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Abstract

Within a few years of the discovery of Toll-like Receptors (TLRs) and their role in innate 

immunity, viral and bacterial proteins were recognized to antagonize TLR signal transduction. 

Since then, as TLR signaling networks were unraveled, microbial systems have been discovered 

that target nearly every component within these pathways. However, recent findings as well as 

some notable exceptions promote the idea that more of these systems have yet to be discovered. 

For example, we know very little about microbial systems for directly targeting non-cytoplasmic 

portions of TLR signaling pathways, i.e. the ligand interacting portions of the receptor itself. In 

this review, we compare and contrast strategies by which bacteria and viruses antagonize TLR 

signaling networks to identify potential areas for future research.

Introduction

Innate immunity is mediated by specialized proteins called pattern recognition receptors that 

sense microbial invaders and guide our immune systems to eradicate infections. These 

receptors detect pathogen associated molecular patterns (PAMPs), which are structures 

common to many microbial species, such as viral nucleic acids or bacterial 

lipopolysaccharides (LPS). The first identified and most studied group of these receptors, 

Toll-like-Receptors (TLRs), are displayed at the cell surface and within endosomal 

compartments where they act as molecular sentinels to detect invading microbes. Upon 

recognition of a pathogen, in either infected or non-infected cells, TLRs initiate a signaling 

cascade that leads to expression and release of pro-inflammatory cytokines, chemokines, and 

Type-I interferons. Cytokine and interferon expression leads to recruitment and activation of 

immune cells to promote clearance of the infectious agent, but also stimulates expression of 

genes to block entry and/or replication of microbes. This elegant system is adapted to detect 

and eliminate almost any threat. However, pathogenic microbes are masters of evading host 

innate immunity and have evolved a multitude of mechanisms for preventing the 

© 2015 Published by Elsevier Ltd.

This manuscript version is made available under the CC BY-NC-ND 4.0 license.
*Correspondence to: jonathan.kagan@childrens.harvard.edu, Phone: 617-919-4852, Fax: 617-730-0498. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Curr Opin Immunol. Author manuscript; available in PMC 2016 February 01.

Published in final edited form as:
Curr Opin Immunol. 2015 February ; 0: 61–70. doi:10.1016/j.coi.2014.12.011.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



antimicrobial activities of TLR signaling pathways. Microbial manipulation of host TLR 

signaling comes in the form of three main strategies: 1) directly antagonize signaling 

components 2) avoiding detection by altering their PAMPs to be less immunogenic 3) 

disrupting cellular organelles/induce cell death. Here we will focus our discussion on direct 

antagonism approaches.

An abundance of viral proteins are known to antagonize TLR signaling at almost every 

signaling step (reviewed [1]), from blocking signaling intermediates to inhibition of 

downstream transcription factor activation. While much less is understood about how 

bacteria block TLR pathways, recent work in this area suggests that they too antagonize 

several steps of these pathways. We postulated that by surveying the known systems utilized 

by viruses and bacteria to block TLR signaling, patterns would emerge that would allow us 

to predict where future research might be most productive. Microbial strategies were 

organized by the step, or the module, of TLR receptor pathways that they antagonize (Table 

1). The receptor module (Fig.1) consists of binding of ligands by various TLRs (reviewed 

[2]), receptor dimerization, and recruitment of the receptor to subcellular signaling sites such 

as phosphatidylinositol 4,5-bisphosphate (PIP2) rich regions of the plasma membrane, or 

phosphatidylinositol 3-phosphate (PI3P) rich endosomes [3, 4]. Once the receptor has 

moved to signaling sites, it can associate with intracellular sorting adaptor proteins, which 

by virtue of their association with lipids such as PIP2 and PI3P, are prepositioned on 

specific organelles to detect activated TLRs. Sorting adaptors, TIRAP and TRAM, promote 

recruitment of signaling adaptors, MyD88 and TRIF, respectively [5], which are thought to 

trigger the formation of higher order filamentous structures called Supramolecular 

Organizing Centers (SMOC) (Fig.1) (Kagan et al, In Press). SMOCs are multiprotein 

complexes that have been proposed to serve as organizing centers that coordinate the 

multitude of cellular responses to microbial infections and cytokines (Kagan et al, In Press). 

The best-characterized SMOC is that formed between the aforementioned TIRAP and 

MyD88 adaptors and IRAK kinases. This SMOC has been dubbed the myddosome [4, 6, 7]. 

