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Biology Institute of Marseille Luminy, IBDML, Marseille, France, 4 Inserm U901, Mediterranean Institute of Neurobiology, INMED, Campus scientifique de Luminy, Marseille,

France

Abstract

NECDIN belongs to the type II Melanoma Associated Antigen Gene Expression gene family and is located in the Prader-Willi
Syndrome (PWS) critical region. Necdin-deficient mice develop symptoms of PWS, including a sensory and motor deficit.
However, the mechanisms underlying the motor deficit remain elusive. Here, we show that the genetic ablation of Necdin,
whose expression is restricted to post-mitotic neurons in the spinal cord during development, leads to a loss of 31% of
specified motoneurons. The increased neuronal loss occurs during the period of naturally-occurring cell death and is not
confined to specific pools of motoneurons. To better understand the role of Necdin during the period of programmed cell
death of motoneurons we used embryonic spinal cord explants and primary motoneuron cultures from Necdin-deficient
mice. Interestingly, while Necdin-deficient motoneurons present the same survival response to neurotrophic factors, we
demonstrate that deletion of Necdin leads to an increased susceptibility of motoneurons to neurotrophic factor deprivation.
We show that by neutralizing TNFa this increased susceptibility of Necdin-deficient motoneurons to trophic factor
deprivation can be reduced to the normal level. We propose that Necdin is implicated through the TNF-receptor 1 pathway
in the developmental death of motoneurons.
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Introduction

The human NECDIN gene is one of the five genes that have

been associated with the Prader-Willi syndrome (PWS) [1,2,3], a

rare genetic neurodevelopmental disease characterized by a

variety of physical, cognitive, and behavioral defects. The most

significant characteristics at birth are feeding problems, severe

hypotonia, breathing alterations and hypogonadism. Later, PW

infants become obese, present a short stature, a motor delay and

cognitive deficits [4]. A potential role of NECDIN in the etiology

of PWS is supported by studies of three mouse models [5,6,7] in

which the Necdin gene has been inactivated resulting in alterations

of breathing and behavior, defects of the sensory system and in the

hypothalamic nuclei. Similar alterations are described in Prader-

Willi patients suggesting that NECDIN is responsible for specific

Prader-Willi symptoms.

Necdin belongs to the type II Melanoma-Associated antigen

Gene Expression (MAGE) family that shares a MAGE homology

domain [8], which has recently been shown to bind RING

proteins to form active E3 Ubiquitin Ligases [9]. Necdin locates in

the nucleus and/or cytoplasm and has been reported to interact

with cell cycle proteins (p53, E2F1, E2F2) [10,11,12,13,14],

transmembrane proteins (p75NTR, TrkA, Nogo) [7,15,16,17], and

cytoplasmic interactors (MAGED1, FEZ1, BBS4, NEFA) [18,19].

Through these interactions, Necdin has been proposed to

participate in a broad range of biological activities including cell

growth, migration, differentiation and cell death/survival (see for

review [20]). However the precise molecular function as well as the

physiological relevance of Necdin in those processes remains

largely unknown.

In the mouse nervous system, in vivo studies demonstrated

Necdin involvement in cellular migration, axonal outgrowth and

fasciculation processes [19,21,22,23,24,25] as well as in neuronal

apoptosis [14,23,26,27]. We and others documented an anti-

apoptotic function of Necdin in developing sensory neurons of the

dorsal root ganglia (DRG) [7,26,27]. Interestingly, we showed that

its anti-apoptotic function is restricted to a subpopulation of

sensory neurons. Indeed, we showed that the abrogation of

Necdin, in the lumbar region, triggered a 40% increase of post-

mitotic apoptosis during the embryonic wave of naturally

occurring cell death. This additional cell death resulted in a

30% loss of specified TrkA (nociception) and TrkC (propriocep-

tion) sensory neurons although the TrkB population (mechanore-

ception) was not modified. Beside the sensory deficits previously

described in mutant mice, our study suggested that motor

functions might also be deficient [27].

Here, we have further investigated the contribution of Necdin in

the development of spinal motoneurons. We found that the genetic
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deletion of Necdin leads to the loss of lumbar motoneurons. This

loss is due to an increase death of motoneuron during the wave of

naturally-occurring cell death, which is predominantly dependent

on the accessibility to neurotrophic support. Interestingly, we show

that Necdin-deficient motoneurons present an increased suscepti-

bility to neurotrophic factor (NTF) deprivation, which involves the

activation of the tumor necrosis factor alpha (TNFa)/TNF

receptor (TNFR) signaling pathway. Overall, our findings strongly

suggest a developmental cause of motor deficit observed in PW

patients.

Results

Targeted deletion of Necdin in mice leads to hindlimb
motor deficits

Because Necdin is an imprinted gene, only paternally expressed,

we crossed heterozygote males (Necdin2m/+p) with wildtype

C57BL/6J females, in the generated litters, half the embryos were

control (Necdin+/+) and half were functionally Necdin-deficient

(Necdin+m/2p).

Previous phenotypical studies revealed alterations of the sensory

system in Necdin-deficient mice but also suggested a motor deficit

[27]. Indeed, we observed that from birth, Necdin pups and young

mutant (10-day-old) mice display obvious problems in moving and

flexing their hindpaws (Figure S1), although this deficit cannot be

quantified at this age. Although, this motor problem tends to

diminish over time, we were able to confirm that adult Necdin-

deficient mice have decreased motor performance in an

accelerating rotarod test compared to age-matched wildtype mice

(Figure S1 and Text S1, Supporting materials and methods).

These results show that Necdin-deficient mice have a motor deficit

starting at birth, suggesting a developmental problem.

Necdin is expressed in post-mitotic motoneurons during
development and at postnatal ages

We previously described an expression of NECDIN gene in the

large ventral horn neurons of the spinal cord from 10-week-old

human embryo [2]. Then, in order to investigate the mechanisms

underlying motor deficit observed in Necdin mutant mice, we first

studied the expression pattern of Necdin in the spinal cord at

different developmental and post-natal stages. Using Necdin

specific antibodies, we observed Necdin expression along the

rostro-caudal axis of the spinal cord at embryonic day 10.5 post-

coı̈tum (E10.5), which becomes obvious at E12.5 (Figure 1A, S2A).

Necdin expression in the spinal cord is maintained throughout

embryonic development and is present after birth (Figure 1B,C).

