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Patients with critical illness such as acute lung injury often undergo mechanical
ventilation in the intensive care unit. Though lifesaving in many instances, mechanical
ventilation often results in ventilator induced lung injury (VILI), characterized by
overdistension of lung tissue leading to release of edemagenic agents, which further
damage the lung and contribute to the mortality and progression of pulmonary
inflammation. The endothelium is particularly sensitive, as VILI associated mechanical
stress results in endothelial cytoskeletal rearrangement, stress fiber formation, and
integrity loss. At the heart of these changes are integrin tethered focal adhesions (FAs)
which participate in mechanosensing, structure, and signaling. Here, we present the
known roles of FA proteins including c-Src, talin, FAK, paxillin, vinculin, and integrins in
the sensing and response to cyclic stretch and VILI associated stress. Attention is given
to how stretch is propagated from the extracellular matrix through integrins to talin and
other FA proteins, as well as signaling cascades that include FA proteins, leading to
stress fiber formation and other cellular responses. This unifying picture of FAs aids our
understanding in an effort to prevent and treat VILI.

Keywords: ARDS, VILI, focal adhesion, mechanical stress, cyclic stretch, integrin β4

INTRODUCTION

Ventilator induced lung injury (VILI) is a clinical syndrome in the intensive care unit that results
from mechanical ventilation. It is often associated with overdistension as well as vascular leak
caused by edemagenic agents and inflammatory cytokines such as thrombin, histamine, tumor
necrosis factor-α, interleukin-8, and interleukin-1 (Dos Santos and Slutsky, 2000; Lionetti et al.,
2005; Birukova et al., 2006). VILI associated mechanical stress imposes severe pro-inflammatory
lung endothelial injury, leading to endothelial integrity loss, cytokine secretion, and vascular
leakage. It is well believed that the focal adhesion (FA)-integrin system, as the bridge between
endothelial and basal matrix, serves as a principal mechanical stress sensing and transducing
complex. This review will focus on the known roles of various FA proteins in endothelial cells (ECs)
in response to VILI associated mechanical stress, specifically cyclic stretch (CS).
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ENDOTHELIAL INJURY IN VILI

VILI and Endothelial Injury
Acute lung injury (ALI) and its more severe form Acute
Respiratory Distress Syndrome (ARDS) are devastating
conditions with an unacceptable mortality of approximately 40%
about 2 weeks after the onset of the syndrome (Villar et al., 2011).
The recent “Berlin” definition defines ARDS as an acute primary
pulmonary condition characterized by radiologic infiltrates
and impaired oxygenation (Laffey and Kavanagh, 2017). This
condition may be the result of any number of underlying causes
including direct lung injury such as pneumonia, aspiration, or
traumatic pulmonary contusion, or indirect injuries such as
non-pulmonary sepsis or non-septic shock (Frutos-Vivar et al.,
2004). These underlying causes lead to inflammatory, ischemic,
mechanical, or infective insults on the lung, triggering damage
to alveolar capillaries, interstitium, and epithelium, which leads
to increased vascular permeability and results in subsequent
interstitial and alveolar edema (Laffey and Kavanagh, 2017).
Mechanical ventilation is one of the lifesaving strategies for
ARDS, yet the mortality rate of ARDS patients remains high
with ventilation associated persistent lung inflammatory
injury, which is called Ventilator-Induced Lung Injury or VILI
(Slutsky and Ranieri, 2014).

Similar to ARDS itself, VILI can induce a range of
inflammatory responses such as increases in lung vascular
permeability due to damage to the endothelial cell barrier and
subsequent alveolar flooding. The development and course of
VILI is associated with mechanical ventilator settings including
dose and pattern (Gajic et al., 2005). Similar to ARDS, VILI
directly leads to damages to the gas exchange barrier or
complete dysfunction of alveoli leading to respiratory failure in
patients (Villar et al., 2014). Particularly, mechanical ventilation
increases in the alveolar epithelial cell surface area by 1/3
(Tschumperlin and Margulies, 1999), with a similar effect
in capillary endothelium which forms tight contacts with
alveolar epithelium. This longitudinal tension produced by the
mechanical ventilator also induces various cellular responses
including mechanical stress associated molecular signaling, ROS
generation, gene expression, and cellular remodeling (Birukov,
2009), leading to damage directly to ECs, which can be
observed at the ultrastructural level (Dreyfuss and Saumon,
1998). This persistent VILI associated mechanical stress during
ventilation leads to further dysregulation of the pulmonary
capillary endothelium, leading to protein rich fluid leakage from
the capillaries to the interstitium and continuing into the alveoli,
resulting in life-threatening pulmonary edema (Cruz et al., 2018).
Once lung damage occurs, lung ECs express pro-inflammatory
cytokines and signaling molecules to further exacerbate vascular
permeability, vascular tone, leukocyte recruitment, and apoptosis
(Villar et al., 2014).

