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Abstract: The shape memory effect (SME) refers to the ability of a material to recover its original
shape, but only in the presence of a right stimulus. Most polymers, either thermo-plastic or thermoset,
can have the SME, although the actual shape memory performance varies according to the exact
material and how the material is processed. Vitrimer, which is between thermoset and thermo-plastic,
is featured by the reversible cross-linking. Vitrimer-like shape memory polymers (SMPs) combine the
vitrimer-like behavior (associated with dissociative covalent adaptable networks) and SME, and can
be utilized to achieve many novel functions that are difficult to be realized by conventional polymers.
In the first part of this paper, a commercial polymer is used to demonstrate how to characterize the
vitrimer-like behavior based on the heating-responsive SME. In the second part, a series of cases
are presented to reveal the potential applications of vitrimer-like SMPs and their composites. It is
concluded that the vitrimer-like feature not only enables many new ways in reshaping polymers,
but also can bring forward new approaches in manufacturing, such as, rapid 3D printing in solid
state on space/air/sea missions.
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1. Introduction

As a typical thermo-plastic, above its melting temperature (Tm), polycaprolactone (PCL) is able to
flow and can be reshaped into another shape. This new shape remains after solidification [1]. We can
repeat this reshaping process again and again. However, after cross-linking, the PCL strip (refer to
Figure 1) pre-stretched above its melting temperature is able to recover its original shape upon either
heating or immersing in acetone. After pre-deformation to fix a temporary shape, a process called
programming (e.g., Figure 1b to Figure 1c), a material with the ability to recover its original shape,
but only at the presence of a right stimulus, is technically called shape memory material (SMM),
and the phenomenon associated with this shape recovery process (e.g., Figure 1c to Figure 1d, which is
heat-induced, or Figure 1c to Figure 1e, which is chemically induced) is known as the shape memory
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effect (SME) [2–5]. Similar to drying of wet hydrogel membranes in air [6], during drying of acetone
wetted PCL, uneven evaporation of acetone may cause the PCL to curl (Figure 1e to Figure 1f) and
an internal stress field is resulted inside of the material. Subsequent heating may effectively flatten it
(Figure 1f to Figure 1d) and eliminate the internal stress as well. Refer to Figure S1 in the Supplementary
Materials (Part I) for a snapshot of the actual experiment. After cross-linking, PCL becomes thermoset,
and therefore its permanent shape is fixed [7–9]. It has both the heating-responsive SME and the
chemo (acetone)-responsive SME. Furthermore, as revealed in S2 (thermo-plastic polystyrene, PS and
thermo-plastic polypropylene, PP) and S3 (dry thermoset hydrogel) in the Supplementary Materials
(Part I), the local internal stress in a thermoset can be eliminated or minimized via the SME, while for
thermo-plastics, not only the local internal stress is difficult to remove, but also melting induced
distortion may occur.
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via chemo-responsive SME; (f)–(d) heating to eliminate the deformation induced during acetone 
evaporation]. 

Although thermoset is well-known for better thermal/shape stability and higher strength, being 
reprocess-able via injection/extrusion etc., at high temperatures (above Tm) is the remarkable 
advantage of thermo-plastic. Because of the increasing demand for recycling, being reprocess-able 
becomes more and more important at present [10,11].  

Both the glass transition and melting/crystallization may be utilized for the SME in shape 
memory polymers (SMPs). For the melting/crystallization-based SME in a SMP, cross-linking, either 
physical or chemical, which determines the permanent shape of the SMP, is required [12,13]. There 
are different ways to describe the underlying mechanisms for the SME in SMPs. From the mechanics 
of materials point of view, there are at least two parts in a SMP, one is the elastic part, which stores 
the elastic energy after programming and releases the elastic energy to drive shape recovery, and the 
other is the transition part, which changes its stiffness according to whether the right stimulus is 
presented and hold the deformed temporary shape after programming. Depending on the actual 
working mechanism, the elastic part might be the cross-linked network only, or together with 
additional contribution from a portion of yet softened transition part during programming [14–16]. 

Figure 1. Shape memory effect in thermoset polycaprolactone (PCL). (a) Original strip shaped
sample; (b) stretching at high temperatures when the material is soft; (c) temporary shape after
programming; (d) recovered shape after heating; (e) recovered shape after immersing in acetone
(slightly swollen); (f) after taking out of acetone, sample curls because of uneven evaporation of
acetone. [(b)–(c): Programming to fix the temporary shape; (c)–(d): recovery via heat-responsive SME;
(c)–(e): recovery via chemo-responsive SME; (f)–(d) heating to eliminate the deformation induced
during acetone evaporation].

Although thermoset is well-known for better thermal/shape stability and higher strength,
being reprocess-able via injection/extrusion etc., at high temperatures (above Tm) is the remarkable
advantage of thermo-plastic. Because of the increasing demand for recycling, being reprocess-able
becomes more and more important at present [10,11].

Both the glass transition and melting/crystallization may be utilized for the SME in shape memory
polymers (SMPs). For the melting/crystallization-based SME in a SMP, cross-linking, either physical or
chemical, which determines the permanent shape of the SMP, is required [12,13]. There are different
ways to describe the underlying mechanisms for the SME in SMPs. From the mechanics of materials
point of view, there are at least two parts in a SMP, one is the elastic part, which stores the elastic
energy after programming and releases the elastic energy to drive shape recovery, and the other is the
transition part, which changes its stiffness according to whether the right stimulus is presented and
hold the deformed temporary shape after programming. Depending on the actual working mechanism,
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the elastic part might be the cross-linked network only, or together with additional contribution from
a portion of yet softened transition part during programming [14–16].

It is apparent that a reversible cross-linking system/network, which appears and disappears on
demand in a well-controlled manner via, e.g., heating/cooling, is able to combine the advantages of both
thermoset and thermo-plastic, and in the meantime, largely avoid their own problems. The potential
application of this kind of material is enormous.

Vitrimer is a newly coined term for this type of polymers with a reversible cross-linking
system/network upon thermal cycling [17–19]. Although strictly speaking, according to [20],
vitrimer belongs to the group of associative covalent adaptable networks (CANs) (i.e., the original
cross-link is only broken when a new covalent bond to another position has been formed [20]), the group
of dissociative CANs (i.e., the chemical bonds are first broken and then formed again at another
place, for instance the reversible Diels–Alder reaction between furans and maleimides in organic
polymer networks [20]) is seemingly more interesting and useful. Interested readers may refer to above
mentioned references for more details.

In recent years, many new types of vitrimers have been invented via different approaches
for enhanced performance and/or for some special features (such as, the novel SME or
self-folding/unfolding [21–25], i.e., reshaping), malleability and reprocessability by hot-pressing
(i.e., associated with recycling as thermo-plastics) and heat-assisted healing, etc., [21,25–35].
Current methods to characterize vitrimers are mostly based on the Arrhenius law [17,33,35].

Some dissociative CAN vitrimers have been available in the market for some years. We used
a commercial vitrimer polyurethane (PU) in the course of this study.

Upon thermal cycling within a relatively lower temperature range, if the network (cross-linking)
in a vitrimer is strong enough to serve as the elastic part to store elastic energy, similar to those
semi-crystalline SMPs, the heating-responsive SME can be achieved [12]. Since the cross-linking
in vitrimers is reversible during thermal cycling to higher temperatures, we may examine the
shape memory performance of a vitrimer to systematically characterize its vitrimer-like behavior
(dissociative CAN) as a function of temperature. From the engineering application point of view,
such a kind of information is essential in order to use the material in real practice.

The purpose of this paper is two-fold. Section 2 presents a heating-responsive SME based approach
to systematically characterize the vitrimer-like behavior of a commercial vitrimer-like polymer. Section 3
presents a range of ways to permanently or temporarily reshape/manufacture vitrimers and their
composites, including rapid 3D printing on space/air/sea missions. Main conclusions are summarized
in Section 4.

Unless otherwise stated, in all experiments mentioned in Section 3, the vitrimer-like polymer
characterized in Section 2 is used.