Necdin is distributed in a homogeneous way in all motoneuron

columns. With regard to the Necdin phenotype, we focused our

attention on the lumbar region and showed that at E10.5 and

E12.5 Necdin is exclusively expressed in the ventral horn of the

spinal cord (Figure 1C,S2A). Furthermore, at these stages, Necdin-

immunoreactive cells were identified as motoneurons as demon-

strated by co-immunolabeling with Islet-1/-2 (Figure 1D) and Hb9

(Figure S2A). These double labeling experiments also confirmed

that all the developing post-mitotic motoneurons express Necdin.

From E13.5, Necdin expression was increased in the medio-

ventral part of the spinal cord, and at E16.5 and P1, we observed

an extension of this pattern to the central and dorsal region

(Figure 1C). We confirmed using in situ hybridization that the

expression of Necdin mRNA was consistent with the developmental

expression profile of the protein (Figure S2B,C). Thus, Necdin

appeared to be expressed first in developing post-mitotic

motoneurons and progressively in others cell types.

Loss of lumbar specified motoneurons in Necdin-
deficient mice during embryonic development

We next looked for cellular defects in motoneuron development

in Necdin-deficient mice. We studied two embryonic stages: E11.5,

when the pool of developing postmitotic motoneurons is

established [28,29,30] and E17.5 at the end of the period of

programmed cell death (PCD), when all embryonic motoneurons

are specified. At E11.5, we observed a similar number of Islet-1/-2

positive neurons between wildtype and mutant embryos (Necdin+/+:

109 (106, 119), n = 4; Necdin+/2: 113 (108, 119), n = 4; non

significant, n.s) (Figure 2A,B).

In contrast we performed a quantitative analysis of the Islet-1/-

2 positive neurons in the ventral horns of E17.5 lumbar spinal

cords, we found a significant reduction of 31% of Islet-1/-2

positive cells in Necdin-deficient compared to wildtype spinal cords

(Necdin+/+: 16 (15, 18), n = 4; Necdin+/2: 11 (8, 12), n = 4; P,0.05)

(Figure 2C,D). We showed that this reduction of Islet-1/-2 positive

neurons was specific to motoneurons since the number of the

medio-ventral sub-population of Islet-1/-2 positive interneurons,

did not differ between Necdin-deficient and wildtype mice at E17.5

(Figure S3) (Necdin+/+: 29 (29, 30), n = 4; Necdin+/2: 28 (27, 30),

n = 4; n.s).

The loss of motoneurons observed in the lumbar region of

Necdin-deficient mice at E17.5, but not at E11.5, stages suggests

that the genetic deletion of Necdin does not influence the generation

of post-mitotic motoneurons, but rather might act during the

period of naturally-occurring cell death that takes place between

E12.5 and E15.5 in lumbar spinal cord.

Necdin deficiency leads to an increase of lumbar
motoneuron death during the period of programmed
cell death

We then asked whether Necdin plays a role in the survival of

motoneurons during the period of PCD. Towards this goal, we

first compared the number of apoptotic cells, between wildtype

and Necdin-deficient embryonic spinal cords using a longitudinal

whole-mount terminal deoxyribonucleotidyl transferase-mediated

dUTP-digoxigenin nick end labeling analysis (TUNEL) [30]. At

E11.5, very few apoptotic nuclei were detected in wildtype and

mutant mice. At E12.5, apoptotic nuclei were present in controls

and Necdin mutants (data not shown). At E13.5, when a peak of

normal motoneuron PCD occurs [30], a significant increase of

about 50% of the total number of TUNEL-positive cells was

observed in Necdin-deficient spinal cord (Necdin+/+: 229 (194, 251),

n = 5; Necdin+/2: 484 (442, 505), n = 5; P,0.05) (Figure 3 A,B). At

E15.5, when PCD is nearly complete [30], TUNEL staining was

reduced to few cells in the wildtype as well as in mutant spinal

cords (data not shown). Using double staining, we then confirmed

that, in both wildtype and mutant spinal cords, TUNEL-positive

nuclei were Islet-1/-2 positive. Interestingly Islet-1/-2 staining

revealed that the TUNEL signal was not restricted to specific pools

of motoneurons in both Necdin-deficient and wildtype embryos

(data not shown). To confirm that Necdin deficiency leads to

increased neuronal death during the period of PCD, we quantified

the number of cleaved caspase-3 positive cells, at E13.5, in Necdin-

deficient and wildtype lumbar spinal cords. Consistently, we

observed a significant 41% increase of cleaved caspase-3 positive

cells in Necdin-mutant mice compared to wildtype mice (Necdin+/+:

5.3 (5.1, 6.4), n = 5; Necdin+/2: 8.9 (8.8, 10.7), n = 5; P,0.05)

(Figure 3A,C). Therefore, the loss of lumbar motoneurons

observed in Necdin mutants at E17.5 could be attributed to an

increase in cell death during the period of developmental cell

death. Notably, at E13.5, when the peak of PCD occurs in the

Necdin Protects Motoneurons from Death
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brachial, thoracic, lumbar and sacral region [30], no significant

difference was observed in the total number of cleaved caspase-3

positive cells in the brachial, thoracic or sacral regions of the spinal

cord in wildtype embryos compared to mutant embryos

(Figure 3D). In addition, we determined the number of lumbar

motoneurons in 11-day-old Necdin-deficient and wildtype mice. We

observed a significant difference of about 27% between Necdin+/+

and Necdin+/2 surviving motoneurons (Necdin+/+: 1492 (1387,

1558), n = 3; Necdin+/2: 1080 (1050, 1199), n = 3; P,0.05). This

difference is similar to the one observed at E17.5. These results

suggest that Necdin has a prosurvival function during early stages

of lumbar motoneuron development.