Endothelial Mechanical Sensing in VILI
Ample evidence has been found to support that reorganization
of the pulmonary endothelial cytoskeleton caused by mechanical
stress leads to VILI (Lionetti et al., 2005). Many ARDS studies

also suggest that transient receptor potential (TRP) channels are
activated in lung injury induced by mechanical stress, and some
certain types of TRP, including TRPV4, facilitate mechanical
stress sensing (Parker et al., 1998; Alvarez et al., 2006). This
is complicated, however, by the fact that these responses are
post-cellular injury, and particularly since other cellular stresses
including heat, osmolarity changes, and metabolites can also
activate TRP channels in a similar pattern (Darby et al., 2016;
Simonsen et al., 2017). Given the fact that mechanical stress
originates from the misalignment between the basal membrane
and the cytoplasmic membrane, linker complexes, including
FAs, between the two parties, must be the first line mechanical
stress sensors for the cells to initiate other cellular responses
(Geiger and Bershadsky, 2002). Interestingly, FAs are also
dynamic regulators of cytoskeletal remodeling, where assembly,
disassembly, and structure alteration adjust the formation and
displacement of actin fibers (Oakes and Gardel, 2014).

Endothelial Cell Cyclic Stretch
Experimental Models
Measurements of mechanical stress in the mechanically
ventilated lung are technically challenging due to the complexity
of local distension patterns in the lung parenchyma, however,
calculations have been made to suggest that if the lung volume
increases by 40% of the total lung capacity, the alveolar epithelial
cell basal surface area increases by 34% (Tschumperlin and
Margulies, 1999; Tschumperlin et al., 2000; Wirtz and Dobbs,
2000). High tidal volume mechanical ventilation results in a
40–50% surface area increase as would be reflected in vitro by
18% CS or repeated stretch (Tschumperlin et al., 2000; Birukov,
2011), and spontaneous breathing with a 25% surface area
increase can be reflected as 5% CS (Tschumperlin et al., 2000;
Wirtz and Dobbs, 2000; Birukov, 2011). Here 18 and 5% CS is the
measure of the cell length elongation in one dimension compared
to resting conditions, although the ECs may be exposed to one
or two dimensional stretch (Wang J.H. et al., 2001). CS is
accomplished by growing monolayers of ECs to confluence on
flexible membranes and stretching those membranes either on
commercial systems (Wang et al., 2000; Colombo et al., 2008) or
custom machines. Published in vitro experiments of VILI mainly
use 10–20% CS with 0.4–2 Hz of frequency to reflect the 20–120
breaths per minute ventilation used in the intensive care unit
(Rimensberger, 2003; Belteki and Morley, 2018). In this review,
in order to clarify the different experimental outcomes with
different mechanical stretch conditions, amplitude of stretch (%
CS) and frequency are noted in each in vitro research data cited.

FOCAL ADHESIONS IN VILI

Endothelial FA
Focal adhesions (FAs) may be described as discrete areas on a
cell’s basal surface located at the end of “stress fibers,” prominent
bundles of actin filaments, which contain integrins and a variety
of associated proteins. These provide anchor points for cells to
adhere to their substratum, as well as sense and transmit forces
and biochemical signals between cells and matrix (Wu, 2005).
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Essential to FAs are integrins, transmembrane proteins that bind
matrix ligands extracellularly and a series of structural proteins
that link it to the cytoskeleton intracellularly. These structural
proteins include talin, focal adhesion kinase, paxillin, tensin,
filamin, and α-actinin, as well as many other associated linkers
and signaling proteins (Figure 1). To date, over 900 proteins have
been found in FAs (Kuo et al., 2011). In ECs, FAs play central roles
in angiogenesis, wound healing, vascular remodeling, cytoskeletal
arrangement, and barrier regulation (Wu, 2005).

During mechanical ventilation or related cellular stretch, like
all other cell types, lung ECs respond to mechanical forces
largely through the action of the actin cytoskeleton. Mechanical
force associated cellular signals, often deleterious, rely on the
contractile activity of F-actin associated actomyosin networks-
interconnected two-dimensional contractile meshworks that
include actomyosin fibers and their anchor points (Lecuit
et al., 2011). This is especially true during mechanical
ventilation when no pathologically high mechanical stress by
blood flow (often seen in pulmonary hypertension or other
pulmonary vascular diseases) is present. Located in association
with the ECM, FA complexes are the main participants
in ECs to receive mechanical stimuli and serves as key
mechanical tension sensing and signaling hubs through complex
signaling events such as post-translational modifications, binding
to cytoskeletal proteins or kinases, and structural changes

(Zaidel-Bar and Geiger, 2010). They play a central role in
receiving and transducing mechanical stress to the cytoplasm, via
associated transmembrane integrins (Figure 1).

SRC Proto-Oncogene, Non-receptor
Tyrosine Kinase
One of the key components and the most critical kinase in
FAs is cellular Src (c-Src), the prototypical member of the Src
family of kinases (Kefalas et al., 1995). Under normal unstressed
conditions, N-terminal myristoylation causes c-Src association
with plasma membranes, but relocation occurs via cytoskeletal
trafficking (Jones et al., 2000). C-Src has kinase activity to
phosphorylate its substrates, including autophosphorylation on
Y416 (Cooper and MacAuley, 1988). C-Src interacts with these
targets (or other binding partners) through its SH2 and SH3
domains (Cooper and MacAuley, 1988). c-Src tertiary structure
and activity can be regulated by the phosphorylation state of a
tyrosine residue (Y527) at the C-terminal (Cooper and MacAuley,
1988). Phosphorylation at this site by c-terminal Src kinase
(Csk) inactivates c-Src, while dephosphorylation by calcineurin,
a Ca2+r/calmodulin-dependent protein phosphatase (PPIIB),
activates it (Cooper and King, 1986).