2. Characterization of Vitrimer-Like Behavior via SME

2.1. Material and Sample Preparation

The polymer (TPU 262A) used in the course of this study is from Taiwan PU Corporation (TPUCO,
Taiwan). This material is claimed to be thermo-plastic by the manufacturer. As-received material is in
pellet form.

Differential scanning calorimetry (DSC) test was carried out on a piece of small original pellet for
two continuous thermal cycles between −50 ◦C and 200 ◦C at a temperature ramping rate of 10 ◦C/min
using a Q200 DSC machine (TA Instrument, New Castle, DE, USA). According to the result of the
second cycle (red line in Figure 2), the melting temperature (Tm) of this material is about 50 ◦C, and at
around 60 ◦C it fully melts. Upon cooling, its crystallization temperature (Tc) is found to be about 0 ◦C.
However, after 15 min at room temperature (about 23 ◦C), which according to Figure 2, is slightly above
the crystallization starting temperature of this material, it is able to fully crystallize. An additional
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DSC test carried out between −100 ◦C and 200 ◦C (Figure S4 in the Supplementary Materials, Part I)
reveals that the glass transition temperature range of this material is between −50 ◦C and −30 ◦C.
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Figure 2. Differential scanning calorimetry (DSC) result of as-received pellet for two continuous
thermal cycles.

Flat pieces with a thickness of 1 mm or 0.3 mm were prepared via hot-compressing at 130 ◦C.
It was observed that at 110 ◦C, this polymer is already very easy to flow (refer to Figure 5). Hence,
unless otherwise stated, the applied pressure was always very small in all hot-compression tests
reported here. Samples were cut from the hot-compressed pieces into the required size for testing.
Polytetrafluoroethylene (PTFE) thin film was used as the interfacial layer between the polymer
and the metallic mold to ensure easy separation after hot-compression. Consequently, the textile
pattern of the PTFE film was recorded on the surface of the hot-compressed samples as shown in
Figure 3a, which is a strip-shaped sample cut from the hot-compressed piece. A few dots were
marked on the sample surface for the purpose of manual measurement of the real deformation during
thermo-mechanical testing. Figure 3b reveals the 3D surface over an area of 1 mm × 1 mm scanned by
Talyscan 150 (Taylor Hobson, Warrenville, IL, USA), in which the fluctuation in height of the surface of
the hot-compressed sample is around 20 µm. Samples were cut from the hot-compressed pieces into
the required size for testing.
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Some pellets were dissolved in acetone (99% purity) at a concentration of 20 g/100 mL and then
kept on stirring for 24 h. Thereafter, the solution was poured into a Petri dish without covering for 24 h
for complete evaporation of acetone. Flat pieces of about 1 mm in thickness were obtained in this way.
Herein, the samples cut from this kind of flat pieces are named as acetone-treated sample, while the
samples prepared by hot-compression are named without acetone-treated sample.

2.2. Characterization

A series of experiments, including nuclear magnetic resonance (Figure S5), X-ray diffractometry
(XRD) (Figure S6), and Fourier-transform infrared spectroscopy (FTIR) (Figures S7 and S8) were
conducted to identify the chemical structure of this material. Refer to Part II of Supplementary
Materials for details.

According to the 1H NMR spectrum in Figure S5 (Part II in the Supplementary Materials),
this TPU is composed of poly(1,4-butylene adipate glycol) (PBA), diphenyl-methane-diisocyanate
(MDI), and 1,4-butylene glycol (BDO). PBA segments form the soft domain (crystalline), while MDI
and BDO segments form the hard segments (glassy). Refer to Figure S9 (Part II in the Supplementary
Materials), the soft/hard segment structure enables the heating-responsive SME in this material at
relatively lower temperatures (below 80 ◦C), in which the soft segments serve as the transition part,
while the hard segments work as the elastic part.

Unless otherwise stated, herein the stress and strain are meant for the engineering stress and
engineering strain, respectively.

A Q800 DMA machine from TA Instruments (New Castle, DE, USA) was used for all dynamic
mechanical analysis (DMA) tests (in film tension mode at a ramping rate of 1 ◦C/min from room
temperature to 115 ◦C). The applied frequency and oscillation strain were 1 Hz and 0.07%, respectively.
The samples used here are 20 mm × 5 mm × 1 mm strips. The DMA result presented in Figure 4 is
for the sample without acetone treatment, which confirms that the melting transition of this material
ends at around 60 ◦C. In Figure 5, we plot the strain versus heating temperature relationship using the
same set of experimental data for Figure 4. Four zoom-in views of four selected temperature ranges
are also included. Although we cannot see any significant feature in both Figure 2 (DSC) and Figure 4
(DMA) at around 100 ◦C upon heating, Figure 5 [in particular, inset (d)] clearly shows that from 107 ◦C
onward the material becomes more and more non-elastic and continuously extends during cyclic
stretching. Hence, the material gradually turns to be less viscous, i.e., with less friction. At around
110 ◦C, the material appears not being able to maintain its shape anymore, so that the material becomes
thermo-plastically reprocess-able.
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Figure 5. Strain versus heating temperature relationship in DMA test (same set of experimental data
for Figure 4). (a): Zoom-in view from 44 ◦C to 46 ◦C; (b) zoom-in view from 89 ◦C to 91 ◦C; (c) zoom-in
view from 99 ◦C to 101 ◦C; (d) zoom-in view from 107 ◦C to 109 ◦C.

The heating-responsive shape memory performance of the samples with/without acetone treatment
was characterized via DMA. In each test, the 1-mm thick sample was heated to a prescribed temperature.
After three minutes of temperature stabilization, the sample was stretched to about 25% strain at a
strain rate about 0.2%/s. After cooling back to room temperature, the sample was unloaded. This ends
the programming process, which is the first part of a full shape memory cycle. Technically speaking,
this heating temperature is called the programming temperature (Td) and the maximum deformation
strain applied here is called the maximum programming strain (εm) [36]. In the next part of a full shape
memory cycle, which is the recovery process, the programmed sample was heated to the previous
programming temperature (Td) for shape recovery. Two typical DMA results, in which Td was 80 ◦C
in both tests, but one sample was acetone treated and the other was without acetone treatment,
are presented in Figure 6. Since the horizontal axis is time, the stress, strain, and temperature during
each shape memory cycle are presented as a function of time.
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Figure 6. Typical DMA results for characterization of shape memory performance (Td: 80 ◦C; εm:
~25%). (a) Acetone-treated sample; (b) without acetone treatment.

Two most important parameters to evaluate the shape memory performance of a polymer are
the shape fixity ratio (Rf) and shape recovery ratio (Rr), which, for polymers without apparent



Polymers 2020, 12, 2330 7 of 28

creep/relaxation at room temperature after programming (as the material used in this study is;
refer to [37] for the experimental results of this material in our previous investigation) are defined
by [36],

R f =
ε1

εm
(1)

Rr =
ε1 − ε2

ε1
(2)

where ε1 is the strain after programming and ε2 is the residual strain after heating for shape recovery.
As mentioned in [12], both the shape fixity ratio and shape recovery ratio of a polymer are programming
temperature and maximum programming strain dependent.

In Figure 7, Rf and Rr (upon heating to Td, which is the programming temperature, for shape
recovery) are plotted as a function of Td. As the material around the clamping areas might be pulled
out of the clampers during stretching, which is difficult to recover in the subsequent heating process in
a DMA test, the shape recovery ratios of the samples without acetone treatment obtained based on
the displacement manually measured using the pre-marked dots in the middle area of these samples
(refer to Figure 3a) are also included in Figure 7. It appears that Rf in all samples is about 100%,
while Rr decreases with the increase in Td. Both acetone-treated and without acetone-treated samples
essentially share the same trend in the Rr versus Td relationship. The manually measured results of
without acetone-treated samples indicate that for Td up to 80 ◦C, upon heating to the previous Td,
the corresponding Rr is about 100%. When Td approaches 110 ◦C, the corresponding Rr drops to
only about 10% or less in all experiments. The results of Rr obtained from DMA test and manual
measurement are only slightly different.
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Figure 7. Shape fixity ratio (Rf) and shape recovery ratio (Rr) as a function of programming temperature
(Td) for samples with/without acetone treatment.