The increased motoneuron death in Necdin-deficient
spinal cord explants does not depend on neurotrophic
support

Our next goal was to investigate whether Necdin acts by

‘‘potentiating’’ the action of trophic factors (first hypothesis) or by

interfering with extrinsic signals (second hypothesis), mediated by

Figure 1. Necdin is expressed in motoneurons during embryonic development and postnatal stage. (A) Sagital section of whole E12.5
mouse embryo immunostained with a Necdin specific antibody (in red). Section is stained with DAPI (in blue). sc, spinal cord; pt, pyramidal tract; cb,
cerebellum; ot, optic tract and soa, supraoptic area. (B) Western blot analysis of Necdin levels in the ventral horn of the lumbar spinal cord at
indicated stages. Actin served as a loading control. In absence of the paternal copy of the Necdin gene (the maternal copy is silent due to imprinting
mechanism) or in homozygous animals deleted for both copies, Necdin expression is not detected. P, Post-natal day. (C) Immunohistochemical
analysis of Necdin expression (in red) in the spinal cord at different stages. Transverse sections were counter-stained with DAPI (in blue). (D) Necdin
expression (in green) is mainly restricted to motoneurons, as identified by Islet-1/-2 immunostaining (in red). Later (C), its expression is extended to
other cells (E.13.5, E16.5 and P1). Scale bar: A: 500 mm and C, D: 100 mm.
doi:10.1371/journal.pone.0023764.g001
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death receptors, which can be activated following NTF depriva-

tion [31]. In the first hypothesis, we should observe, in the

presence of trophic factors, an increased motoneuron death in

Necdin-deficient explants compared to wildtype explants, whereas

in the absence of NTFs, no significant difference in neuron

survival between mutant and wildtype explants should be found.

In the second hypothesis, the presence of trophic factors should

lead to a similar survival rate of motoneurons in both mutant and

wildtype explants, whereas in the absence of trophic factors, we

should observe an increased susceptibility to endogenous death

factors in Necdin-deficient explants. We therefore cultured ventral

lumbar spinal cord explants from E12.5 mutant or wildtype

embryos in the presence or in the absence of a cocktail of NTFs

(Glial cell line Derived Neurotrophic Factor, GDNF; Brain-

derived neurotrophic factor, BDNF and Ciliary Neurotrophic

Factor, CNTF) and determined motoneuron survival by counting

Islet-1/-2 positive cells (Figure 4A).

We found that in the presence of NTFs, the number of surviving

motoneurons was not significantly different between wildtype and

Necdin-deficient explants (Necdin+/+: 71 (59, 72), n = 5; Necdin+/2: 57

(56, 62), n = 5, n.s) (Figure 4B). However, in the absence of NTFs

the number of surviving motoneurons appeared significantly

different with a decrease of 43% of surviving cells in Necdin-

deficient explants compared with wildtype explants (Necdin+/+: 26

(25, 29), n = 8; Necdin+/2: 17 (15, 21), n = 8; P,0.01) (Figure 4C).

We therefore propose that Necdin acts by counteracting death

signals rather than by potentiating the action of NTFs in

motoneurons.

TNFR1 expression correlates with Necdin expression in
the lumbar spinal cord

We next focused on the identity of the potential death receptor

involved in the increased death of motoneurons in Necdin-deficient

mice. A first potential candidate was the Unc5A receptor, since it

has been shown to interact with MageD1, a MAGE gene with

homology to Necdin, and to promote motoneuron death in the

cervical spinal cord during PCD [32]. Since MageD1 is also

expressed in lumbar motoneurons at E13.5 where, in contrast to

Necdin, it plays a pro-apoptotic role [33], we hypothesized that

Necdin might interact with Unc5A to interfere with the pro-

apoptotic signal. Using an antibody specific to Unc5A, we

analyzed its expression pattern, at E12.5, along the rostro-caudal

axis. We detected a strong Unc5A immunoreactivity in the ventral

part of the brachial spinal cord, which was reduced in the thoracic

region. However, we were not able to detect any Unc5A

expression in the lumbar region of the spinal cord (Figure 5A),

indicating that Unc5A unlikely acts as a death receptor involved in

the increase of PCD in Necdin mutants.

A second potential candidate was TNFR1. Indeed, it has been

shown that, in the brachial region of the spinal cord, TNFa via

TNFR1 commits developing motoneurons to cell death before

PCD [34]. In addition, Necdin has been proposed to intervene in

the TNFa pathway in myoblasts [35]. Interestingly, we found that

TNFR1 was expressed in the ventral part of E12.5 spinal cords

(Figure 5B) and showed that TNFR1-positive cells were Necdin-

positive neurons (Figure 5C). Using mice expressing the green

fluorescent protein (GFP) under the control of the motoneuron-

Figure 2. Loss of lumbar specified motoneurons during embryonic development. Transverse sections of E11.5 (A) and E17.5 (C) lumbar
spinal cords were immunolabeled with anti-Islet-1/-2 antibodies. (A) and (B) At E11.5, when pools of post-mitotic motoneurons are generated, no
significant difference in the number of Islet-1/-2 positive cells/section is detected between the ventral horn spinal cords of mutant (Necdin+/2) and
control (Necdin+/+) mice. (C) and (D) At E17.5, when motoneurons are specified, a significant difference in the number of Islet-1/-2 positive cells/
section is observed between both genotypes, with a loss of 31% of cells in Necdin-deficient mice (Necdin+/2). Scale bar, 50 mm.
doi:10.1371/journal.pone.0023764.g002
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selective Hb9 promoter (Hb9::GFP), we demonstrated that the

TNFR1 positive cells were motoneurons (Figure S4A and Figure

S5). It is noteworthy that we did not observe any TNFR1-positive

cells in the lumbar region at E11.5, prior PCD (Figure S4B). This

observation is consistent with a role of TNFR1 signaling in the

death of lumbar motoneurons, which mainly take place between

E12.5 and E13.5. Overall our observations suggest that Necdin

might modulate the death promoting activity of TNFR1.

Increase of motoneuron death in the absence of Necdin
is linked to the TNFR1 pathway

In order to investigate whether in the absence of Necdin

TNFR1 signaling leads to an increase in motoneuron death, we

used cultures of embryonic motoneurons isolated from E12.5

spinal cords. Consistent with the previous in vivo and ex vivo

experiments, we found that in the absence of NTFs the percentage

of surviving Necdin-deficient motoneurons was significantly lower

than the percentage of surviving wildtype motoneurons cultured

under the same conditions (Necdin+/+: 46.7 (44.4, 51), n = 3;