During VILI, c-Src is activated through a variety of means.
Mechanical stretching of ECs leads to Ca2+ influx through

FIGURE 1 | Endothelial focal adhesion in cyclic stretch. Integrins, heterodimers consisting of α and β subunits, serve as the key physical link between FAs and the
ECM. During VILI, mechanical stress (cyclic stretch) causes calcium release from intracellular stores and c-Src activation via dephosphorylation. It then localizes to
patches along the cytoskeleton and FAs where it targets and phosphorylates FA proteins including integrin β, paxillin, and FAK. Phosphorylated and activated FAK
facilitates the formation of stress fibers. Talin is an adaptor protein essential for integrin connection to the cytoskeleton. In its activated form, talin dimers are bound to
actin and likely assume a Y-shape with exposed vinculin binding sites. Vinculin is a cytosolic actin-binding protein that exists in a circular configuration localized close
to integrins and binds paxillin. Upon activation, vinculin assumes an extended form and moves further toward actin fibers. Paxillin, another adaptor FA protein
activated by c-Src mediated phosphorylation following stretch, allows for protein networking and signal transduction. Zyxin, a LIM protein, resides at unstretched FAs
but dissociates and moves away from FAs and toward stress fibers during stretch. -P, phosphorylated.
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the opening of stretch-activated cation channels (SA channels),
which in turn initiates Ca2+ release from intracellular calcium
storage (Adams et al., 1989; Naruse and Sokabe, 1993; Naruse
et al., 1998c). Histamine, whose levels rise in inflammatory
lung injuries (Kim et al., 2005), also triggers [Ca2+] oscillations
(Adams et al., 1989). This rise in intracellular [Ca2+] or [Ca2+]i
activates c-Src, giving rise to many of the morphological changes
seen in ECs during CS (Naruse et al., 1998a). Once c-Src is
dephosphorylated and activated, it localizes to patches along
cytoskeletal structures, as well as FAs where it targets several FA
proteins including integrins (Hirst et al., 1986), FAK, and paxillin
(Sokabe et al., 1997). Inhibition of c-Src activation or kinase
activity prevents most of the effects of CS including cell alignment
and formation of stress fibers that occurs with 20% CS at 1 Hz
(Naruse et al., 1998a) and disassembly of adherans junctions that
occurs with 18% CS at 0.4 Hz (Tian et al., 2016). C-Src activation
subsequent to activation of VEGF receptor 2 (VEGFR2) leads to
phosphorylation of cytoskeletal proteins outside of FAs by c-Src
when subjected to 18% CS at 0.4 Hz for 120 min (Tian et al.,
2016). Some of the effects of these phosphorylation events will
be discussed later.

Talin
Talin is found universally in FAs and in fact is the only essential
adaptor protein for integrin connection to the cytoskeleton (Jiang
et al., 2003). Evolutionally, it is older than integrins, leading
some to consider talin as the master of FAs (Klapholz and
Brown, 2017). Talin is structurally split into a head domain,
a short linker domain, and a long rod domain (Klapholz and
Brown, 2017). The N-terminal FERM domain forms the head
and is split into four subdomains termed F0-F3. F0 binds Rap1
small GTPase proteins. F1, F2, and F3 can bind directly to
membranes. F2 and F3 can bind to actin via the actin binding site
1 (ABS1). The F3 domain can bind to the cytoplasmic domain
of β integrin subunits at its integrin binding site 1 (IBS1) which
is a variant of the canonical phosphotyrosine binding (PTB)
domain (Garcia-Alvarez et al., 2003). F3 also can interact with
many associated proteins including FAK (Klapholz and Brown,
2017). The rod domain is comprised of subunits R1-R13, and
contains multiple sites for protein–protein interactions. Actin
binding site 2 (ABS2) is located at R3-R8 and ABS3 is located
at R13. The integrin binding site 2 (IBS2) falls within R11,
and consists of two five-helix bundles connected by a kinked
continuous helix (Gingras et al., 2009). Activation of integrin is
required for this binding since the binding site on β integrin is
on the same face that binds the tail of α integrin (Rodius et al.,
2008). At least 18 vinculin binding sites have been found in the
rod domain (Gingras et al., 2005). In addition, more binding sites
for Rap1-GTP-interacting adaptor molecule (RIAM), paxillin,
α-synemin, deleted in liver cancer 1 (DLC1), and KN motif
and ankyrin repeat domain proteins Kank1 and Kank2 have
been found within the rod domain. Talin’s only known activities
are through binding other proteins, making it a classic adapter
protein (Klapholz and Brown, 2017).