Additional tests were manually carried out to further investigate the influence of thermal history
on Rr using 1-mm thick samples. Manual measurement based on pre-marked dots (refer to Figure 3a)
was used in the calculation. All these tests were carried out according to the following sequence.

(1) Heat the sample to a prescribed pre-heating temperature (Tp). Three pre-heating temperatures
(namely, 75 ◦C, 90 ◦C, and 120 ◦C) were applied in the course of this study.

(2) Cool the sample to a predetermined programming temperature, Td (≤Tp), and then gently and
slowly stretch it by hands so that the strain between the two marked dots reaches around 100%.
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Three programming temperatures (namely, 50 ◦C, 75 ◦C, and 90 ◦C) were applied. According to
Figure 2, these three temperatures are all well above the crystallization temperature of this material.

(3) Further cool the sample back to room temperature for full crystallization.
(4) Heat the sample in a step-by-step manner to five reheating temperatures (Tr) from 80 ◦C, 90 ◦C,

100 ◦C, 110 ◦C, to finally 120 ◦C. The corresponding shape recovery ratios after each heating are
plotted in Figure 8. Legend in Figure 8 is in (Tp:Td) format to indicate the actual thermal history
before final step-by-step heating of a sample.
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indicate the pre-heating and programming temperatures, respectively, of a sample.

Hence, Sample (75:75) was pre-heated to 75 ◦C and then programmed at 75 ◦C. Same as that in
Figure 7, it is able to mostly recover its original shape upon heating to 80 ◦C. However, upon further
heating to 110 ◦C and above, Rr is slightly over 100%, which should be due to the easy to flow nature
of this material at such high temperatures (refer to Figure 5d). For Sample (90:90), its Rr is about 82%
upon heating to 80 ◦C. Further heating to its programming temperature of 90 ◦C, Rr improves slightly.
With further increase in heating temperature, Rr gradually and continuously increases until around
110 ◦C, where the material becomes dimensionally unstable. For the other three samples, they were
pre-heated to 120 ◦C and then programmed at lower temperatures. Apparently, Sample (120:90) has
very much limited capability for shape recovery (less than 10%), while Sample (120:75) is slightly better
(20% or less). The shape recovery ratio of Sample (120:50) is over 50%, which is much better than Sample
(120:75) and Sample (120:90). According to [12], a higher shape recovery ratio implies more/better
elastic part, which releases the elastic energy stored during programming to drive shape recovery.

2.3. Vitrimer-Like Behavior

According to [12], the underlying mechanism for the SME in polymeric materials is
a two-part/component system, in which one (elastic part) is always elastic to store elastic energy after
programming and then the stored elastic energy serves as the driving force for later on shape recovery,
while the other (transition part) is able to change its stiffness to function as the switcher in a shape
memory cycle.
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According to Figure S4 (Part II of the Supplementary Materials), the soft segment is PBA, and the
hard segment is MDI-BDO. Figure S9 in Part II in the Supplementary Materials schematically illustrates
the phase transition process upon heating. While below 80 ◦C, the SME of this material is the result of
the soft/hard segment system, upon further heating to over 80 ◦C, the glassy hard segments gradually
become viscous. Correspondingly, the network gradually disappears. Consequently, the shape
recovery ratio of the polymer gradually decreases.

After combining the results in Figures 7 and 8 together, we may conclude that below 80 ◦C,
the material is similar to a semi-crystalline polymer, i.e., thermoset. The chemically or physically
crosslinked network is essentially the elastic part. However, upon further heating the network starts to
gradually weaken, which results in continuous decrease in the shape recovery ratio. Above 110 ◦C,
the material becomes easy to flow, which indicates that the network is either weakened to the level that
is not sufficient to keep the shape or fully removed (refer to the DMA result in Figure 5d). The reason
for less recovery upon heating to Td and then more recovery upon further heating [e.g., Sample (90:90)]
is because the network is weakened (evidenced by higher strain and more fluctuation in Figure 5b,c).
Therefore, further softening at higher temperatures (refer to DMA result in Figure 4) is required for
more recovery.

After heating to eliminate all the network, in the subsequent cooling process, the network starts to
form gradually, but not so significant even upon cooling to 75 ◦C, as the corresponding shape recovery
ratio is still less than 20%. Upon further cooling to 50 ◦C, the shape recovery ratio is dramatically
increased to over 50%.

It can be concluded that the reversible cross-linking in this material is dissociative CAN. In Figure 9,
we schematically plot the relationship between cross-linking (in %) versus temperature in a thermal cycle.
For the TPU investigated in this study, according to Figure S9 (Part II in the Supplementary Materials),
the reversible network (cross-linking) is the hard segments (MDI-BDD) (Figure S5 in Part II of the
Supplementary Materials), which gradually disappear upon gradual heating from 80 ◦C to about
110 ◦C. In the subsequent cooling process, the network slowly reappears.

In the heating process, the network starts to disappear upon reaching around TV
Ds, which means

that below this temperature, the material is 100% cross-linked and we may consider it as a kind of
semicrystalline thermoset. Therefore, it can have excellent SME, i.e., being able to almost 100% recover
its original shape, if the applied programming temperature and strain are right [12]. With the increase
in temperature, the network gradually disappears, and hence the corresponding shape recovery is
reduced accordingly. At about TV

D f , the network is fully eliminated and consequently, the material
becomes thermo-plastic and is easy to flow (i.e., with high melting flow index [37]). In the cooling
process, cross-linking starts at around TV

Cs and at about TV
C f , the network reaches 100%.

Based on Figure 9, it is expected that part of the network can be removed upon heating to between
TV

Ds and TV
D f . After subsequent cooling to TV

C f , the new cross-linking (100%) includes two parts, one is
the remaining of the previous network, and the other is newly formed. By selecting the actual heating
temperature between TV

Ds and TV
D f , the fraction of the newly formed network can be tailored. If we heat

the material to a temperature between TV
Ds and TV

D f , and then stretch it (programming), after cooling,
elastic energy is stored in the remaining of the previous network, while the newly formed network is
mostly stress free.

The slight difference observed in Figure 7 between samples with/without acetone treatment implies
the density of the reversible network is roughly the same before and after treatment (thermal cycling
or dissolving in acetone).

In the heating process, dramatic decrease in shape recovery is observed, when the remaining
network is not able to serve as a strong continuous elastic spring, which should follow the percolation
theory, to effectively store elastic energy.
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Figure 9. Schematic sketch of cross-linking (in %) versus temperature relationship upon heating
(network eliminating) and cooling (gradual cross-linking).

Apparently, the programming strain also affects the continuity of the elastic spring (network).
For instance, over stretching may cause one functionally continuous elastic spring to split into two
or more smaller springs, which results in permanent plastic deformation and hence the reduced
shape recovery capability of the material. As schematically illustrated in Figure 10a, if a material is
slightly stretched at high temperatures, the network is able to elastically deform together with the
matrix (Figure 10b). However, if it is over-stretched, dislocation, another type of permanent plastic
deformation, at the end of the network occurs (Figure 10c), which reduces the shape recovery ratio
accordingly. In the cooling process, the percolation theory for the relationship between the network and
shape recovery capability is also applicable. Such a kind of relationship in both heating and cooling
processes provides the possibility to simultaneously reset both the permanent shape and temporary
shape of a vitrimer in one processing step.Polymers 2020, 12, x FOR PEER REVIEW 11 of 29 
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For simplicity, in above mentioned experimental investigation, we only take the heating/cooling
temperature as the parameter without considering the influence of heating/cooling time/speed. Since this
material is able to fully crystallize at room temperature, which is slightly above its crystallization
starting temperature (Figure 2), it is logical to expect that heating/cooling time/speed should be
important factors as well.