Necdin+/2: 31.5 (21, 34.3), n = 3; P,0.05) (Figure 6A). We next

measured the axonal growth in the presence of NTFs and found

no difference between Necdin-deficient and wildtype motoneurons

(Figure 6B,C). These data suggest that in the presence of

neurotrophic support, Necdin-deficient and wildtype motoneurons

are indistinguishable. Then, we checked the efficiency of TNFa at

promoting cell death of mutant and wildtype motoneurons

(Figure 7A). Motoneurons were cultured in presence of NTFs

Figure 3. Increased apoptotic motoneuron cell death in the lumbar regions of mutant embryos compared to wildtypes. A wave of
motoneuron developmental cell death is known to occur normally in the lumbar region between the embryonic stages E11.5 and E14.5. (A)
Illustration of TUNEL and activated caspase-3 labeling on whole mount spinal cord, focused on the lumbar region at E13.5. (B) Quantification of
TUNEL positive cells in the lumbar whole mount spinal cord reveals a significant increase of TUNEL positive cells in mutant (Necdin+/2)(n = 5)
compared to wildtype (Necdin+/+) embryos (n = 5). (C) Quantification of activated caspase-3 positive cells on serial transverse sections of the lumbar
spinal cord at E13.5 show a significant increase of activated-Casapse-3 positive cells/section in mutant (Necdin+/2) mice (n = 5) compared with the
wildtype (Necdin+/+) embryos (n = 5). (D) Quantification of activated caspase-3 positive cells at different levels (brachial, thoracic, lumbar and sacral
regions) of the spinal cord was done on whole mount spinal cord immunolabeled with anti-cleaved caspase-3 antibody (n = 3). Data in (B) and (C) are
plotted in box-and-whisker format. Values in (D) represent means 6 standard deviation (S.D). Scale bar, 100 mm, (*P,0.05 and **P,0.01).
doi:10.1371/journal.pone.0023764.g003
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for 24 h and then treated for 48 hrs with TNFa at a concentration

that has previously been demonstrated to efficiently kill motoneu-

rons [36]. We observed that Necdin-deficient and wildtype

motoneurons were killed at a similar rate (about 60%; data not

shown). Since we proposed that Necdin acts by interfering with

extrinsic death signals in the absence of NTFs, we performed a

competition assay against endogenous TNFa in motoneuron

cultures maintained in the presence or absence of NTFs, using a

soluble chimeric protein (TNFR1-Fc) that impedes TNFa-TNFR1

interaction. In wildtype motoneurons, we observed that TNFR1-

Fc did not influence motoneuron survival either in the presence or

the absence of NTFs. In Necdin-deficient motoneurons, we

observed that, in the absence of NTFs, TNFR1-Fc rescued

motoneurons to the level observed in wildtype motoneurons,

cultured under the same conditions (none: 31.5 (21, 34), n = 3 and

TNFR1-Fc: 45.6 (41.3, 57.2), n = 3; P,0.05) (Figure 7B). By

interfering with TNFa-TNFR1 signaling, we can restore a normal

rate of death in mutant motoneurons, suggesting a role for Necdin

in the TNFR1 signaling pathway. Altogether, our results provide

evidence that Necdin contributes to motoneuron survival and

suggest that Necdin tunes sensitivity to TNFR1 signaling in

motoneurons.

Discussion

This study aimed at investigating the contribution of Necdin in

establishing and/or maintaining motor functions. Having previ-

ously observed that Necdin-deficient pups have a motor deficit that

impairs hindlimb movement, we show here that Necdin plays an

important role during the development of the motor system,

Necdin-deficient mice lacking approximately 30% of their lumbar

motoneurons.

Our first observation was that Necdin is expressed in all post-

mitotic motoneurons along the rostro-caudal axis as early as E10.5

and that its expression is maintained until postnatal ages. At E17.5,

which corresponds to the end of the period of naturally-occurring

cell death in the lumbar spinal cords, we observed a loss of 31% of

specified motoneurons in Necdin-deficient mice. However, at

E11.5, prior to the period of PCD, the pools of post-mitotic

motoneurons were similar between both mutant and wildtype

mice. During the wave of PCD, we further revealed a significant

40% increase in cell death in the lumbar region of Necdin-deficient

spinal cords (Figure 8). It is intriguing that although there is an

expression of Necdin in all postmitotic spinal motoneurons, an

increased developmental death is observed only at the lumbar level

in Necdin-deficient mice. Indeed, at E12.5, quantification of the

number of cleaved caspase-3 positive motoneurons in the brachial

and thoracic spinal cord gave similar results between wildtype and

mutant mice. Significantly, we previously reported an increase in

PCD of developing sensory neurons specifically in the lumbar

DRGs. Although, a concomitant sensory-motor pathology has

already been described in spinal and bulbar muscular atrophy,

distal spinal muscular atrophy type V or Charcot-Marie-Tooth

disease type 2D [37,38], restriction of the Necdin-associated

pathology to the lumbar region remains unreported. Longitudinal

gene profiling or proteomic analyses on different regions of the

spinal cord during development would help us to identify factors

governing such specificity.

Necdin and the developmental cell death of
motoneurons

Motoneurons are generated in excess in the developing spinal

cord and about 50% of them are eliminated during a phase of

Figure 4. Role of trophic factors in motoneuron survival of Necdin-deficient E12.5 embryos. (A) Dissections of the lumbar spinal cord
regions were performed at E12.5 and the explants were cultured in the presence or in the absence of NTFs for 2 days. Cryostat transverse sections of
explants were then immunolabeled using Islet-1/-2 antibodies (green) in order to define the number of surviving motoneurons per explant. (B) In the
presence of NTFs (+NTFs), the number of Islet-1/-2 positive cells is not significantly higher in mutant (Necdin+/2) explants (n = 5) compared with
wildtype (Necdin+/+) explants (n = 5). (C) In the absence of NTFs (2NTFs), a significant 35% decrease of Islet-1/-2 positive cells is observed in Necdin-
deficient (Necdin+/2) explants (n = 8) compared to wildtype (Necdin+/+) explants (n = 8), suggesting that the increase of cell death in Necdin-deficient
motoneurons is not dependant on NTFs. Scale bar: 100 mm.
doi:10.1371/journal.pone.0023764.g004
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programmed cell death (Figure 8A). Accumulating evidence