When bound to actin, talin is likely in its
dimer form (Goldmann et al., 1994) and adopts
a Y-shape (Winkler et al., 1997) or dumbbell shape

(Hemmings et al., 1996). The dimerization domain is at the
C-terminus, and just upstream are linker regions thought to
be flexible. Molecular dynamics simulation in the Mofrad lab
has shown that one of talin’s vinculin-binding sites (VBS1) is
inactive unless pulled open by a stretching force (Lee et al., 2007).
Cellular stretching causes hydrophobic residues on the VBS1
surface to rotate around a neighboring alpha-helix, exposing the
hydrophobic vinculin binding pocket. This was shown to operate
in vitro and was reversible (Yao et al., 2016). The same research
group (Mofrad) that performed the molecular dynamics went on
to confirm that the distance between integrins bound by a talin
dimer alters the angle of the talin dimerization regions (Golji
and Mofrad, 2014). The varying distance between integrins that
occurs during stretching of the basement membrane during
VILI makes this a likely method of mechanosensing within FAs.
The stretch of talin modeled above is converted into a cellular
response by vinculin (Elosegui-Artola et al., 2016).

Aside from stretch related stress, chemical factors released
during VILI are capable of exerting effects on talin through
vinculin. Although details have not been clarified, an active
F-actin binding site on vinculin is required for production
of thrombin induced talin positive FAs to cause increased
endothelial monolayer permeability (Birukova et al., 2016).

Vinculin
Vinculin is a cytosolic actin-binding protein that is involved in
stabilizing actin polymerization and recruiting actin remodeling
proteins (Bays and DeMali, 2017). Like talin, it has no enzymatic
activity. Its structure consists of a large head domain, a short
linker, and a tail. When inactive in the cytosol, vinculin is in
a circular configuration where the head and tail have a very
tight bond, inhibiting interactions with other proteins. But when
activated, such as in FAs, vinculin exists in an extended form
(Chen et al., 2005). Many proposals have been presented on just
how vinculin is opened, including multiple ligand interaction
(Bois et al., 2006; Chen et al., 2006), single ligand displacement
(Izard et al., 2004), phosphorylation (Golji et al., 2012), and
stretching (Golji and Mofrad, 2010).

Vinculin requires a level of tension to remain in a FA and
prevent disassembly of FAs, making it a likely mechanosensor by
itself (Carisey et al., 2013). When inactive, vinculin is localized
closer to integrins and binds paxillin. When activated by binding
to talin, vinculin is seen to move further away from integrin
where it interacts strongly with actin (Case et al., 2015). This
seems to paint a picture where stretch induced FA rearrangement
includes opening of vinculin so that it can stabilize stress fibers.

Focal Adhesion Kinase
Focal Adhesion Kinase (FAK) is an adapter protein, as well as an
active kinase found at FAs and other locations throughout the
cell. It is activated both through recruitment to FAs following
integrin activation as well as by phosphorylation. Multiple
tyrosine, serine, and threonine phosphorylation sites have been
mapped by mass spectrometry (Grigera et al., 2005).

Exposure of human pulmonary ECs to 18% CS at 25 cycles
per minute leads to FAK phosphorylation at Y397 and Y576

(Shikata et al., 2005). This CS also induces FAK re-distribution
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to the ends of newly formed stress fibers. Similar results were
seen in bovine ECs. Besides phosphorylation and rearrangement
of FAK, paxillin is phosphorylated and rearranges, events which
were dependent on Rho/p21 activity (Yano et al., 1996a,b).
Interestingly, some of these changes are mediated by SA channel
opening and c-Src activation, while SA channel inhibition does
not eliminate the changes to FAK and paxillin, suggesting other
activation/inactivation mechanisms besides c-Src are at play
(Sawada and Sheetz, 2002).

The pathophysiological changes caused by VILI are not
mediated exclusively by tissue overdistension (by volume
increase) or high frequency ventilation (by frequency increase).
Agents such as thrombin and cytokines are also found at
high levels in VILI patients and contribute to the pathology
of this injury. Thrombin binds to its receptor PAR-1, thereby
mediating FAK redistribution patterns similar to stretch (Shikata
et al., 2003a). This is mediated by phosphorylation of the
same residues (Y397 and Y576) as those seen in stretch but
also at Y925. By contrast, c-Src phosphorylation of FAK at
Y576 only is sufficient to cause many of the barrier protective
effects seen in sphingosine-1-phosphate mediated endothelial
barrier protection including peripheral translocation of FA
proteins and cortical actin ring formation (Shikata et al., 2003a).
This demonstrates the varying signaling pathways that can be
activated by the phosphorylation profile of FAK.

When cells are cyclically stretched in only one direction,
stress fibers form perpendicularly to the stretch direction. This
alignment is dependent on the type of stretch applied. For
example, when bovine aortic ECs are subjected to 10% CS,
actin alignment is increased proportionally to the frequency
(0.01 to 1 Hz) of CS (Shirinsky et al., 1989; Sokabe et al.,
1997; Hsu et al., 2010). The involvement of FAK in stress fiber
formation as a result of CS is controversial. Some reports show
FAK phosphorylation, which occurred during 20% CS at 1 Hz,
is required for this process (Sokabe et al., 1997), while others
show that FAK/paxillin knockdown in ECs or overexpression in
fibroblasts do not block stress fiber formation at 10% CS at 1 Hz
(Hsu et al., 2010; Ngu et al., 2010).