It is clear that this polymer is indeed a vitrimer-like polymer (dissociative CAN), in which
there is a network that can be gradually eliminated upon heating to over 80 ◦C that is above its
melting finish temperature (according to Figures 2 and 4), and upon cooling, the network gradually
reappears. The shape recovery ratio (Rr) essentially reveals the evolution of the network structure of
a polymer, and may be utilized to systematically characterize the vitrimer-like behavior of a polymer
upon thermal cycling. Such a kind of information is essential in order to apply the material in real
engineering applications. It can be concluded that the Rr versus programming temperature relationship
of a vitrimer-like SMP (e.g., Figure 7) is programming strain and heating/cooling time/speed dependent.
The relationship between Rr and cross-linking (in %) is nonlinear and sophisticated.

3. Applications of Vitrimer-Like SMPs and Their Composites

A combination of the vitrimer-like behavior and SME enables many new ways to manipulate
polymers, far beyond folding/unfolding, reprocessing and heating assisted healing, which have
been focused on in most of the studies reported so far [21,25,26]. In this section, in addition to
these well-known applications, we explore some more possibilities in reshaping (inside/outside,
microscopically/macroscopically, permanent/temporary) and manufacturing using vitrimer-like SMPs
and their composites. Above characterized commercial vitrimer-like SMP is used to demonstrate all
applications reported in Section 3.1, Section 3.2, Section 3.3, Section 3.4.

3.1. Superimposing of Permanent and Temporary Shapes

Although some ductile polymers may be programmed at low temperatures, for the
heating-responsive SME, in most cases, it is ideal to carry out programming at high temperatures
when the polymer is soft and ductile [14]. The transition that might be applied to soften a polymer
includes the glass transition and melting transition. While the glass transition temperature ranges in
the heating process and cooling process of a polymer are about the same for most polymers, the melting
transition temperature range is normally well above the crystallization temperature range (refer to
Figure 2 for an example). Programming a polymer based on the melting transition can be done either
in the melting temperature range (or above) upon heating or in the crystallization temperature range
(or above) upon cooling (after pre-heating). Hence, in the case of, for instance, comfort fitting in direct
contact with human body [38,39], we are able to programme the polymer investigated in Section 2
at body temperature or even room temperature without worrying of being either too hot or short of
time in programming (fitting), which are problems in those polymers in which the glass transition is
utilized in programming.

In Figure 11A, a piece of hot-compressed sample (without acetone treatment material) is pre-heated
to its melting temperature (about 70 ◦C) and then hand-stretched when it is cooled to room temperature
(about 23 ◦C) for a while. Since the middle part of the sample is stretched at lower temperatures, similar
to the stress induced crystallization in PCL [1], i.e., the crystalline component increases remarkably
after stretching, which results in improved transparency on account of minimized density differences
between crystalline and amorphous regions, and hence reduced refractive index fluctuations [40],
this area becomes transparent. After heating to the melting temperature again, it fully recovers
its original shape (including the original surface pattern). Figure 11B reveals the typical surface
morphology after stretching and the resulted coloring effect (light interference) due to the surface
pattern in the middle transparent part, when it is placed in front of a LED computer monitor.
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recovery and cooling for crystallization at room temperature (opaque). (B) Coloring effect (light 
interference) in the middle-stretched area (transparent). (a) After stretching at room temperature; (b1) 
and (b2): sample with two different angles before LED computer monitor. 

To reconfigure a polymer into another permanent shape without complete removal of the 
originally defined permanent shape is apparently an advantage of vitrimer [22,41,42]. According to 
Figure 9, reshaping into another permanent shape can actually be done during either heating or 
cooling when the network is partially or fully eliminated. Stretching under different conditions 
(depending on the thermal history and the way of deformation) may result in different colors (opaque 
or transparent) within the deformed area. 

An example to superimpose a new permanent surface pattern (using a coin) atop the existing 
one (produced during sample preparation via hot-compressing as shown in Figure 3) is 
demonstrated in Figure 12, in which the first impression is done upon heating to around 100 °C 
(Figure 12(a1)), and the second impression is done after the pre-heated sample (to less than 80 °C) is 
just cooled back to room temperature (Figure 12(b1)). While the first impression (the mirror image of 
one side of a coin) is superimposed on the original permanent surface pattern produced during hot-

Figure 11. (A) Evolution of surface morphology in hot-compressed sample (1-mm thick) used in
this study (refer to Section 2) in one shape memory cycle. (a) Original (opaque); (b) after stretching
the middle part (transparent) of the preheated sample at room temperature; (c) after heating for
shape recovery and cooling for crystallization at room temperature (opaque). (B) Coloring effect
(light interference) in the middle-stretched area (transparent). (a) After stretching at room temperature;
(b1,b2): sample with two different angles before LED computer monitor.

To reconfigure a polymer into another permanent shape without complete removal of the originally
defined permanent shape is apparently an advantage of vitrimer [22,41,42]. According to Figure 9,
reshaping into another permanent shape can actually be done during either heating or cooling when
the network is partially or fully eliminated. Stretching under different conditions (depending on the
thermal history and the way of deformation) may result in different colors (opaque or transparent)
within the deformed area.

An example to superimpose a new permanent surface pattern (using a coin) atop the existing
one (produced during sample preparation via hot-compressing as shown in Figure 3) is demonstrated
in Figure 12, in which the first impression is done upon heating to around 100 ◦C (Figure 12(a1)),
and the second impression is done after the pre-heated sample (to less than 80 ◦C) is just cooled back
to room temperature (Figure 12(b1)). While the first impression (the mirror image of one side of
a coin) is superimposed on the original permanent surface pattern produced during hot-compression
(Figure 12a), the second impression (the mirror image of the other side of the coin) is temporary
(Figure 12b), and can be fully removed after heating again (Figure 12c). Note that the maximum depth
of the surface feature of a standard bank coin is about 0.1 mm [43,44], which is a lot more than that of
the surface pattern of the hot-compressed sample (about 20 µm, refer to Figure 3b).

In Figure 12, in order to record the results after each step, the sample was heated twice to
superimpose two surface patterns, one is permanent and the other is temporary, one by one. In fact,
both the permanent pattern and temporary pattern can be superimposed within one heating-cooling
process, i.e., the second surface pattern can be impressed onto the sample when the network is
fully established in the cooling process. Furthermore, according to Figures 8 and 9, we can actually
superimpose a few permanent and temporary shapes during one heating-cooling process.
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recovery). Upon further heating to below its easy to flow temperature and then cooling back enables 
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Figure 12. Superimposing new feature atop existing surface pattern. (a) After heating the sample
(1 mm thick) placed atop a coin to around 100 ◦C [as shown in (a1), sample is fully transparent at
high temperatures] to superimpose the surface pattern of the coin; (b) after pre-heated sample (to less
than 80 ◦C) cooled to room temperature and then placing the other side of the coin atop for second
impression [as shown in (b1)]; (c) after heating for shape recovery.

In solid state, vitrimer-like SMP has the advantage to reconfigure into another shape either
permanently or temporarily on demand.

3.2. Heat-Assisted Healing without Altering Surface Feature

Healing, in particular heat-assisted healing, has been extensively investigated in recent years
(e.g., in [45–50]). In most applications, both shape recovery and strength recovery are simultaneously
required. Ideally, healing should be repeatable and the healing process should take as less time
as possible.

For a thermo-plastic, unless heating is restricted within a very small local area, heating to or
over its melting temperature tends to fail the material to maintain the original shape/dimension,
in particular, surface pattern (refer to Figure S2(a2) in Part I of the Supplementary Materials). On the
other hand, the broken network in a thermoset is mostly permanent. However, vitrimer (in particular
for dissociative CAN type) is able to keep the original shape and reconstruct a network via heat-assisted
healing for strength recovery in a repeatable and rapid manner.

Based on the characterized properties of the vitrimer-like SMP reported in Section 2, we can
select an optimized temperature to heat the whole piece of a sample for healing within a short
period of time, while the sample keeps the original shape/dimension. Two 1-mm thick examples as
reported in Section 2 are demonstrated in Figure 13, in which Figure 13A is healing of surface cutting
produced by a sharp blade via immersing into 90 ◦C hot water, and Figure 13B is healing of throughout
thickness cutting produced by a pen-knife via heating using a hairdryer. According to Figures 2 and 4,
heating to 80 ◦C triggers the heating-responsive SME, which helps to close the cutting (shape recovery).
Upon further heating to below its easy to flow temperature and then cooling back enables the network
to be re-established, while the original surface pattern largely remains. The reversible network in
vitrimer-like SMPs provides a temperature winder (between about 90 ◦C to about 100 ◦C for the
material investigated in Section 2) to simultaneously achieve shape recovery and strength recovery
with minimum impact on the original shape/dimension of the sample.