suggests that motoneurons compete for access to limited quantities

of neurotrophic support and that neurotrophic signaling in

motoneurons prevents cell death cascades, including activation

of caspases. Extrinsic death pathways, that mediate the activation

of death signaling cascade, can be triggered by cell surface

receptors such as Fas, TNFR, and p75NTR following activation by

their respective ligands. TNF a has been shown to play a role in

developmental cell death [39], including brachial motoneuron cell

death [34]. However during developmental PCD, the pattern of

neuronal death in mice lacking TNFR1 is unchanged, suggesting

that compensatory mechanisms might take place to complete the

developmental program of motoneuron death [40]. Here we show

that in the absence of Necdin there is an increase of motoneuronal

Figure 5. TNFR1 and Necdin are coexpressed in lumbar motoneurons at E12.5. (A–C) Immunohistochemistry analysis revealing the
expression of the death receptors Unc5 (A) or TNFR1 (B and C), on different transversal sections corresponding to the brachial, thoracic and lumbar
levels of E12.5 spinal cord. (A) Unc5 (green) is expressed in the brachial ventral horn of the spinal cord. Its expression is fainter in the thoracic ventral
horn and is not detected in the lumbar ventral horn. (B) Necdin (red) and TNFR1 (green) are coexpressed in motoneurons of the lumbar region. (C)
Higher magnification of (B) showing the colocalization of Necdin with TNFR1. Scale bar: A and B, 100 mm; C, 250 mm.
doi:10.1371/journal.pone.0023764.g005
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death during the wave of PCD but no, or limited compensatory

mechanisms take place.

Our results are in agreement with a model (Figure 8), in which

newly generated post-mitotic motoneurons are committed to

undergo programmed cell death very early, before they innervate

their target muscles. The death program would not be completed

if they gain access to trophic support (around 50% of them). In the

remaining proportion of motoneurons that fail to access NTFs, the

death program would be completed and cells eliminated. In the

light of our results, we can propose that Necdin may act as an anti-

apoptotic molecule that maintains post-mitotic motoneurons

competent to respond to neurotrophic signals (Figure 8). Sedel,

F. and colleagues proposed that TNFa can act as an extrinsic

signal that commits motoneuron to a cell death fate [34], at least at

the brachial level, two days before the period of cell death begins.

Interestingly, at the brachial level, TNFR1 is transiently expressed

Figure 6. Necdin deficiency decreases motoneuron survival in absence of NTF but does not alter axonal growth. (A) Embryonic
motoneurons isolated from Necdin+/+and Necdin+/2 mice were cultured in the presence (+NTFs) or in the absence (2NTFs) of a cocktail of NTFs. After
24 hours, surviving motoneurons were counted and for each genotype survival is expressed as the percentage of the number of motoneurons
surviving in the presence of NTF. In absence of NTFs a significant decrease of surviving motoneurons is observed in mutant compared to wildtype
motoneurons. (B) When cultured for 3 days in the presence of NTFs Tau immunolabeling reveals a similar morphology between both genotypes. (C)
When measuring, axonal length no difference is detected between mutant (Necdin+/2) and wildtype (Necdin+/+) motoneurons. Values are means 6
S.D (in (A) or 6 standard error of the mean in (B).
doi:10.1371/journal.pone.0023764.g006

Figure 7. Increase of motoneuron cell death in absence of Necdin is linked to the TNFR1 pathway. (A) When cultured in presence of NTFs
Necdin wildtype (Necdin+/+) and mutant (Necdin+/2) motoneurons are equally sensitive to death triggered by TNF alpha. Embryonic mutant and
wildtype motoneurons were cultured in presence of NTFs for 24 hours and then treated or not with TNFa. After 48 hours of treatment motoneuron
survival was assessed and expressed relative to non-treated cells. (B) In the absence of NTFs, TNFR1-Fc does not rescue cell death observed in
wildtype motoneurons, but it restores the level of cell death in Necdin deficient motoneurons to the level observed in wild type cells. Wildtype or
mutant motoneurons were cultured in presence (+) or absence (2) of NTFs and treated or not with 100 ng/ml of TNFR1-Fc 1 hours after seeding.
Motoneuron survival was determined 24 hours after treatment and expressed as the percentage of the number of motoneurons surviving in the
presence of NTF under same conditions. These results suggest that the increase of cell death observed in Necdin-deficient motoneurons is linked to
the TNFa/TNFR1 pathway. Histograms show mean values 6 S.D of triplicate wells in at least three independent experiments.
doi:10.1371/journal.pone.0023764.g007
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during this critical period and we also showed a TNFR1

expression at E12.5 (and not at E11.5) in lumbar motoneurons.

In the absence of Necdin, a TNF-dependent process could be

exacerbated.

Necdin and TNFa/TNFR1 pathway
Using cultures of E12.5 spinal cord explants and motoneurons,

we observed that in the absence of NTFs, motoneuron survival

was significantly lower (about 40%) in the absence of Necdin than

in wildtype. This difference in neuron viability, which is similar to

that observed in vivo, suggests that Necdin-deficient motoneurons

have an increased susceptibility to death factor(s)/death receptors

signaling. The first Necdin interactor to consider was the receptor

p75NTR. p75NTR is expressed in rat developing motoneurons

during the wave of PCD [41], and also in the spinal cord of wild-

type and Necdin-deficient embryos at E13.5 (data not shown).

Necdin interacts with p75NTR [15,42] and a common signaling

pathway involving both proteins and allowing the internalization

of p75NTR has been proposed [43]. However, mice lacking

p75NTR did not shown any loss of spinal cord motoneurons at P7

[44] neither an increase of PCD at E13.5 [33]. In developing

sensory neurons of dorsal root ganglia of Necdin-deficient embryos,

we previously described a similar increased cell death during the

wave of PCD; however, this increased cell death does not affect the

number of p75NTR expressing neurons [27]. Altogether, these data

indicate that Necdin might also function in a p75NTR-independent

manner to prevent motoneuron developmental cell death in vivo.

Based on our data, we propose that the TNFa/TNFR death

signaling pathway is involved in the increased cell death observed

in Necdin-deficient motoneurons. It has previously been proposed

that Necdin intervenes in the TNFa pathway [35]. The authors

showed that in primary myoblasts isolated from Necdin-deficient

mice, the TNFa pathway inhibits, at least in part, their myogenic

differentiation. Interestingly, these mutant myoblasts expressed a

higher amount of TNFR1 at the plasma membrane, as measured

by fluorescence-activated cell sorting (FACS) analysis, although the

quantity of the Tnfr1 mRNA was not increased [35]. Taken

together, these data suggest that an increase in TNFR1 receptors

at the plasma membrane of motoneurons might also explain why

Necdin-deficient motoneurons have an increased sensitivity to

TNFa in the window of time in which PCD occurs. In our hands,

primary cultured motoneurons did not survive FACS analysis and

we were not able to reliably quantify the levels of TNFR1 receptor

at the plasma membrane by immunolabeling.