More evidences have been generated to prove the role of FAK
in endothelial signaling activated by mechanical stress. Uniaxial
10% CS at a rate of 3 cycles per minute activates cell proliferation
in ECs (Sumpio et al., 1987). Additionally, FAK activation plays
a role in cell proliferation in a variety of cell types including
epithelial and fibroblasts. In epithelial cells, 10% CS at 20 cycles
per minute activates Y418 phosphorylation of c-Src as well as the
two tyrosine sites on FAK already mentioned (Y397 and Y576).
These lead to downstream ERK1/2 activation and proliferation
within 5 min after initiation of CS (Wang J.G. et al., 2001;
Chaturvedi et al., 2007). Fibroblasts stretched 20% at 1 Hz activate
the same pathway, though FAK is phosphorylated at Y397 and
Y925 (Wang J.G. et al., 2001). Further light on the pathway
of proliferation was gleaned in osteoblast-like cells where CS
activated FAK, c-Src, and proline-rich tyrosine kinase 2 (PYK2).
Although c-Src was not found to be necessary, FAK associated
with PYK2 and led to ERK2 phosphorylation mediated by the
Ras/Raf/MEK pathway (Boutahar et al., 2004). It is logical that
the same pathway would function in pulmonary endothelia since

10% CS at 1 Hz activates ERK1/2 phosphorylation in bovine ECs,
though the p21ras/PI3K pathway may also be involved (Ikeda
et al., 1999). This PYK2 phosphorylation is mediated by c-Src
(Cheng et al., 2002). Also, it appears that 12% CS at 1 Hz results
in Ca2+ dependent PKCα activation leading to NADPH oxidase
activity in ECs to produce ROS. This ROS is crucial for c-Src
and PYK2 activation. Interestingly, pulmonary injury induced by
20% CS at 0.5 Hz-causes a reduction of FAK phosphorylation
and activity following a transient increase in phosphorylation
at 30 min of injury (Desai et al., 2009). This emphasizes the
damaging effects of VILI on an already injured lung.

As discussed above, VILI leads to an increase in pulmonary
vascular permeability. FAK plays a critical role in both
initiation and integrating signaling pathways that regulate barrier
function (Wu, 2005), though whether FAK causes barrier loss
or protection is unclear. For example, in mice with ECs
expressing defective FAK, pulmonary vascular permeability was
severely compromised, an abnormal distribution of vascular
endothelial cadherin (VE-cadherin) was observed, and reduced
VE-cadherin Y658 phosphorylation was measured (Zhao et al.,
2010). Additionally, FAK knockdown inhibits the normal barrier
enhancement provided by sphongosine-1-phosphate (Zhao et al.,
2009). On the other hand, FAK knockdown in pulmonary ECs
exhibits a number of barrier enhanced phenomenon including
stronger cell-cell contacts and a greater number and size of
vinculin plaques (Arnold et al., 2013). All these data suggest
that FAK is a key FA molecule regulating endothelial injury and
signaling upon mechanical stress.

Paxillin
Paxillin is another adapter protein of FAs that allows for
protein networking and signal transduction. Phosphorylation
occurs primarily at Y31 and Y118 by FAK or Src family
kinases (Schaller and Parsons, 1995) but also is targeted
at Y40, Y88, and Y181 (Nakamura et al., 2000; Schaller and
Schaefer, 2001). Five LD domains (LD1-5) near the N-terminus
have been identified that function as protein interaction
interfaces for actopaxin, ILK, vinculin, papillomavirus
E6, FAK/PYK2, the Arf-GAPs p95PKL/GIT2/GIT1, and
some evidence shows PAK3, clathrin, and PABP1 (Brown
and Turner, 2004). Paxillin directly binds integrin β

(Schaller et al., 1995).
During 10% CS at 1 Hz, paxillin levels remain unchanged,

but phosphorylation is induced (Yano et al., 1996a). Whereas
paxillin will exhibit a speckled pattern in static conditions, strain
causes paxillin to align to the long axis of cells in parallel to
F-actin. Inhibition of tyrosine phosphorylation blocks paxillin
rearrangement, F-actin alignment, and cell elongation. This
inhibition of tyrosine phosphorylation was indiscriminate for
paxillin and FAK, so distinct roles for FAK versus paxillin could
not be delineated. It is also interesting that cell migration is
mediated in part by paxillin/FAK phosphorylation, and this is
proportional to the degree of stretch. The upstream activator
of phosphorylation in this case is not verified, but it is highly
possible that activated c-Src (Sokabe et al., 1997) phosphorylates
paxillin and leads to cytoskeletal rearrangement. Inhibition of
FAK phosphorylation also prevents paxillin phosphorylation at
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20% CS 1 Hz, demonstrating that paxillin phosphorylation occurs
downstream of FAK activation (Naruse et al., 1998b).

Paxillin is not required for maintenance of a FA. In ECs, 20%
CS at 0.5 Hz induced paxillin rearrangement is transient (Huang
et al., 2012). Additionally, this study showed that paxillin only
plays a role in the early portion of FA rearrangement; paxillin
knockdown inhibited FA formation at 10 min CS, but did not
inhibit FA formation at 30 min or longer.