In Figure 13, it appears that shape recovery is not 100%, in particular in the sample with throughout
cutting. In order to reveal the exact reason behind this, further experiments were carried out on
1-mm thick samples. Figure 14 presents the results of three SME tests, in which the programming
temperatures are room temperature, 65 ◦C and 95 ◦C, respectively, while the applied maximum
programming strain is approximately the same. Since at room temperature the material is hard,
stretching is done by a tensile machine. Programming of other two samples at higher temperatures is
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conducted by hands (in a similar way to investigate the influence of thermal history on Rr in Section 2.2).
As we can see, full shape recovery is only observed in the sample stretched at 65 ◦C, while the other
two samples stretched at room temperature and 95 ◦C are not able to fully recover. As explained above,
incomplete recovery in the sample programmed at 95 ◦C is due to the reason of significant reduction in
cross-linking. On the other hand, for the sample programmed at room temperature, incomplete shape
recovery after heating should be the result of fractured cross-linking when the sample is stretched at
low temperatures, which is a phenomenon that has been reported [12,51]. Thus, it may be concluded
that incomplete healing (shape recovery) observed in Figure 13 is most likely associated with the
reduced shape recovery capability of the polymer after low temperature programming, since cutting is
done at room temperature.

Polymers 2020, 12, x FOR PEER REVIEW 14 of 29 

 

for the material investigated in Section 2) to simultaneously achieve shape recovery and strength 
recovery with minimum impact on the original shape/dimension of the sample. 

 

(A) 

 

(B) 

Figure 13. Heat-assisted healing. (A) Shallow surface cutting using sharp blade. (a) Original; (b) after 
cutting; (c) after heating in 90 °C hot water. (B) Throughout thickness cutting using pen-knife. Insets 
are zoom-in view of the cut. (a) After cutting; (b) after heating using hairdryer. (1) Front side; (2) back 
side. 

In Figure 13, it appears that shape recovery is not 100%, in particular in the sample with 
throughout cutting. In order to reveal the exact reason behind this, further experiments were carried 
out on 1-mm thick samples. Figure 14 presents the results of three SME tests, in which the 
programming temperatures are room temperature, 65 °C and 95 °C, respectively, while the applied 
maximum programming strain is approximately the same. Since at room temperature the material is 
hard, stretching is done by a tensile machine. Programming of other two samples at higher 
temperatures is conducted by hands (in a similar way to investigate the influence of thermal history 
on Rr in Section 2.2). As we can see, full shape recovery is only observed in the sample stretched at 65 
°C, while the other two samples stretched at room temperature and 95 °C are not able to fully recover. 
As explained above, incomplete recovery in the sample programmed at 95 °C is due to the reason of 
significant reduction in cross-linking. On the other hand, for the sample programmed at room 
temperature, incomplete shape recovery after heating should be the result of fractured cross-linking 
when the sample is stretched at low temperatures, which is a phenomenon that has been reported 
[12,51]. Thus, it may be concluded that incomplete healing (shape recovery) observed in Figure 13 is 

Figure 13. Heat-assisted healing. (A) Shallow surface cutting using sharp blade. (a) Original; (b) after
cutting; (c) after heating in 90 ◦C hot water. (B) Throughout thickness cutting using pen-knife. Insets are
zoom-in view of the cut. (a) After cutting; (b) after heating using hairdryer. (1) Front side; (2) back side.
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3.3. From 2D-Shape to Surface Wrinkling/3D-Shape 

According to Figures 7 and 8, the reversible network in this vitrimer-like SMP is gradually 
removed upon heating to above 80 °C till about 110 °C, where the material starts to flow (Figure 5). 
On the other hand, in the subsequent cooling process, the network gradually reinstalls. This feature 
can be applied via gradient heating (i.e., heating only selected area) to achieve surface 
wrinkling/patterning, 2D-shape to 3D-shape switching, and transition from uniform shape to non-
uniform shape, etc., as schematically illustrated in Figure 15 using a piece of pre-stretched vitrimer-
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Figure 14. Typical SME tests programmed at three different temperatures. (A) Room temperature
programming. (a) Original shape (opaque); (b) after stretching at room temperature (the middle part is
transparent); (c) after heating to 80 ◦C (opaque); (d) after heating to 100 ◦C (opaque). (B) Programmed
at 65 ◦C. (a) Original shape (opaque); (b) after programming at 65 ◦C (opaque); (c) upon heating
to 65 ◦C for shape recovery (transparent); (d) after fully crystallized at room temperature (opaque).
(C) Programmed at 95 ◦C. (a) Original shape; (b) after programming at 95 ◦C (opaque); (c) upon
heating to 95 ◦C for shape recovery (transparent); (d) after cooling back to room temperature for
crystallization (opaque).

3.3. From 2D-Shape to Surface Wrinkling/3D-Shape

According to Figures 7 and 8, the reversible network in this vitrimer-like SMP is gradually removed
upon heating to above 80 ◦C till about 110 ◦C, where the material starts to flow (Figure 5). On the other
hand, in the subsequent cooling process, the network gradually reinstalls. This feature can be applied
via gradient heating (i.e., heating only selected area) to achieve surface wrinkling/patterning, 2D-shape
to 3D-shape switching, and transition from uniform shape to non-uniform shape, etc., as schematically
illustrated in Figure 15 using a piece of pre-stretched vitrimer-like SMP strip.
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Figure 15. Illustration of typical approaches applicable for reshaping of vitrimer-like SMP strip (side view
for all sketches) via gradient preheating and then heating for shape recovery. (a) Original shape; (b) after
stretching; (c) after gradient heating; (d) after heating for shape recovery. (i) Wrinkling; (ii) bending;
(iii) folding (local non-through thickness heating); (iii′) surface patterning (local surface heating);
(iv) transition from uniform thickness to non-uniform thickness (local through thickness heating).

As presented in Figure 15, in general, there are three steps in all approaches.
First (pre-deformation), the original strip (a) is programmed via stretching (b) preferably at

high temperatures for better shape fixity ratio and higher shape recovery ratio (refer to Figure 14).
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Although illustrated here is the case of uniaxial stretching, programming may be carried out in other
modes, such as biaxial stretching, compression, and twisting, etc., or a combination of them.

In the next step (c) (preheating), local/gradient heating is applied to eliminate the network in one
(Figure 15i,ii) or more (Figure 15iii,iii′,iv) prescribed areas. After cooling back to room temperature,
new network is formed without any elastic energy stored inside of it. In Figure 15(ci), the surface of
the sample is preheated, while in Figure 15(cii), the preheated area is much deeper.

Subsequently, upon heating for shape recovery, which is the third step (shape recovery),
surface wrinkles are observed in Figure 15(di), while in Figure 15(dii), the sample bends toward the
un-preheated side.

Figure 16 presents typical wrinkles produced on a 1-mm thick sample following approach
(i) in Figure 15. The resulted parallel wrinkles look similar to what is reported in [52], in which
pre-stretched acrylonitrile butadiene styrene (ABS) that is thermo-plastic was dipped in acetone to
slightly etch its surface. After surface drying and then heating for shape recovery, parallel wrinkles
were formed on the surface of ABS sample. In Figure S10 (Part III of Supplementary Materials),
we schematically compare the difference between surface etching approach and surface preheating
(vitrimer) approach. While surface preheating (vitrimer) approach is able to maintain the original
surface pattern (as in Figure 16), surface etching approach can hardly keep the original surface structure,
in particular if the surface feature is small in size.
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Figure 16. Surface wrinkles produced following approach (i) in Figure 15. The actual surface feature
is a combination of initial surface pattern (refer to Figure 3) and wrinkles. In the preparation of the
sample, a cotton swab was soaked in acetone and then applied to slightly etch the surface of 50%
pre-stretched 1-mm thick hot compressed sample. Subsequently, the sample was heated in 75 ◦C water
for shape recovery.