Necdin interaction with the TNFR1 signaling pathway
The constitutive or inducible TNFR1 release to the extracellular

compartment plays a role in the control of TNFR1 at the cell

membrane and can also regulate the TNFa activity by the

generation of extracellular receptors that function as TNFa-

binding proteins [45]. In human vascular endothelial cells, it has

been shown that extracellular TNFR1 release requires the

calcium-dependent formation of a Nucleobindin-2 (NucB2)-

aminopeptidase regulator of TNFR1 shedding (Arts-1) complex

associated with TNFR1 [46]. Interestingly, it has previously been

shown that Necdin interacts with NucB2, thereby participating in

the control of Ca2+ homeostasis in neuronal cytoplasm [18]. We

therefore hypothesized that, indirectly, Necdin might control the

TNFR1 release via regulation of the NucB2-Arts-1 complex.

First, we performed immunofluorescence confocal laser-

scanning microscopy experiments in order to check whether

NucB2 and Arts-1 are expressed in E12.5 developing motoneu-

rons and to search for a colocalization of Necdin, NucB2, Arts-1,

and TNFR1. We found that TNFR1 colocalized partially with

Figure 8. A proposed model for the anti-apoptotic role of Necdin in developing motoneurons. During embryogenesis, the development
of motoneurons starts by a proliferation step in which Necdin is not expressed. These neuronal precursors differentiate into post-mitotic neurons and
start to express Necdin (E10.5). These pre-specified motoneurons become sensitive to external death factors and in a normal situation (A) half of them
will die and half of them will survive thanks to NTFs. In absence of Necdin (B), motoneurons are more sensitive to the TNFa death factor and an
increase in cell death is observed.
doi:10.1371/journal.pone.0023764.g008
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Arts-1, NucB2 and Necdin in cultured E12.5 embryonic

motoneurons (Figure S5 and Text S1, Supporting materials

and methods). Because of the limited quantity of material

obtained from primary culture of motoneurons, we were not able

to perform immunoprecipitation assays with the different

partners. In order to reveal in those motoneurons a functional

role of the Arts-1-NucB2 complex in extracellular TNFR1

release, we then performed a proximity ligation assay (PLA)

using the Duolink system to visualize potential physical

interactions (10–30 nm) between TNFR1 and Arts-1, TNFR1

and NucB2 and TNFR1 and Necdin [47,48] (Figure S5D–I).

Necdin-NucB2 and NucB2-Arts1 pairs were not tested due to the

overlapping species specificities of the available antibodies.

Analysis of PLA signal was performed using confocal imaging

and by counting the number of dots. We detected a high number

of PLA signals for the TNFR1-Arts-1 pair, comparable with the

positive control (Figure S5D,G,I). A lower number of dots was

detected for the TNFR1-NucB2 pair (Figure S5E,I) and only few

dots were counted for the TNFR1-Necdin pair (Figure S5F,I).

These data suggest a physical interaction between TNFR1 and

Arts1 and potentially TNFR1 and NucB2. These preliminary

data suggest that the TNFR1/Arts-1/NucB2 complex might also

exist in developing motoneurons, but we cannot demonstrate

that Necdin interacts with NucB2 since appropriate antibodies

for such an experiment are not available. In our hypothesis,

Necdin would influence the release of TNFR1 into the

extracellular space and/or the quantity of TNFR1 at the cell

surface in motoneurons.

Necdin and the motor deficit in Prader-Willi syndrome
PWS results from a loss of paternal expression of several

contiguous imprinted genes located in the 15q11-q12 region.

Recent studies support a major role of the SNORD116 locus in the

PWS phenotype, with three patients showing an overlapping

microdeletion [49,50,51], encompassing the SNORD116 genes.

However, the question about the mechanism(s) by which these

deletions, including the SNORD116 locus, cause the physiopathol-

ogy observed in these patients remains elusive. Necdin-deficient

mice present defects reminiscent of specific PW symptoms and

interestingly, at the cellular level, a same defect of polarization of

the cytoskeleton is described in fibroblasts of PW patients and in

mouse embryonic fibroblasts of Necdin deficient mice [25]. This

observation reinforces the idea that the lack of Necdin is indeed

responsible for some PW symptoms. It would be interesting to

evaluate whether levels of Necdin in patient’s tissues are altered by

SNORD116.

The causes of the severe hypotonia, in early infancy, and of

motor deficiency in later life, observed in PWS [52], are

unresolved but relate to impairments in the nervous and muscular

system and body composition. Our results reveal an important role

of Necdin during motoneuron development, strongly suggesting

that the lack of Necdin is involved in motor deficiency in PWS.

The expression of NECDIN in human embryonic spinal cord is in

accordance with this hypothesis [2]. Since the TNFa-TNFR1

pathway is involved in injury-induced apoptotic death of adult

motoneurons, our study raises the question on the role of Necdin

in motoneuron death following nerve injury or in neurodegener-

ative diseases. Interestingly, in a transgenic mouse model of

amyotrophic lateral sclerosis (ALS) expressing the G93A mutation

of superoxide dismutase-1, a modulation of Necdin expression has

been documented. Necdin was found to be upregulated at the

presymptomatic stage and downregulated at the end stage,

suggesting that Necdin might contribute to the neurodegenerative

process in ALS [53].

Materials and Methods

Ethics statement
All breeding and experiments were carried out in accordance

with the European and National guidelines for the care and use of

laboratory animals (Council Directive 86/6009/EEC).

Breeding and genotyping of Necdin-deficient mice
Necdin-deficient mice were generated as previously described

[6]. We used a mouse colony generated on the C57BL/6J

background (more than 10 backcrosses). Because Necdin is an

imprinted gene, only paternally expressed, we crossed heterozy-

gote males (Necdin2m/+p) with wildtype C57BL/6J females, in the

generated litters, half the embryos were control (Necdin+/+) and half

were functionally Necdin-deficient (Necdin+/2). The age of the

embryos was determined at 9:00 am by the presence of a vaginal

plug in the pregnant mothers and considered as embryonic day 0.5

(E0.5). For motoneuron cultures, embryos were kept in Hibernate

E (Invitrogen, Carlsbad, CA, USA) at +4uC during their

genotyping. All embryos were genotyped by PCR with the

following primer sets: Nec F, 59-TCTCATGCTTGAACTGCA-

39 and Nec B, 59- CAGGTAATTCTGCTGGAC-39; a 1503 bp

and a 228 bp fragment were generated, which correspond to the

wildtype or mutant allele respectively. PCR conditions were: 94uC
1 mn then 35 cycles: 94uC 20 sec, 56uC 20 sec, 72uC 45 sec.