Myddosome formation activates a signaling module consisting of an E3 ubiquitin ligase 

called TRAF6 and the TAK1 complex (Fig.1). TAK1 phosphorylates proteins leading to 

activation of two signaling modules: the Mitogen Activated Protein Kinases (MAPKs) and 

the NEMO complex (Fig.1). Signal transduction through MAPKs or the NEMO complex 

results in the final signaling module: activation and nuclear translocation of transcription 

factors (Fig.1), such as AP-1 and nuclear factor κB (NF-κB), respectively. In addition, the 

NEMO complex can also activate transcription factors of the interferon regulatory factor 

(IRF) family (reviewed [2, 8]). Below we will describe recent findings of microbial systems 

to antagonize each TLR signaling module.

The SMOC

SMOC formation immediately follows receptor activation and is initiated by interaction 

between TLRs and sorting adaptor proteins found on specific organelles within the cell. This 

interaction occurs between the Toll/IL-1 Receptor/Resistance (TIR) domains present on both 

TLRs and adaptor proteins [9]. Sorting adaptors recruit signaling adaptors to promote 

formation of SMOCs, such as the myddosome [4, 5]. The importance of the TLR-induced 

SMOCs in signal transduction can be revealed by the various pathogenic proteins that have 
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been proposed to counteract the functions of the TIR domain containing adaptors. Microbial 

systems for antagonizing this signaling module mostly target adaptor proteins and are 

distributed fairly equally between viruses and bacteria. However, viruses and bacteria tend 

to rely on their own unique mechanisms of antagonism. For example, viruses heavily favor 

degrading these adaptor proteins, such as the 3C protease of coxsackievirus B that cleaves 

TRIF [10], where bacteria often use molecular mimicry by producing proteins that interfere 

with adaptor protein aggregation. Briefly, bacteria use elaborate secretion systems to inject 

proteins called effectors into host cells. Some of these effectors contain TIR domains that 

interact with TIR domains of MyD88, TIRAP, TRIF, TRAM as well as the TLRs. TIR 

domain containing proteins of bacteria have been reviewed recently [9], however new 

findings of these proteins in Yersinia pestis and Staphylococcus aureus demonstrate that this 

field is rapidly growing and likely more TIR domain containing proteins that can block TLR 

signaling will emerge [11, 12]. Interestingly, the first protein found to interfere with 

adaptors to inhibit TLR signaling, A46R of Vaccinia virus (VACV), functions similar to the 

bacterial TIR domain-containing proteins. A46R binds to MyD88, TIRAP, TRIF, TRAM 

and TLR4, and can prevent signal transduction [13, 14]. This, however, is not the only 

example of overlap between microbial strategies for blocking adaptor proteins. In fact, an 

effector called TcpB from Brucella spp. binds TIRAP and induces its ubiquitination and 

subsequent degradation [15]. This mechanism is reminiscent of the actions of herpes 

simplex virus (HSV-1) immediate early protein ICP0 that targets MyD88 and TIRAP for 

degradation [16]. Interestingly, the degree of mimicry of TcpB for TIRAP is remarkable, in 

that (like TIRAP) it contains a TIR domain and a domain that binds to the plasma membrane 

via interactions with PIP2. Prior to inducing TIRAP degradation, TcpB binds to TIRAP and 

prevents its interaction with TLR4 [17, 18]. Therefore, TcpB represents a unique example 

where a single protein binds and physically blocks but also promotes degradation of 

adaptors. Unlike ICP0, which potentially targets TIRAP via its E3 ubiquitin ligase activity, 

it remains unclear how TcpB induces TIRAP degradation. Future study of the function of 

this protein and its interactions with TIRAP will lead to greater understanding of the earliest 

modules of TLR signaling. Overall, findings of bacterial proteins that target the adaptors 

will likely continue. Intriguingly, while several microbial proteins engage myddosome 

components through TIR-TIR interactions, only one protein is known to antagonize kinases 

within the myddosome. The A52R protein of VACV binds IRAK2, a myddosome 

component, to inhibit signaling [19]. Future research will be needed to determine if other 

microbes utilize similar strategies to inhibit TLR signaling at the module of SMOC 

assembly or function.

TRAF6 and TAK1 complex

Myddosome formation involves the recruitment of IRAK family kinases, which in turn 

activate a module consisting of the E3 ubiquitin ligase TRAF6 and the MAP3K, TAK1. 