In Figure 15(ciii), instead of the whole surface layer, some local areas are preheated. Upon heating
for shape recovery, the sample folds (Figure 15(diii)). Figure 17 is an example of such 2D to 3D folding
after heating. The 1 mm thick sample was pre-stretched by 30%. Local heating (two straight lines)
was done using a 3D printing pen (from eSUN, PR China) to slowly tough the sample surface during
writing (without filament). The pen head was adjusted to be about 100 ◦C. After heating for shape
recovery, the initial surface pattern produced during hot-compressing is still clearly visible. If the
depth of the preheated area is relatively small, as illustrated in Figure 15(ciii′), the result might be
a patterned surface as shown in Figure 15(diii′). Of course, preheating might be throughout the whole
thickness of the sample (Figure 15(civ)), so that after overall-heating of the whole sample for shape
recovery, some parts of the sample shrinks, while some other parts fully or partially maintain the shape
(Figure 15(div)). It should be pointed out that it might be necessary to restrain the sample in step (c) of
Figure 15 from undesired distortion during the last heating process.
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Figure 17. Folding following approach (iii) in Figure 15 (two different angles of view).

A combination of the preheating methods mentioned above can result in different ways of folding.
Figure 18 presents two examples of 2D to 3D folding. In Figure 18A, after pre-stretching to 20%,
the right part of the top sample surface of a 1 mm thick sample is preheated to high temperatures
using the same 3D printing pen mentioned in above. Thus, after 2nd heating for shape recovery,
the right part of the sample bends down (Figure 18(Aa)). Figure 18(Ab) is 3D scanned cross-section of
the line marked as A-A in Figure 18(Ac) (optical image, top view). We can see the original surface
pattern largely remains. Figure 18B is a combination of surface preheating and deep-line preheating
(again using the 3D printing pen) of a piece of pre-stretched 1-mm thick sample. The resulted 3D shape
after heating for shape recovery can be pre-designed.
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If a vitrimer is transparent, sophisticated patterns, e.g., integrated with wrinkles and/or other 
particular surface patterns, may be used as optical lens for anti-counterfeit applications [44]. Local 
heating to selectively release internal elastic stress in pre-deformed vitrimer to achieve so called 
digital coding has been reported in [53]. 

For simplicity, a strip is used for illustration in Figure 15. There are many other possible shapes 
for different applications. 

Figure 18. Controlled folding. (A) Partial-bending. (a) Photo; (b) 3D line scanning result (top surface)
of A-A section; (c) top view, in which A-A section is marked. (B) 3D folding. (a) Photo of resulted
shape (red mark pen colored areas are meant to guide for local heating); (b) 3D scanning result (unit is
in mm for all).
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If a vitrimer is transparent, sophisticated patterns, e.g., integrated with wrinkles and/or other
particular surface patterns, may be used as optical lens for anti-counterfeit applications [44].
Local heating to selectively release internal elastic stress in pre-deformed vitrimer to achieve so
called digital coding has been reported in [53].

For simplicity, a strip is used for illustration in Figure 15. There are many other possible shapes
for different applications.

Since upon heating to above its melting temperature but less than 80 ◦C, this vitrimer-like SMP is
transparent and has excellent SME (Figure 14), local preheating may be carried out by laser engraving
method in a 3D pixel manner, when the material is transparent.

3.4. Vitrimer Composites

While most previous works on vitrimer composites are focused on their capability of recycling and
self-healing [54–57], rapid reshaping to fix a new permanent/temporary shape (including to reshape
the distribution of inclusions) is of great potential in many engineering applications.

Since the topic of composite is rather wide, in this section, we will only discuss some special
functions that vitrimer is able to offer based on its reversible network.

3.4.1. Formation and Realignment/Healing of Embedded Magnetic Particle Chains

As illustrated in Figure 19a, we can load magnetic particles (such as, Fe3O4 powder) into vitrimer
via melting mixing or with the help of a solvent (e.g., acetone for the vitrimer-like SMP in Section 2).
The randomly distributed particles form regular chains, if a magnetic field is applied when the material
is softened (with its shape/dimension maintained) at high temperatures (Figure 19b). Of course, if local
heating is applied, chains are only formed within the heated area, which results in tailorable embedded
patterns. If conductive-magnetic particles (e.g., nickel, Ni, nano/micro powder) are used, the resulted
composite becomes electrically more conductive along the direction of the particle chains, and thus
may be heated via joule heating for shape recovery. On the one hand, these magnetic chains are able
to switch their direction, if a different magnetic field is applied on the softened material (while the
shape maintains) (Figure 19c). Furthermore, the broken magnetic chains, e.g., after shape memory
cycling, can be healed in the same way (Figure 19d). According to Figure 9, the magnetic field can be
applied after preheating or pre-local-heating at lower temperatures to form chains, which provide
great flexibility in processing. Hence, the magnetic particles can be manipulated for reinforcement
along a particular direction globally or locally. Refer to Figure S11 (Part III of Supplementary Materials)
for an experimental demonstration of the direction switching of the micro sized Ni powder chains
embedded inside this vitrimer-like TPU.
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Figure 19. Formation and realignment/healing of magnetic particle chains. (a) Randomly distributed
magnetic particles; (b) chains formed after heating and applying a magnetic field; (c) switching of
magnetic particle chains upon heating and applying a different magnetic field; (d) broken magnetic
chains due to, e.g., shape memory cycling.
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3.4.2. Rapid Permanent/Temporary Reshaping with Reinforcement Layer in the Middle

Glass/carbon fiber-reinforced polymeric composites have been extensively used in many
engineering applications [54,55,58,59]. Vitrimer with a fabric layer of glass/carbon fiber in the middle
for reinforcement has the advantage of permanent and/or temporary reshaping. Carbon fabric provides
the additional convenience in Joule heating of such composites. In Figure 20a, two pieces of the
vitrimer-like SMP strips (thickness of each is 0.3 mm) reported in Section 2 are hot-compressed at
110 ◦C with a layer of commercial glass fabric in between to form a single piece. Subsequently, it is
wrapped around a shaft and then heated in hot water of two different temperatures, one is around
70 ◦C (Figure 20b) and the other is 90 ◦C (Figure 20(d1)). After cooling back to room temperature,
the free-standing shapes of both of them are about the same (Figure 20(b,d2)). After reheating in
80 ◦C water, one recovers its original flat shape (Figure 20c), while the other appears slightly twisted
(Figure 20e). After programming to flatten the twisted piece at about 70 ◦C (Figure 20f), the sample
returns to its twisted shape upon reheating in 80 ◦C water (Figure 20g), which confirms that this new
shape is permanent. According to Figure 7, we can increase the temperature in Figure 20(d1) to achieve
better shape fixity. This experiment also demonstrates the feasibility to achieve simultaneous permeant
and temporary reshaping based on the cross-linking versus temperature relationship (e.g., Figures 7–9
for this particular polymer).
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Figure 20. Vitrimer reinforced with glass fabric in the middle (a standard ruler is included as 
reference). (a) Original shape; (b) after wrapping around a shaft and heated in about 70 °C water; (c) 
after heating in 80 °C water; (d1) after wrapping around a shaft and heated in 90 °C water; (d2) free-
standing sample after shaft is removed; (e) after heating in 80 °C water; (f) after programming 
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The heating-responsive shape memory phenomenon in polymers is mostly based on either the 
glass transition or melting/crystallization. As briefly mentioned above, the temperature ranges for 
the glass transition of a polymer in the heating and cooling processes are about the same, while the 
melting temperature range of a polymer is normally much higher than that for crystallization. Thus, 
we can soften a polymer upon heating to above its melting temperature, and then program it at lower 
temperatures during the cooling process. If a polymer can be deformed around body temperature or 
room temperature, while its melting temperature is much higher than the room temperature, this 
kind of material can be used in comfort fitting around human body temperature. PCL is a good 
example of such, and has been used extensively in different splints. 