Immunohistochemistry
Embryos or explants were collected, fixed and sectioned using a

cryostat (10 or 12 mm thick) as previously described [27]. Sections

were blocked for 1 hour at room temperature in phosphate

buffered saline (PBS) containing 10% heat-inactivated goat or

donkey serum, 0.5% Triton X-100 and incubated overnight at

+4uC with primary antibodies diluted in PBS containing 10%

heat-inactivated goat serum and 0.1% Triton X-100. The primary

antibodies were: rabbit polyclonal anti-Necdin (07-565; Millipore,

Bedford, MA, USA; 1:500), mouse monoclonal anti-Islet-1 and

Islet-2 (2D6 and 4D5; Developmental studies Hybridoma Bank of

Iowa University; 1:500 and 1:100 respectively), rabbit polyclonal

anti-cleaved-caspase-3 (9661, Cell Signaling Technology, Beverly,

MA, USA; 1:500), rabbit polyclonal anti-Unc5 (ab39654, Abcam,

1:500), mouse monoclonal anti-TNFR1 (sc-8436, Santa Cruz

Biotechnology, Santa Cruz, CA, USA, 1:500). Sections were

washed 3 times in PBS and incubated for 1 hr at room

temperature with secondary antibodies diluted in 5% Goat serum,

1% BSA, 0.3% Triton X-100 in PBS. Biotinylated secondary

antibodies and the ABC complex from the Vectastain kit (Vector

Laboratories, Burlingame, CA, USA), were used for detection.

Alternatively, fluorochrome-conjugated secondary antibodies were

used (Jackson Immunoresearch laboratories, West Grove, PA,

USA). Sections were examined on a Zeiss Axioplan 2 microscope

with an Apotome module.

TUNEL assay
To identify cells undergoing apoptosis, the terminal deoxynu-

cleotidyl transferase-mediated biotinylated dUTP nick end

labeling (TUNEL) technique was used. Whole-mount TUNEL

was performed essentially as previously described [30]. Spinal

cords were fixed, dehydrated, and rehydrated through graded

ethanol concentrations into PBS and then stained with the

ApopTag kit (Oncor Gaithersburg, MD, USA). Spinal cords were

incubated in ApopTag equilibration buffer for 5 min at room

temperature and transferred to the working strength TdT enzyme

solution for 12 hr at 4uC, followed by 2 hr at 37uC. The reaction

was stopped by incubating the spinal cords in ApopTag stop
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solution for 40 min at 37uC. After washing in TBST (0.14 M

NaCl, 10 mM KCl, 25 mM Tris, pH 7.0, and 0.1% Tween-20),

endogenous AP was inactivated by incubating the spinal cords in

TBST for 20 min at 65uC. The spinal cords were then incubated

in blocking solution (10% goat serum, 1% BSA in PBS) followed

by an overnight incubation at 30uC with an anti-DIG-AP

conjugate (Roche Diagnostics, Indianapolis, IN, USA; diluted

1:2000 in blocking solution). They were then extensively washed in

MABT, stained as described for the whole-mount in situ

hybridization [27], and examined under transillumination. Several

spinal cords from wildtype and mutant embryos, issued from the

same litter, were examined. TUNEL positive cells were counted in

the lumbar region specifically as previously described [30].

Spinal cord explants
Lumbar spinal cord regions were dissected from E12.5 (somites

counted) wildtype or Necdin-deficient embryos issued from the

same litter. We excluded the ventral part of the dorsal root ganglia

with the corresponding part of the sclerotome. From each lumbar

region dissected, two sections were made to create three explants.

The dissection and culture of explants was performed as previously

described [34]. Briefly, these explants were grown in four-well

culture dishes on coverslips previously coated with polylysin/

laminin in Neurobasal medium containing 20% FBS and NGF

(100 g/ml). Culture medium [34] was complemented with (+NTF)

or without (2NTF) a cocktail of NTFs (GDNF, 1 ng/ml; CNTF,

10 ng/ml and BDNF, 10 ng/ml). After two days in vitro (DIV),

explants were fixed for 10 min at RT in 4% paraformaldehyde in

PBS, washed 3 times in cold PBS, and incubated overnight in 20%

sucrose at +4uC. The explants were then frozen in a Tissue-Teck

cryostat (Oxford laboratories) and stored at 280uC. Cryosections

(12 mm) were performed for each animal (3 explants/lumbar

spinal cord) and immunolabeled with anti-Islet-1/-2 antibodies as

indicated above. An average of 25 sections was obtained for each

explant. The number of Islet-1/-2 positive cells was counted for

each section and the mean of these values (25 sections63 explants)

was calculated for each lumbar spinal cord. Values in Figure 4B

represent the mean values of sections per animal.

Cell survival
For motoneuron quantification in vivo, spinal cord sections

(10 mm each, collected every fourth sections) were immunostained

with the motoneuron marker Islet-1/-2 as indicated above. Only

the cells located in the ventral part were considered as

motoneurons. The interneurons located in the medio-dorsal part

were separately counted at E17.5.

For caspase-3 quantification in the lumbar region in vivo, the

number of cleaved caspase-3 positive cells was counted on each

transversal section (10 mm), and the mean number of caspase-3

positive cells was determined per section. For the quantification of

cleaved caspase-3, counting was done directly on whole mount

spinal cords immunolabeled with anti-cleaved-caspase-3 antibod-

ies.

For motoneuron culture, E12.5 Necdin+/+ and Necdin+/2

embryos were collected from the same mother and genotyped

by PCR as described above prior to dissection of the spinal cord.

For Hb9::GFP motoneuron cultures, E12.5 transgenic embryos

were sorted under a fluorescence microscope prior to dissection of

the spinal cord. Embryonic motoneurons were isolated as

described [54,55], using iodixanol density gradient centrifugation.