Other FA Proteins
G protein-coupled receptor kinase-interacting target 1 (GIT1)
has been proposed to be involved in FA disassembly (Zhao
et al., 2000; Shikata et al., 2003b; van Nieuw Amerongen et al.,
2004). GIT1 under normal conditions exhibits a cytoplasmic
distribution. In ECs, some GIT1 is found weakly distributed to
the end of stress fibers at FA following 18% CS (Shikata et al.,
2005) and thrombin exposure (van Nieuw Amerongen et al.,
2004) where it colocalizes with FAK and vinculin. RhoA and Rho
kinase are required for this recruitment, providing evidence that
the signal for GIT1 is derived outside of the FA. At the FA, GIT1
is phosphorylated either by Rho kinase or c-Src, and contributes
to stretch or thrombin induced cell rounding and contraction, FA
formation, and FAK phosphorylation.

Zyxin is a LIM protein that resides at FAs (Beckerle, 1997). In a
number of cell types including umbilical vein ECs, under 15% CS
at 0.5 Hz, zyxin moves away from FAs and associates with stress
fibers (Yoshigi et al., 2005). The trigger for movement is derived
at least in part by integrin activation and not by SA channels. The
only known role of zyxin in these conditions is to reinforce the
actin structure by organizing thicker filaments.

INTEGRINS IN VILI

Integrins are heterodimer transmembrane proteins that serve
as the key physical anchor for the FA to the cytoplasmic
membrane and the connection between FA and the ECM. They
consist of an α and a β subunit. There are now eighteen
identified α subunits and eight β subunits. Each subunit contains
extracellular, transmembrane, and cytoplasmic domains. Based
on the exact pairing, extracellularly, integrins bind particular
ECM components such as collagen, laminin, fibronectin, and
vitronectin, as well as some other cellular receptors and signals
including E-cadherin, prothrombin, and von Willebrand factor
(Plow et al., 2000; Figure 2). Intracellularly, β chains alone seem
to define cytoskeletal interactions (Pan et al., 2016). Because of
this, we will focus on the roles of β integrins with known roles in
VILI, mentioning their binding pair when known.

β integrins, with the exception of β4, contain short cytoplasmic
sequences (40–60 amino acids) (Sastry and Horwitz, 1993).
Among these, the sequences of β1-3 and 5–7 are very similar.
Adjacent to the transmembrane domain is a short sequence of
11 mostly charged amino acids. The second cluster contains a
NPIY sequence that can be phosphorylated by c-Src and similar
kinases (Hirst et al., 1986). An NPXY sequence comes next,
though the spacing is variable between different β integrins.

All three sequences, at least in integrin β1, are needed for full
integration into FAs.

Because of their structure and location, integrins can mediate
signaling in two directions (Hu and Luo, 2013). Binding
of extracellular matrix proteins leads integrin heterodimers
to undergo a conformational change including separation of
cytoplasmic tails of the two integrin subunits, allowing for
interactions between these tails and cytoplasmic proteins and
thus propagating signals (Luo et al., 2007; Zhu et al., 2007).
This has been termed outside-in signaling. Conversely, binding
of intracellular proteins such as talin or kindlin result in
integrin subunit separation (Anthis et al., 2009; Ye et al., 2011).
This separation alters structural conformation such that the
extracellular domains have an increased affinity for ligands (Hu
and Luo, 2013). This has been termed inside-out signaling. β

integrins in FAs are already bound to talin, FAK, and paxillin,
which prevent association between subunits, keeping the integrin
in an open conformation (Kim et al., 2011; Hu and Luo,
2013). It is imaginable, however, that during distension of the
ECM during stretch, inactive integrins may come into contact
with extracellular ligands leading to outside-in signaling and
formation of new FAs. In our discussions of talin and vinculin,
we saw that some of the events involved in FA activation
during CS are dependent upon propagation of force from the
ECM to these proteins. Obviously integrins, as the link across
the plasma membrane, are central to this propagation (Geiger
et al., 2009; Hu and Luo, 2013). This force propagation may
be considered another outside-in mechanosensing function of
integrins within the FA.

In most research on FAs, the exact integrin involved is not
identified. In FAs of ECs, the most recognized β integrins are
β1 and β3. It is also worth note that these two integrins are
often interchangeable in which types of FAs they incorporate
(Sastry and Horwitz, 1993).

Many of the studies used to analyze the role of integrins took
little into account with regard to available ECM proteins and
conditions. Since different αβ pairs have different ECM protein
binding substrates, results of experiments can be misleading
when a particular integrin is being measured and its substrate
is not available on the culture surface (Hirayama and Sumpio,
2007). Detailed experiments have even showed that integrin
heterodimer pairs switch depending on the availability of
extracellular cations (Stuiver et al., 1996).

Integrin β1
Integrin β1 is referenced most often in the literature of FAs.
It can be phosphorylated at T777, Y783, S785, T788, T789, and
Y795, but only requires phosphorylation of T788 or T789 to
be active (Wennerberg et al., 1998; Nilsson et al., 2006). This
phosphorylation is achieved by PKCε (Stawowy et al., 2005).