Figure 20. Vitrimer reinforced with glass fabric in the middle (a standard ruler is included as reference).
(a) Original shape; (b) after wrapping around a shaft and heated in about 70 ◦C water; (c) after heating
in 80 ◦C water; (d1) after wrapping around a shaft and heated in 90 ◦C water; (d2) free-standing sample
after shaft is removed; (e) after heating in 80 ◦C water; (f) after programming (flattening) at about 70 ◦C;
(g) after heating in 80 ◦C water for shape recovery.

3.4.3. Comfort Fitting of Wearable Items around Body-Temperature

The heating-responsive shape memory phenomenon in polymers is mostly based on either the
glass transition or melting/crystallization. As briefly mentioned above, the temperature ranges for
the glass transition of a polymer in the heating and cooling processes are about the same, while the
melting temperature range of a polymer is normally much higher than that for crystallization. Thus,



Polymers 2020, 12, 2330 20 of 28

we can soften a polymer upon heating to above its melting temperature, and then program it at lower
temperatures during the cooling process. If a polymer can be deformed around body temperature or
room temperature, while its melting temperature is much higher than the room temperature, this kind
of material can be used in comfort fitting around human body temperature. PCL is a good example of
such, and has been used extensively in different splints.

Comfort fitting is required in many wearable items [38]. For those items in direct contact with
human body, such as splint, the meaning of comfort fitting is two-fold. One is comfort during fitting
and the other is comfort after fitting. It is ideal that fitting is carried out at room temperature or around
human body temperature. Apart from the requirement on the fitting temperature range, we may need
long enough time for fitting as well. PCL is a good material for splints, but lacks flexibility [1]. Hence,
after fitting, PCL splints are rigid.

In many wearable items, such as two examples presented in Figure 21, one is elbow band and
the other is toe sock-shoes, after modification (either coated with above mentioned vitrimer-like SMP
or soaked in its acetone solution and then dried in air), a combination of comfort during and after
fitting is achieved. There are more than five minutes for fitting at around body temperature or at room
temperature, while the wearable items are still reasonably soft after fitting. Hence, later on they are
flexible and can be elastically taken off without much difficulty. The programmed shapes are well
maintained even in hot days, unless they are heated to around 60 ◦C to recover their original shape for
next round of fitting. The original shapes of both examples in Figure 21 are actually not permanent,
and can always be reshaped upon heating to 110 ◦C to fix a new permanent shape, since the SMP used
here is vitrimer.
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hot-compress into one piece. If the applied temperature is so high that the network is fully eliminated, 
vitrimer is able to penetrate into the small gaps within textile, which results in strong bonding 
between textile and vitrimer. The stress versus strain relationships of above investigated vitrimer-
like SMP and its composite (0.3 mm thick with both surfaces covered by spandex and hot compressed 
at 110 °C) under cyclic stretching at room temperature are presented in Figure 22b,c, respectively. 
The total thickness of the composite is measured and used in the calculation of the stress in Figure 
22c. According to Figure 22a, unless an extremely high pressure is applied during hot compression, 
which causes significant stretching in the elastic textile, the contribution of the elastic textile on the 
mechanical strength of the resulted composite is practically negligible. Hence, it is not a surprise that 
the strength of the composite appears to be reduced. In addition, the elastic textile not only smooths 

Figure 21. Typical instant comfort fitting items (modified with vitrimer-like SMP). Both were produced
by soaking in the acetone solution of this vitrimer-like TPU and then drying in air. (A) Flexible elbow
band. (a) Original (after modification); (b1,b2) after fitting (with flexibility); (c1,c2) after being elastically
taken off, the programmed shape maintains. (B) Toe sock-shoes. Top: original socks; bottom: after
modification and fitting (the programmed shape remains after being taken off).

Nowadays, elastic textiles (e.g., spandex) that are highly stretchable in one or two in-plane
directions are widely used in sports clothes. In Figure 22a, the stress versus strain relationship of
a typical commercial spandex in uniaxial stretching along both in-plane directions is plotted. We can
use such a kind of elastic textile to cover one or both sides of a piece of vitrimer-like SMP and then
hot-compress into one piece. If the applied temperature is so high that the network is fully eliminated,
vitrimer is able to penetrate into the small gaps within textile, which results in strong bonding between
textile and vitrimer. The stress versus strain relationships of above investigated vitrimer-like SMP and
its composite (0.3 mm thick with both surfaces covered by spandex and hot compressed at 110 ◦C) under
cyclic stretching at room temperature are presented in Figure 22b,c, respectively. The total thickness
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of the composite is measured and used in the calculation of the stress in Figure 22c. According to
Figure 22a, unless an extremely high pressure is applied during hot compression, which causes
significant stretching in the elastic textile, the contribution of the elastic textile on the mechanical
strength of the resulted composite is practically negligible. Hence, it is not a surprise that the strength
of the composite appears to be reduced. In addition, the elastic textile not only smooths the stress
versus strain curve (i.e., high yielding peaks are removed), but also changes apparent propagation
front movement in the stress plateau range into gradual strain hardening.
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This kind of composite can be either reshaped into another permanent shape after heating to 110 
°C (Figure 23A) or programmed for comfort fitting at body temperature or below after preheating to 
less than 80 °C (Figure 23B). Even the associated strain is high in the process of reshaping, the elastic 
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after reshaping, either permanent or temporary, for thin plastic composites as mentioned here, they 
have good flexibility and elasticity for comfort wearing after fitting and can be easily removed in a 
quasi-elastic manner. 

Figure 22. (a) Uniaxial stretching of a piece of typical commercial spandex in two in-plane directions.
(b) Original vitrimer-like SMP (0.3 mm thick) in cyclic stretching to 60% maximum strain with an
increment of 10% in each cycle. Apparent necking-propagation phenomenon is observed. (c) Cyclic
stretching of vtrimer-like SMP (0.3 mm thick) with spandex [as in (a)] hot-compressed on both sides.
Strain rate: 10-2/s (in all tests reported here).

This kind of composite can be either reshaped into another permanent shape after heating to
110 ◦C (Figure 23A) or programmed for comfort fitting at body temperature or below after preheating
to less than 80 ◦C (Figure 23B). Even the associated strain is high in the process of reshaping, the elastic
textile (spandex) is soft enough to ensure that its influence is always minimum. On the other hand,
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after reshaping, either permanent or temporary, for thin plastic composites as mentioned here,
they have good flexibility and elasticity for comfort wearing after fitting and can be easily removed in
a quasi-elastic manner.Polymers 2020, 12, x FOR PEER REVIEW 23 of 29 
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impact is produced during unfolding, in particular at the end of the deployment, which results in 
continuous vibration and/or turbulence of the whole structure that requires additional power and 
time for stabilization and re-positioning.  

A very interesting feature of this vitrimer-like SMP is that after being heated to over 80 °C, it has 
apparent shear-thickening effect [60], i.e., with the increase in shear rate, its viscosity dramatically 
increases as well. This effect, which is far more effective than normal damping when a polymer is in 
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illustrated in Figure 24a, the middle part of a piece of curved elastic tape (represented by a piece of 
large sized metallic measuring tape) is covered by a vitrimer-like SMP layer (0.3 mm thick) on its 
inner side [61]. After heating to soften the vitrimer layer, the tape is bent by 90°. Subsequent cooling 
results in hardening of the vitrimer layer, which is designed to be thick enough to have enough 
stiffness after cooling/hardening to prevent the elastic tape from recovering (Figure 24b, bottom 
piece). Upon heating (e.g., via Joule heating) of the vitrimer layer, its restraint on the elastic tape is 
gradually removed. Hence, recovery (deployment) occurs, but the unfolding speed is slow because 
of the shear-thickening effect of this vitrimer layer at high temperatures. Thick elastic fabric (in pink 
color in Figure 24b) is used to cover the bent area for good thermal insulation to save energy in the 
case of Joule heating for activation.  