TRAF6 polyubiquitinates itself and recruits TAK1 regulatory components called TAK1-

binding protein (TAB) 1–3. Binding of TAB2 and TAB3 to ubiquitin chains made by 

TRAF6 is required to activate TAK1 [20]. Active TAK1 phosphorylates proteins of the 

MAPK cascade and also the NEMO complex, leading to their activation (discussed in detail 

below). In the last few years, several discoveries of both viral and bacterial mechanisms for 
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antagonizing the TRAF6 and TAK1 complex have emerged. First, the kinase US3 of HSV-1 

was shown to reduce levels of polyubiquitination on TRAF6, resulting in inhibition of TLR2 

signaling during viral infection [21]. Inhibition of TLR2 signaling by US3 is dependent on 

its kinase activity and found to be downstream of MyD88. However, how this protein affects 

TRAF6 ubiquitination remains an open question [21]. Next, recent work on Epstein-Barr 

virus protein BPLF1 suggests that this protein is a deubiquitinase that also inhibits 

ubiquitination of TRAF6 [22, 23]. Furthermore, OspI of Shigella flexneri is an example of a 

bacterial protein that inhibits TRAF6 polyubiquitination [24]. However, this enzyme uses a 

unique approach by deamidating a glutamine residue in the E2 ubiquitin conjugating 

enzyme UBC13, which is required for ubiquitination of TRAF6 [24]. Enzymes that target 

activation of the TAK1-TAB1–3 complex downstream of TRAF6 were also described, 

including NleE from Enteropathogenic Escherichia coli (EPEC) and YopJ from Yersinia 

pestis [25, 26]. NleE is a methyltransferase that targets critical zinc coordinating cysteine 

residues within zinc-finger domains of TAB2 and TAB3. This novel mechanism results in 

loss of ubiquitin binding activity of TAB2 and TAB3, preventing activation of TAK1 and 

subsequently, NF-κB [25]. In contrast, YopJ inhibits TAK1 kinase activity by acetylating 

key residues in its active site [26]. In this way YopJ blocks TAK1-dependent activation of 

MAP2Ks and inhibitor of NF-κB kinases (IKKs). Interestingly, unlike what has been found 

for targeting many of the other modules of TLR signaling, the mechanisms for targeting this 

module are diverse and dissimilar between viruses and bacteria. Perhaps future research will 

uncover how common each of these mechanisms are across a broad range of pathogens. On 

the other hand, with so few examples described, potentially other fascinating mechanisms 

for blocking this module of signaling will be discovered.

MAPK Cascade

The MAPK cascade is a phospho-relay system that signals through ERK, JNK and p38 to 

activate the transcription factor AP-1. Previously, only bacterial systems were known to 

block MAPK cascades (reviewed [27]). However, recent research revealed viral proteins 

capable of targeting MAPKs, including VP24 of Ebola virus, which inhibits interferon-β 

(IFN-β) stimulated JAK-STAT signaling by blocking phosphorylation of p38 [28]. 

Furthermore, the surface antigen of Hepatitis B virus (HBsAg) blocks TLR2 signaling by 

inhibiting phosphorylation of JNK-1/2 and c-Jun, although the mechanism for this inhibition 

remains unclear [29]. Together these examples not only demonstrate that viruses have the 

ability to block TLR signaling at this module, but also suggest that viruses target select 

MAPKs. The advantage of targeting select MAPKs may be to ensure maintenance of other 

MAPK-dependent pathways that promote survival of the infected cell.

NEMO complex

Downstream of MyD88 and TAK1 is a signaling module governed by the protein NF-κB 

essential modulator (NEMO). NEMO controls the activation of IKKs, such as IKKα and 

IKKβ. NEMO binds non-degradative polyubiquitin chains that act as a scaffold for TAK1 

phosphorylation of IKKα/IKKβ [20]. IKKα/IKKβ, in turn phosphorylates the inhibitor of 

NF-κB, IκB, promoting its ubiquitination and subsequent degradation, releasing NF-κB so it 

can translocate to the nucleus. In the case of endosomal TLRs, IKKα can also promote IRF7 
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activation. Alternatively, signaling downstream of TRIF leads to NEMO complex activation, 

however this results in recruitment and activation of TBK1/IKKε and their accessories 

TANK, SINTBAD, and NAP1. These proteins function to activate the transcription factor 

IRF3, which is a master regulator of interferon expression [30].