Upon 10% CS at 1 Hz, integrin β1 redistributes to the
ends of stress fibers, similar to other FA proteins FAK or
paxillin. In capillary ECs, static stretch (15% elongation)
induces integrin β1 phosphorylation at T788/T789 within
1 min of force application (Thodeti et al., 2009). Inhibition
of T788/T789 phosphorylation prevents strain-induced cell
reorientation, stress fiber alignment, and redistribution of
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FIGURE 2 | Integrin pairing. Integrins are heterodimeric cell-surface receptors for ECM proteins. Each heterodimer consists of an α and a β subunit. The eighteen α

integrins and eight β integrins are shown with lines connecting pairs that are able to heterodimerize with each other. They are also clustered by their major ligand.
Integrins that can enter endothelial focal adhesions are outlined in red.

FAs (Sastry and Horwitz, 1993; Hu and Luo, 2013). Upstream of
phosphorylation was opening of the SA channel TRPV4 followed
by PI3K activity.

One aspect not often studied with regard to CS is the influence
of neighboring cells. One study addressed this by stretching
isolated cells stretch (Huang et al., 2011). They noted that under
static conditions, integrin β1 is loosely distributed throughout
ECs. Following 20% stretch activation of confluent cells at a
frequency of 0.5 Hz, integrin β1 levels rise and clustering is
observed in lines perpendicular to the direction of stretch after
10 min. In isolated cells, however, integrin β1 failed to cluster or
align in this fashion, showing that intercellular junctions play a
role in endothelial cell cytoskeleton rearrangement and not just
focal adhesion mechanosensing. Another report also recognized
the redistribution of integrin β1 upon stretch to linear patterns,
but did not see a rise in β1 levels at the mRNA level (Yano et al.,
1997). The binding partner for integrin β1 is dependent on the
coating of the stretched surface; when coated with fibronectin,
the fibronectin receptor integrin α5β1 is found, and when coated
with collagen, the collagen receptor α2β1 is found.

Integrin β3
Integrin β3 is a receptor for vitronectin whether dimerized
with integrin αv or αIIb. Umbilical vein ECs exposed to 20%
CS at a frequency of 1 Hz demonstrate significantly elevated
integrin β3 levels of mRNA after 4 h and elevated protein
expression at 12 h (Suzuki et al., 1997). Equally, the number
of FAs containing integrin β3 increased. These results are

debatable, however, because in similar experiments (at the less
strenuous conditions of 10% CS at 1 Hz) using the same
type of cells, integrin β3 did not follow FA rearrangement
(Yano et al., 1997).

We have seen above that thrombin levels are elevated in
VILI, and that thrombin regulates FAK and GIT1 distribution.
Some evidence shows a secondary effect of thrombin to
induce angiogenesis in ECs by directly binding to integrin
αvβ3 (Tsopanoglou et al., 2002). However, these effects are
overshadowed by the damage caused by overdistension and
probably only plays a role during healthy physiologic breathing
(Birukova et al., 2006).

Integrin β4
Integrin β4, with a very different cytoplasmic domain compared
to other β integrins, does not incorporate into traditional FAs.
Nevertheless, integrin β4 interacts with a number of FA proteins.
And as we shall see, it has the most complex reaction to VILI of
all the β integrins.

The only known partner for integrin β4 is integrin α6
(Hynes, 2002). Integrin α6β4’s extracellular target is laminin-5.
Unlike other FA β integrins, β4’s cytoplasmic tail interacts with
intermediate filaments through plectin. Syndecan-1, a cell surface
proteoglycan which plays roles in FA structure, can bind integrin
β4 as well as other intracellular and extracellular components
(Altemeier et al., 2012; Wang et al., 2014).

The cytoplasmic tail of integrin β4 is 1088 amino acids long.
This tail is composed of a proximal Calx Na-Ca exchanger
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domain followed by two pairs of fibronectin type II repeats with
a tyrosine activation motif (TAM) between them (Hogervorst
et al., 1990). Several tyrosines and serines can be phosphorylated;
some of the tyrosines are targeted by Src family kinases (SFKs)
including Fyn and Yes (Giancotti, 2007), and serines are targeted
by epidermal growth factor (EGF) and/or PKCα (Rabinovitz
et al., 2004). Phosphorylation by these kinases results in binding
of FAK to integrin β4 (Tai et al., 2015). The exact point of
interaction seems to be just proximal to the transmembrane
domain of integrin β4 to a sequence of FAK just upstream of its
Y397 autophosphorylation site (amino acids 376–386).

Integrin β4 is tyrosine phosphorylated on at least one of Y1440,
Y1526, Y1640, or Y1422 within 30 min of exposure to 18% CS at
0.5 Hz (Chen et al., 2015). This phosphorylation is required for
the full effects of CS induced inflammatory factor release into
media, though it seems that at least one phosphotyrosine also
provides protective effects. In a broader model, it seems that
integrin β4’s cytoplasmic tail is responsible for many of the effects
of VILI, as mutant mice lacking the cytoplasmic portion are
almost completely protected from high tidal volume ventilation.
Integrin β4 binding to laminin-5 does not seem to be required
for the morphological changes seen in stretched ECs when other
integrins are available (Hirayama and Sumpio, 2007).