Figure 23. Flexible composites covered with dual-directionally stretchable elastic textile (spandex,
in two different colors in I and II, respectively) on both sides. (A) Rapid reshaping into another new
permanent shape. (a) As-fabricated flat piece; (b–d) different new permanent shapes. (B) Fitting at
body temperature (temporary shape). Top: on wrist for fitting; bottom: two different angles of view of
the programmed free-standing piece after fitting.

3.4.4. Controlled Unfolding to Minimize Impact

Curved elastic tapes (similar to metallic measuring tape) have been used as elastic hinges for
unfolding of deployable structures, such as, solar array panels, in space applications. However,
huge impact is produced during unfolding, in particular at the end of the deployment, which results in
continuous vibration and/or turbulence of the whole structure that requires additional power and time
for stabilization and re-positioning.

A very interesting feature of this vitrimer-like SMP is that after being heated to over 80 ◦C, it has
apparent shear-thickening effect [60], i.e., with the increase in shear rate, its viscosity dramatically
increases as well. This effect, which is far more effective than normal damping when a polymer is
in the viscous state, helps to minimize the impact in the final deployment stage. As schematically
illustrated in Figure 24a, the middle part of a piece of curved elastic tape (represented by a piece of
large sized metallic measuring tape) is covered by a vitrimer-like SMP layer (0.3 mm thick) on its inner
side [61]. After heating to soften the vitrimer layer, the tape is bent by 90◦. Subsequent cooling results
in hardening of the vitrimer layer, which is designed to be thick enough to have enough stiffness after
cooling/hardening to prevent the elastic tape from recovering (Figure 24b, bottom piece). Upon heating
(e.g., via Joule heating) of the vitrimer layer, its restraint on the elastic tape is gradually removed.
Hence, recovery (deployment) occurs, but the unfolding speed is slow because of the shear-thickening
effect of this vitrimer layer at high temperatures. Thick elastic fabric (in pink color in Figure 24b) is
used to cover the bent area for good thermal insulation to save energy in the case of Joule heating
for activation.
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3.5. Additional Permanent Cross-Linking

3.5.1. Reconfigurable Two-Way Actuation

Two-way (or called reversible) actuation has been achieved in some polymeric materials based
on melting/crystallization transition [62–65]. These materials are able to switch between two shapes,
one corresponding to the high temperature shape and the other to the low temperature shape. Same as
shape memory alloy-based actuators [66], an elastic stress field, either inside of the polymer or
outside (in the form of elastic spring, which also includes elastic structures and constant/variable
load), is required for automatic re-programming during thermal cycling. The former (with internal
elastic stress field) is called material two-way actuation, and the latter is called mechanical two-way
actuation [67].

According to Figure 9, we may heat a pre-deformed sample to partially remove the network,
and then cool it to form new network. Consequently, there are two networks in the material, one is the
remaining of the previous network, which is pre-strained, and the other is newly formed, which is
strain free. Hence, an internal elastic stress field is introduced into the material. Same as the material
two-way SME in shape memory alloys [67], such a kind of internal stress field is required for two-way
(reversible) actuation of polymers upon thermal cycling without applying any external loading [68].
However, practically it might be difficult to precise control the actual fraction of the new network,
since there are many processing parameters involved.

So far, the most applicable approach to realize material two-way actuation in polymers is to
introduce two networks into a semi-crystalline polymer in two steps during curing [69]. The second
network is introduced into the polymer after the material is deformed, so that the first network is
pre-strained, while the 2nd network is strain free. The resulted polymer is able to switch between two
shapes upon thermal cycling. But both high temperature and low temperature shapes are permanent.

Without modifying the chain structure, this vitrimer-like SMP investigated in Section 2 can be
cross-linked with dicumyl peroxide (DCP) to form interpenetrating polymer network (IPN) [70].
The resulted polymer is thermoset and has excellent heating-responsive SME even being programmed
at 100 ◦C. Since now there are two networks inside of the polymer, one is permanent (IPN) and the
other is reversible (vitrimer), we can reprogram the network associated with the vitrimer-like behavior.
Hence, the two-way actuation of the resulted polymer is re-configurable.

3.5.2. Rapid Additive Manufacturing in Solid State

Current technologies for additive manufacturing (also known as 3D printing) are mostly developed
for on-earth environment, which not only relies on the gravitational force, but also requires minimum
vibration/disturbance. However, in many situations, e.g., on space missions where gravity is close to
zero [71,72], while on air/sea missions (on-board of airplanes/ships) where severe random vibration
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is unavoidable, it is very hard to use liquid/powder form of raw materials in 3D printing. Even for
volumetric additive manufacturing via tomographic reconstruction [73], which is one of the recently
developed approaches for rapid 3D printing, good accuracy in cross-linking of polymeric liquid is
a challenge, if the printing platform is unstable (such as, on air/sea missions) that normal vibration
isolation tables cannot handle. Vitrimer-like SMPs appear to be the right material to realize rapid 3D
printing in solid state for above mentioned application scenarios [74], i.e., instead of cross-linking
liquid polymers as in current volumetric additive manufacturing via tomographic reconstruction [73],
vitrimer-like SMPs can be cross-linked at high temperatures, while they are still in the solid state and
transparent. Cross-linking might be UV activated or laser-induced heat activated on space missions or
air/sea missions. After cross-linking, the printed model is thermoset, while the uncross-linked part is
still vitrimer-like, which can be removed upon heating to the easy to flow temperature (e.g., 120 ◦C
for this vitrimer TPU) or washed away by a special solvent (e.g., acetone for this vitrimer TPU).
Any deformation in the model induced during the process to remove the uncross-linked part can
be eliminated via activating the SME. Refer to Figure S12 in Part III of Supplementary Materials for
a schematic illustration of the major steps in 3D printing.

4. Conclusions

Vitrimer-like shape memory polymers (SMPs) combine the vitrimer-like behavior (associated with
dissociative covalent adaptable networks) and shape memory phenomenon. This kind of polymers can
be utilized to achieve many novel functions that are difficult to be realized by conventional polymers.

In this paper, we used a commercial polymer to demonstrate how to characterize the vitrimer-like
behavior based on the heating-responsive SME. The relationship between the shape memory
performance, which is associated with the reversible cross-linking, and pre-process (in particular,
thermal history) was obtained for this polymer. Such a kind of information provides the foundation
for a series of examples presented here to reveal the potential applications of vitrimer-like SMPs and
their composites.

It can be concluded that apart from conventional applications, such as, re-processability and
heat-assisted self-healing, the vitrimer-like feature not only enables many new ways in reshaping
polymers (inside/outside, temporarily/permanently, at macroscopic/microscopic scale), but also can
bring forward new approaches in manufacturing, such as, rapid 3D printing in solid state.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/10/2330/s1,
Figure S1: Shape memory effect in thermoset polycaprolactone (PCL) [cross-linked with 10 wt. % of benzoyl
peroxide (BPO)], Figure S2: Internal stress fields in commercial thermo-plastic PS petri dish (a) and PP box (b),
Figure S3: Photo-elasticity images of tough hydrogel (thermoset), Figure S4: Differential scanning calorimetry
(DSC) result between −100 ◦C and 200 ◦C at temperature ramping rate of 10 ◦C/min using Netzsch DSC 214
machine (NETZSCH Group, Germany), Figure S5: 1H NMR spectrum in acetone-d6, Figure S6: XRD spectra
recorded at 25 ◦C, 80 ◦C and 110 ◦C upon heating, Figure S7: FTIR spectrum recorded at room temperature, Figure
S8: FTIR spectra upon heating from 30 ◦C to 120 ◦C (a) in the N-H stretching region and (b) in the C=O stretching
region, Figure S9: Schematic illustration of the phase transition process upon heating, Figure S10: Schematic
comparison of surface wrinkles formed by surface etching of thermo-plastic (c) and surface preheating of vitrimer
(d), Figure S11: Switching of Ni micro powder chains inside vitrimer thin film (about 0.1 mm, produced from
acetone solution of this vitrimer-like PU mixed with Ni powder), Figure S12: Rapid 3D printing in solid state on
space/sea missions.
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