Diverse microbial strategies are used to target the NEMO complex including degrading, 

binding, and even deubiquitinating host enzymes and accessory proteins. Recent discoveries 

revealed that the 3C proteases from hepatitis A virus and foot-and-mouth disease virus can 

inhibit TLR signaling by cleaving NEMO [31, 32]. Additionally, C-protein of Sendai virus 

blocks TLR7 and 9 signaling by binding IKKα and inhibiting phosphorylation of IRF7 [33]. 

Furthermore, BPFL1 of Epstein-Barr virus blocks signaling by deubiquitinating IKKα and 

NEMO [23]. Interestingly, although a limited number of bacterial proteins are known to 

target this module, one such effector, IpaH9.8 of S. flexneri utilizes a strategy similar to 

viruses by promoting the degradation of NEMO. This example of bacteria using a strategy 

similar to that of viruses promotes the idea that knowledge of viral strategies can be used as 

a framework for future investigation of novel bacteria proteins that antagonize this signaling 

module.

Transcription Factors

Transcription factor activation involves nuclear translocation of AP-1, NF-κB and the IRFs, 

which lead to transcriptional responses and the production of pro-inflammatory cytokines, 

chemokines, and interferons. Targeting the transcription factor module is a widely used 

strategy for viruses. Viral mechanisms for targeting this module include degrading and 

mimicking transcription factors and have been extensively reviewed elsewhere [34, 35]; 

therefore we will focus on a few recent findings that highlight some of their tactics. First, 

HSV-1 and rotavirus prevent NF-κB translocation into the nucleus by stabilizing or 

preventing the degradation of IκB [36, 37]. This tactic is also used by VACV, whose protein 

A49 inhibits this signaling module by binding and inhibiting the activity of β-TrCP, an E3 

ligase required for ubiquitination and degradation of IκB [38]. A second mechanism is that 

used by ORF47 of varicella-zoster virus and US3 of HSV-1, which phosphorylate IRF3 to 

block its proper activation by host kinases [39, 40]. Recently, US3 was also shown to 

hyperphosphorylate NF-κB, blocking its activation [41]. Thirdly, some viruses bind co-

activators such as CBP and p300 in the nucleus, an activity that prevents transcription 

factors from reaching their target genes. This method is used by herpesvirus proteins 

including ICP0 of HSV-1 and vIRF-1 of Kaposi's sarcoma-associated herpesvirus (KSHV) 

[42, 43]. Recent data suggests that VP16 of HSV-1 is also capable of binding to CBP in the 

nucleus [44].

Despite the abundance of viral species that block this module, only a few bacterial species 

are known to possess this ability. These include enterohemorrhagic Escherichia coli 

(EHEC), EPEC, and S. flexneri. EHEC and EPEC encode effectors NleH1 and NleH2 that 

block NF-κB by binding to NF-κB subunit, RPS3 [45, 46]. NleH1 but not NleH2 was shown 

to inhibit nuclear translocation of RPS3, however both NleH1 and NleH2 have also been 

implicated in preventing ubiquitination and degradation of IκB [46]. EPEC also encodes 

NleC and NleD which are zinc metalloproteases that cleave the RelA subunit of NF-κB to 
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prevent its activation [47–50]. Two other EPEC proteins, NleB and NleE, also block NF-κB 

translocation [51]. The targets of NleB and NleE are not known, however their mechanisms 

are likely different as NleB blocks signaling in response to stimulation of cells with TNFα 

but not IL-1β, whereas, NleE blocks both TNFα and IL-1β stimulated responses. S. flexneri 

encodes OspZ, which is interchangeable with the C-terminus of NleE, and thus likely acts 

via a similar mechanism [51]. A second S. flexneri encoded effector, OspG, acts similar to 

VACV A49 discussed above. OspG prevents degradation of IκB by binding and interfering 

with the E2 ubiquitin-conjugating enzyme, UbcH5b [52, 53]. This example of overlap 

between bacterial and viral tactics reinforces the idea that future investigation into bacterial 

proteins that antagonize TLR signaling can be guided by our vast knowledge of viral 

antagonization mechanisms.