Motoneurons were plated on poly-ornithine/laminin-treated wells

in supplemented Neurobasal medium at a density of 1,100 cells/

cm2 for survival assays and 2,600 cells/cm2 for immunofluorescent

labeling. Neurons were cultured in the presence (or not, when

indicated) of a cocktail of NTFs (GDNF, 0.1 ng/ml; BDNF, 1 ng/

ml and CNTF 10 ng/ml) [54,55]. When indicated motoneurons

were treated at indicated times with 100 ng/ml of TNFR1-Fc

(Alexis Biochemicals, San Diego, CA, USA) or 100 ng/ml of

TNFa (BD Biosciences, Franklin Lakes, NJ, USA) and survival

was determined at indicated times under light microscopy using

morphological criteria [54]. To compare values from different

experiments in a quantitative manner, the number of motoneu-

rons cultured in the presence of neurotrophic factors was taken as

100% survival.

Neurite outgrowth analysis
Neurons were fixed three days post seeding with 4%

paraformaldehyde in PBS and immunostained with rabbit

polyclonal anti-Tau antibodies (ab64193, Abcam, Cambridge,

MA, USA, 1:200) labeling being revealed using a Cyanine 3 anti-

rabbit antibody (Jackson Immunoresearch, 1:500) and a mouse

monoclonal anti-GFP (NB600-597, Interchim, 1:500) antibody

revealed using an Alexa anti-mouse antibody (1/1000). Based on

the immuno labeling and using Metamorph software, the total

length of neurites was measured and compared between mutant

and wildtype motoneurons.

Western blotting
Lumbar ventral spinal cords were dissected at different

embryonic and postnatal developmental stages from wildtype

and Necdin mutant mice. Tissues were snap frozen in liquid

nitrogen and stored at 280uC. Protein extractions were performed

as indicated previously [56]. Homogenate samples containing

equal amount of proteins (30 mg as determined using BCA Protein

Assay Reagent, Thermo scientific, Waltham, MA,USA) were

boiled for 5 min in SDS buffer (50 mM Tris-HCl, pH 6.6, 2%

SDS, 10% glycerol, 0.1% bromophenolblue, and 5% b-mercap-

toethanol), and separated on a 10–20% SDS/polyacrylamide gel

(Biorad) in Tris-Tricine buffer. After migration, proteins were

transferred onto 0.2 mm nitrocellulose membranes (Millipore).

Membranes were blocked for 1 hour at RT with TBS-T buffer

(150 mM NaCl, 20 mM Tris HCl, pH 7.4, 0.1% Tween-20)

containing 5% milk. The membranes were then incubated

overnight with polyclonal antibodies against Necdin diluted at

1:500 in TBS-T containing 2.5% milk. Membranes were washed

three times in TBS-T and incubated for 1 hour with an anti-rabbit

horseradish peroxydase antibody. The proteins were visualized by

enhanced chemiluminescence (ECL plus, GE Healthcare, Buck-

inghamshire, UK). Each blot was re-probed using an anti mouse

anti-Actin (Sigma-Aldrich, St Louis, MO, USA) antibody, as

loading control.

Statistical analyses
According to the sample size, we used non-parametric statistical

analysis. Statistical comparisons between independent samples

were made using the Wilcoxon-Mann-Whitney rank sum test

(StatXact software, Cytel Inc., Cambridge, MA, USA). Values are

indicated as following: (Q2 (Q1, Q3), n, P value), where Q2 is the

median, Q1 is the first quartile and Q3 is the second quartile. The

level of significance was set at a P value less than 0.05.

Supporting Information

Figure S1 The absence of Necdin leads to motor deficit
in mice. (A) At P8, a difference in the body size and in position of

the hindpaws is observed between wildtype (Necdin+/+) and Necdin-

deficient (Necdin+/2) pups. The Necdin+/2 pups are unable to flex

and move their hindlimbs. (B) In adulthood, the Necdin-deficient
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(Necdin+/2) mice have a reduced performance in the rotarod test in

comparison with the wildtype (Necdin+/+) mice.

(EPS)

Figure S2 Necdin mRNA is expressed in the spinal cord
during development. (A) Immunostaining of brachial and

lumbar spinal cord of Hb9::GFP E12.5 embryos using antibodies

against Necdin (in red). (B) In situ hybridization analysis was

conducted, as previously described (Andrieu et al., 2006), to detect

Necdin mRNA in the spinal cord at indicated developmental stages.

(C) Combined immunohistochemical labeling (Islet-1/-2) and in

situ hybridization (Necdin) on E12.5 spinal cord sections. Scale bar

in (A), (B), 100 mm and (C), 20 mm.

(TIF)

Figure S3 The number of Islet-1/-2 positive cells in the
medio-dorsal part of the spinal cord is not modified in
the Necdin-deficient embryos. (A) At E17.5 anti-Islet-1/-2

antibody recognizes ventral motoneurons and a pool of interneu-

rons located in the medio-dorsal part of the spinal cord. (B) A

quantification of these Islet-1/-2 positive interneurons shows no

difference between both genotypes throughout the rostro-caudal

level.

(PDF)

Figure S4 TNFR1 is expressed in the lumbar region of
the spinal cord at E12.5 but not at E11.5. Immunohisto-

chemistry analysis revealing the expression of TNFR1 (in red) (A

and B) and Hb9 (Hb9::GFP) (in green), on different transversal

sections corresponding to lumbar levels of spinal cord at E12.5 (A)

and E11.5 (B). TNFR1 and Hb9 are coexpressed in ventral

motoneurons at E12.5 (A) but not at E11.5 (B). Transverse sections

were countered stained with DAPI (in blue).

(TIFF)

Figure S5 Detection of interactions between TNFR1 and
the Arts1-NucB2 complex and Necdin. (A–C) Immunoflu-

orescence labeling of endogenous TNFR1 (in red), Arts1, NucB2

and Necdin (in green) in primary cultures of embryonic

motoneurons. Motoneurons are visualized by the expression of

GFP (in blue) under the control of the Hb9 promoter. (D–H) PLA

labeling pattern of TNFR1-ARTS1 pair (D), TNFR1-Nuc B2 pair

(E), TNFR1-Necdin (F) pair in embryonic motoneurons (in green,

Hb9::GFP). (G) As a positive control, an anti-TNFR1 primary

antibody was used in combination with anti-mouse PLA PLUS

and anti-mouse PLA MINUS probes. (H) As a negative control, an

anti-TNFR1 primary antibody was used in combination with anti-

mouse PLA PLUS and anti-rabbit PLA MINUS probes. (I) Box-

and-whisker plot showing the number of PLA dots for each

indicated pair (I). Scale bar, 20 mm.

(TIFF)

Text S1 Supporting materials and methods.

(DOC)
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