.5 43.7

1.00 70.7 89.9 57.8 78.8 41.5 58.9

1.05 57.7 95.0 42.9 86.3 28.2 72.4

1.10 44.6 97.8 30.2 92.8 18.9 82.4

1.15 31.3 99.0 19.6 96.8 11.3 90.5

1.20 21.5 99.7 8.1 98.3 7.2 94.8
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The methods of exploring composite outcome hetero-
geneity directly, using the tests described here, may par-
tially address the concerns raised about using composite
outcomes in many fields. When reporting trial results, it
would seem reasonable to expect to see such a test for
composite heterogeneity presented along side a statisti-
cally significant treatment effect test for the composite
outcome.

Conclusions
We compared the power of different tests to detect com-
posite heterogeneity for treatment effect across compo-
nents of a composite binary outcome. Simulations were
done comparing four different models commonly used to
analyze correlated binary data. The results of these simu-
lations are quite clear. Generally, GEE model should be

chosen for investigating possible heterogeneity among
the components of a binary composite outcome, since it
demonstrated the greatest power. This is particularly true
when the power for the test of treatment effect on the
composite outcome as a whole was also reasonably high.
It is recommended that tests of composite heterogeneity
for composite outcomes accompany the publication of
the results for statistically significant composite out-
comes along with individual components of composite
outcomes. Further simulations are still required to
explore the impact on power of differing event rates,
component correlations, extreme imbalance in compo-
nent ratios, and the effects of more than two composite
components.
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Figure 2 The power for the main effect of treatment (black line) and the power for the test of heterogeneity of the composite components 
(blue line) by degree of composite heterogeneity.
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