Other Integrin β
Of the five remaining β integrins, β5 is the only one that is
significantly expressed in the pulmonary endothelium, though
data supporting localization within FAs is lacking (Wayner et al.,
1991; Sastry and Horwitz, 1993). There is evidence, however,
that integrin αvβ5 associates with FAK from c-Src activity in
developing ECs (Eliceiri et al., 2002). This integrin certainly
plays a role in VILI progression because knockout mice are
protected from VILI and blocking integrin αvβ5 in vitro prevents
thrombin injury (Su et al., 2007). And integrin β5 signaling
is required for stretch induced changes in epithelial cells and
associates with zyxin (Bianchi-Smiraglia et al., 2013). Integrin
β6 is heavily concentrated in epithelium but is not normally
expressed in endothelium (Tabata et al., 2008). Integrins β2 and
β7 are principally expressed in leukocytes, but β7 is also found in
some endothelia where it heterodimerizes with α4 and responds
to a number of inflammatory agents (Brezinschek et al., 1996).
Integrin β8, with a non-classical cytoplasmic domain compared
to β1-3 and β5-7, was originally characterized as unimportant
with regard to adhesion or the cytoskeleton (Nishimura et al.,
1994). Later, however, it was found in ECs where it plays a role in
angiogenesis (Giusti et al., 2013). Evidences of the involvement of
these other types of integrin βs in FAs are very limited and require
further experiments.

SUMMARY AND CONCLUSION

Ventilator induced lung injury is characterized by compromised
vascular endothelial barrier protection and the production
of edemagenic agents in response to mechanical stretch that
may lead to overdistention depending upon tidal volume
and ventilation frequency (Dos Santos and Slutsky, 2000;

Lionetti et al., 2005; Birukova et al., 2006). This mechanical-force
initiated cellular injury results in cytoskeletal rearrangement.
FAs play a central role in mechanotransduction and cytoskeletal
rearrangement (De et al., 2010; Ladoux and Nicolas, 2012;
Iskratsch et al., 2014; De, 2018). Here, we present the known
picture of the molecular changes that occur at FAs as a result of
CS and other factors of VILI. Within the FA, force from stretching
of the ECM is propagated through integrins into the FA (Geiger
et al., 2009). This force is then exerted on adapter and signaling
proteins such as talin and vinculin. Additionally, other receptors
for stretch and agents involved in VILI result in phosphorylation
events on c-Src and then on integrin, FAK, paxillin, and others.
Together these lead to the characteristic stress fiber formation and
cytoskeletal rearrangement seen in VILI.

The most essential proteins within the FA are integrins and
talin (Jiang et al., 2003). These are the minimum structural
components which link the ECM to the actin cytoskeleton.
Talin may be considered the master regulator of FAs (Klapholz
and Brown, 2017), but integrins anchor the FA to the plasma
membrane, are the first proteins involved in a newly formed
FA (Romer et al., 2006) and are the first link in the outside-in
function of FA force propagation.

Ventilator induced lung injury remains a substantial health
care burden with an obvious lack in therapies (Dos Santos
and Slutsky, 2000; Plataki and Hubmayr, 2010). More research
on the nature of VILI progression is essential in order to
prevent and treat patients with this injury. This review focusses
on individual FA proteins currently known to be involved
in VILI related pathology. By integrating this knowledge
with other VILI research on the cellular, tissue, organ, and
individual level, it is hoped that new prevention and treatment
methods will continue to reduce the impact of VILI. By
investigating each individual protein as we have, we can
better understand the basic mechanisms of mechanical stress
on endothelial injury. This should help us identify more
specific targets for drug therapies in VILI. Biological agents
which target many of these proteins such as c-Src, FAK,
paxillin, and integrins have been developed in other disease
models (Paulhe et al., 2005; Infusino and Jacobson, 2012; Eke
and Cordes, 2015), though currently none are approved for
VILI therapy. The possibility that these agents would prove
efficacious in VILI is difficult to determine because of the
incomplete knowledge we have on the disease. Additionally,
the various mathematical, in vitro, animal, and clinical data
lead to many contradicting findings regarding the roles of
individual proteins in VILI. Further research and understanding
of individual proteins and sites within proteins should help
develop a “more pure” understanding of the roles these
proteins play and allow for more selective targeting and
drug development.

More advanced tools are being developed to study VILI and
related disease. One such tool is genetics. It is already common
practice to personalize mechanical ventilation strategies using a
variety of monitoring inputs (Nieman et al., 2017). Additionally,
genetic influences may be at play, as health disparities are
common in pulmonary injury (Moss and Mannino, 2002;
Frutos-Vivar et al., 2006; Erickson et al., 2009), and genetic
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variants have been found to play a role in VILI and other
pulmonary diseases (Barnes, 2005; Nonas et al., 2005; Gao et al.,
2006). We are sure that variants in FA proteins will continue to
be found and their function evaluated.

In summary, the FA-integrin complex is a key mechanical
stress biosensor system in ECs in response to VILI.
Although complex and sometimes controversial, the FA-
integrin system modulates VILI associated endothelial injury
and signaling, and obviously is a viable drug target for
VILI. Our perspective is that the next breakthrough in FA-
integrin research is the genetic influences on variable VILI
outcome, which will lead to a better understanding of the
pathobiology of endothelial mechanical stress sensing and signal

transduction, thus more importantly providing a basis for
personalized medicine.
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