Targeting multiple modules

A common tactic utilized by viruses and bacteria is to attack several modules of TLR 

signaling simultaneously. For example, VACV expresses N1L to block IKKs but also 

expresses A46R and A52R to target adaptor proteins and IRAK kinases [13, 19, 54], 

respectively, whereas S. flexneri expresses OspF which blocks MAPKs, OspI which blocks 

TRAF6, and IpaH9.8 which promotes degradation of NEMO. Other examples include 

Salmonella spp. which express TlpA, a TIR domain containing protein that interferes with 

adaptor proteins [55], and SpvC, a phosphothreonine lyase that irreversibly modifies MAP 

kinases [56, 57]. It is also common for viruses and bacteria to utilize a single protein for 

blocking more than one module of TLR signaling. Examples include: BPLF1 of Epstein-

Barr virus which deubiquitinates TRAF6, IKKα, and NEMO [22, 23], ICP0 of HSV-1 

which promotes degradation of TIRAP and MyD88 but also binds and sequesters IRF3 in 

the nucleus [16, 42], and YopJ of Yersinia spp., which acetylates several MAPKs and IKKβ 

[26, 58], effectively eliminating MyD88-dependent signaling through both the MAPK 

cascade and the NEMO complex. This strategy is not surprising for viruses as they express a 

limited number of proteins and thus often utilize a single protein to perform diverse 

functions. It is more intriguing however for bacteria, which can inject dozens of proteins 

into host cells [59]. However, for some species that inject only a small number of proteins 

into host cells, such as Y. pestis which only secretes 6 known effectors [60], this strategy 

suggests a need for fine tuning of their existing proteins to target multiple host factors. 

Overall, the popularity of these strategies suggests that if a virus or bacterium is known to 

antagonize TLR signaling at one module, it will likely be found to target other modules.

Receptors

In our search for microbial systems that antagonize specific components of TLR signaling 

networks, we find that viruses are not known to antagonize TLR signaling at the module of 

the receptor. Perhaps this is due to a lack of effective tools, such as antibodies, for detecting 

changes in TLRs on the surface of cells during infections. We also note that this module of 

TLR signaling is the least understood. Assays to monitor inducible (microbe-triggered) 

interactions between TLRs and their ligands or co-receptors are very much lacking. Despite 

these technical challenges, it is possible that viruses may not interfere with TLR detection 

directly. One reason to consider this possibility is that it may be more efficient for them to 
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target downstream signaling components that are used by multiple innate immune pathways 

than to antagonize individual receptors. Nevertheless, there are some viral strategies that 

could antagonize TLRs. For example, viral proteins in both human T-cell leukemia virus 

type 1 (p30) and HSV-1 (US3) can promote down-regulation of TLR4 and TLR3, 

respectively [61, 62]. It remains unclear how common this strategy is for other viruses, and 

whether the down-regulation observed is sufficient to functionally inactivate the signaling 

pathway.

Despite the challenges of investigating the receptor module, recent discoveries have 

revealed that at least two bacterial proteins are capable of binding to TLRs and blocking 

their function. The secreted staphylococcal superantigen-like proteins (SSLs) SSL3 and 

SSL4 from S. aureus have the ability to interact with the ectodomain of TLR2 [63, 64]. 

Incubation of mouse or human leukocytes with purified SSL3 blocks TLR2-dependent 

responses to purified TLR2 ligands as well as heat killed S. aureus. However, the ability of 

S. aureus to suppress TLR2 responses in a SSL3/4 dependent manner during S. aureus 

infection has not been demonstrated. Thus, the relevance of this system for virulence and 

survival of S. aureus remains an open question. Interestingly, other SSL proteins of S. 

aureus have been shown to bind and block extracellular immune components on leukocytes 

such as SSL5 which binds chemokine and anaphylatoxin receptors [65]. Thus, SSLs 

demonstrate the potential for bacterial proteins to antagonize host immune functions by 

binding to extracellular components.

Other bacterial strategies also suggest possible mechanisms for direct TLR antagonism, 

although these strategies have never been directly implicated in antagonizing these 

receptors. For example, bacteria can secrete proteins to degrade host immune components 

such as the IgA proteases of Streptococcus pneumoniae, Haemophilus influenzae, and 

Neisseria spp., [66, 67] and also secrete many other proteases that have been linked with 

virulence and survival of different bacterial species. Interestingly, the cysteine proteases, 

known as gingipains, from Porphyromonas gingivalis have been shown to preferentially 

cleave CD14, an extracellular co-receptor vital to TLR4 signaling, from phagocytes [68], 

though the relevance of this to survival and virulence of Porphyromonas spp. remains 

unclear. This example suggests that bacterial proteases have the potential to counteract TLR 

function and inflammatory responses through direct cleavage of receptor complexes on the 

surface of host cells. Perhaps future investigation of viral or bacterial proteins and their 

interaction with TLRs will reveal novel systems for targeting the receptor module.

Perspective

Recent years have seen an explosion in findings of bacterial and viral systems to antagonize 

TLR signaling. Here we have compiled a wide-ranging list of these known strategies with 

the intent of providing insight into where future research will be best applied. Notably, we 

have identified gaps in our knowledge, such as the lack of systems for targeting the receptor 

module, which present some interesting challenges for the field. Overall, our findings 

indicate that viruses and bacteria have evolved similar mechanisms for antagonizing TLR 

signaling. This evolutionary convergence of strategies suggests that the information 
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presented here can be used to guide future discovery of novel microbial factors that 

antagonize TLR signaling, both viral and bacterial.
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Highlights

• We assemble a collection of bacterial and viral mechanisms for blocking TLR 

signaling networks directly.

• We analyze recent findings of novel microbial strategies that inhibit TLR 

signaling and identify where future research is likely to be most productive.

• We discuss the limited knowledge of microbial systems for antagonizing the 

very earliest module of TLR signaling: the receptor module.
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Figure 1. 
Modules of TLR signaling. The receptor module: binding of ligands to TLRs at the plasma 

membrane or within endosomes, receptor dimerization and migration to subcellular 

signaling sites including specific lipid rich regions within the membrane. Supramolecular 

Organizing Center (SMOC): TLRs interact with intracellular sorting adaptor proteins, 

TIRAP and TRAM, which recruit signaling adaptors MyD88 and TRIF, respectively. 

Adaptor proteins and TLRs interact via TIR domains. Signaling adaptors trigger formation 

of SMOCs such as the myddosome which consists of TIRAP, MyD88, and IRAK kinases. 
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TRAF6 and TAK1 complex: Myddosome formation activates the E3 ubiquitin (Ub) ligase 

TRAF6 which ubiquitinates itself and recruits TAB proteins. TAB proteins activate the 

MAP3K, TAK1. Mitogen Activated Protein Kinase (MAPK)s: TAK1 phosphorylates 

proteins of the MAPK cascade resulting in phosphorylation and activation of MAPKs, ERK, 

JNK and p38. NEMO complex: Ubiquitinated NEMO is required for IKKα/IKKβ to be 

activated by TAK1 downstream of Myd88 signaling, but also to promote activation of 

TBK1 and IKKε downstream of signaling through TRIF. Transcription factors: 

Transcription factor activation involves activation and nuclear translocation of AP-1 

(through MAPKs), NF-κB, through IKKα/IKKβ, and the IRFs through TBK1, IKKε, and in 

certain circumstances IKKα. Once in the nucleus transcription factors induce expression of 

proinflammatory cytokines, chemokines, and interferons.
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Table. 1

Module Targeted Microbe Protein Mode of
antagonization

Citation

Receptor

Staphylococcus aureus SSL3, SSL4 Bind TLR2 ectodomain [63, 64]

SMOC

African swine fever virus ORF I329L Possibly targets TRIF [69]

Coxsackievirus 3C Degrades TRIF [10]

Enterovirus 68 3C Cleaves TRIF [70]

Hepatitis C virus (HCV) NS3-4A Cleaves TRIF [71]

HCV NS5A Binds MyD88 [72]

HSV-1 ICP0 Promotes degradation of Myd88 and 
TIRAP

[16]

KSHV RTA Degrades TRIF [73]

Vaccinia virus (VACV) A46R Binds TIRAP, TRAM, MyD88, 
TRIF, TLR4

[13, 14]

VACV A52R Binds IRAK2 [19]

Brucella spp. BtpB Probable TIR domain containing [74]

Brucella melitensis TcpB Blocks TIR-TIR interactions and 
promotes degradation of MyD88 and 
TIRAP

[75]

Escherichia coli TcpC Blocks TIR-TIR interactions [75]

S. aureus TirS Blocks TIR-TIR interactions [12]

Salmonella enterica serovar 
Enteritidis

TlpA Blocks TIR-TIR interactions [55]

Yersinia pestis YpTdp Blocks TIR-TIR interactions [11]

TRAF6/TAK1

Herpes simplex virus (HSV-1) Us3 Decreases levels of TRAF6 
ployubiquitination

[21]

Epstein-Barr virus (EBV) BPLF1 Deubiquitinates TRAF6 [22, 23]

Shigella flexneri OspI Deamidates UBC13 [24]

Enteropathogenic E.coli (EPEC) NleE Modifies TAB2 and TAB3 [25]

Yersinia spp. YopJ Acetylates TAK1 [26]

MAP kinases

Ebola virus VP24 Blocks phosphorylation of p38 [28]

Hepatitis B virus HBsAg Inhibits phosphorylation of JNK1/2 
and c-Jun

[29]

Bacillus anthracis LF Degrades MAPKK 1 and 2 [76]

EPEC NleC and NleD Cleaves JNK [50]

Salmonella typhimurium AvrA Acetylates MKK4 [77]

Salmonella spp. SpvC Modifies c-Jun, Erk1/2, and p38 [56, 57]

S. flexneri OspF Modifies c-Jun, Erk1/2, and p38 [56, 78]

Vibrio parahemolyticus VopA Acetylates MAPKK [79]
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Module Targeted Microbe Protein Mode of
antagonization

Citation

Yersinia spp. YopJ Acetylates MKK6, MKK4, MKK7 [26, 58]

NEMO complex

EBV BPLF1 Deubiquitinates NEMO [23]

Foot-and-mouth disease virus 3C Cleaves NEMO [31]

Hepatitis A virus 3C Cleaves NEMO [32]

HCV NS3 Binds TBK1 [80]

HSV-1 γ34.5 Binds TBK1 [81]

Mouse hepatitis virus A59 NSp3 (PLP2 domain) Deubiquitinates TBK1 [82]

Sendai virus C-protein Binds IKKα [33]

VACV B14R Binds IKKβ [83]

VACV C6 Binds TANK, SINTBAD, or NAP1 [84]

VACV N1L Associates with IKK complex and 
TBK1

[54]

VACV K7R Binds DDX3 [85]

S. flexneri IpaH9.8 Promotes NEMO degradation [86]

Yersinia spp. YopJ/P Acetylates IKKβ [87]

Transcription factors

Classical Swine Fever Virus Npro Interacts with IRF7 [88]

EBV BPLF1 Deubiquitinates IκBα [23]

HIV Vpr, Vif Degrade IRF3 [89, 90]

HIV Vpu Possibly blocks IRF3 and NF-κB [90, 91]

HSV-1 ICP27 Stabilizes IkBa [36]

HSV-1 ICP0 Sequesters IRF3- CBP/p300 [42]

HSV-1 Us3 Phosphorylates IRF3 and NF-kB [40, 41]

HSV-1 VP16 Binds CBP in the nucleus [44]

KSHV RTA Promotes degradation of IRF3 and 
IRF7

[92]

KSHV K-bZIP Competes for IRF3 binding sites [93]

KSHV vIRF-1 Inhibits IRF3 interaction with CBP 
and p300

[43]

KSHV vIRF3 Binds IRF3 [94]

Measles virus C-protein Unknown function in nucleus [95]

Measles virus V-protein Binds NF-kB and IRF3 [96]

Mumps virus V-protein Mimics IR3 [97]

Rotavirus NSP1 Degrades IRF3, IRF7 or E3 ligase β-
TrCP

[37, 98, 99]

Sendai virus and New castle 
disease virus

V-protein Binds active IRF3 and prevents 
nuclear translocation

[96]

VACV A49 Binds and inhibits β-TrCP [38]

Varicella-Zoster virus (VZV) ORF47 Atypically phosphorylates IRF3 [39]

VZV ORF61 Ubiquitinates IRF3 and NF-kB [100, 101]
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Module Targeted Microbe Protein Mode of
antagonization

Citation

EPEC NleC,NleD Cleaves NF-κB [47–50]

EPEC NleB, NleE Inhibits nuclear translocation of NF-
kB

[51]

EPEC and enterohemorrhagic 
Escherichia coli (EHEC)

NleH1, NleH2 Inhibits nuclear translocation of NF-
kB

[45, 46]

S. flexneri OspZ Inhibits nuclear translocation of NF-
kB

[51]

S. flexneri OspG Binds and interferes with UbcH5b [52]
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